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Introduction
The release of Ca2+ ions from intracellular mem-
brane-bound stores is a key step in a wide variety of bio-
logical functions. The release of Ca2+ is predominantly 
mediated by two related Ca2+ release channel fami-
lies: the ryanodine receptors (RyRs; Meissner, 1994; 
Franzini-Armstrong and Protasi, 1997; Hamilton and 
Serysheva, 2009; Clarke and Hendrickson, 2016) and 
inositol 1,4,5-trisphosphate receptors (Patterson et al., 
2004; Seo et al., 2015; Baker et al., 2017). Both types 
of Ca2+ release channels are localized in the ER and in 
muscle in a specialized subcompartment, the SR. Other 
intracellular organelles that store and release Ca2+ in-
clude mitochondria and acidic endosomal structures. 
One distinct feature of the RyRs is their modification by 
the plant alkaloid ryanodine, hence their name, which 
distinguishes them from other Ca2+ channels. The RyRs 
are comprised of four polypeptides each of ∼5,000 
amino acids and four FK506-binding proteins (FKBPs) 
each of ∼110 amino acids. RyRs are high-conductance, 
monovalent- and divalent-conducting channels regu-
lated by multiple factors that include Ca2+, Mg2+, ATP, 
calmodulin (CaM), protein kinases and phosphatases, 
and redox active species. Recent determination of the 
high-resolution cryo-electron microscopy (cryo-EM) 
structure of the skeletal muscle RyR1 and cardiac mus-
cle RyR2 isoforms has provided insight into the complex 
interacting regulatory mechanisms of SR Ca2+ release 

(Efremov et al., 2015; Yan et al., 2015; Zalk et al., 2015; 
Bai et al., 2016; des Georges et al., 2016; Peng et al., 
2016; Wei et al., 2016). RyR-like structures were iden-
tified in colony-forming choanoflagellates that evolved 
more than 600 million years ago (Mackrill, 2012). Alter-
ations in the activity of the RyRs have been implicated in 
a number of muscle diseases. More than 100 RyR1 mu-
tations are potentially associated in skeletal muscle with 
malignant hyperthermia (MH), central core disease 
(CCD), and multi-minicore disease (MmD; Robinson et 
al., 2006; Treves et al., 2008), and more than 150 RyR2 
mutations are potentially linked to catecholaminergic 
polymorphic ventricular tachycardia (CPVT), arrhyth-
mogenic right ventricular dysplasia type 2 (ARVD2), 
and idiopathic ventricular fibrillation in cardiac muscle 
(George et al., 2007; Leenhardt et al., 2012). Here, the 
experimental and recent structural studies that led to 
our current understanding of RyR regulatory mecha-
nisms and their structural basis are reviewed.

Mechanisms of SR Ca2+ release in mammalian skeletal 
and cardiac muscle
Rapid release of Ca2+ in striated muscle is triggered by 
an action potential that spreads rapidly over the surface 
membrane into tubular infoldings (T-tubule) of the sur-
face membrane. A distinguishing feature is that cardiac 
muscle excitation–contraction (E-C) coupling depends 
on extracellular Ca2+, whereas skeletal muscle E-C cou-
pling does not. This finding led to the formulation of 
two principal mechanisms for E-C coupling: the Ca2+- 
induced Ca2+ release (CICR) hypothesis in heart (Fa-
biato, 1983) and the mechanical coupling hypothesis 

Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from 
an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR iso-
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tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes 
comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins in-
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greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain 
comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic “foot” 
structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic 
structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryano-
dine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides 
a structural basis for the regulation of the RyRs by their multiple effectors.
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in vertebrate skeletal muscle (Schneider and Chandler, 
1973; Ríos and Pizarro, 1991). Voltage- and dihydropyr-
idine-sensitive (L-type) Ca2+ channels (dihydropyridine 
receptors [DHPRs], Cav1.2s) located in the surface 
membrane and T-tubule in cardiac muscle open closely 
apposed SR Ca2+ release channels (RyR2s) that result in 
the release of massive amounts of Ca2+. In contrast, in 
mammalian skeletal muscle, voltage-sensing L-type Ca2+ 
channels (DHPRs, Cav1.1s) in the T-tubule open closely 
apposed SR Ca2+ release channels (RyR1s) through di-
rect protein–protein interactions.

Structural arrangement of RyRs in skeletal 
and cardiac muscle
Skeletal and cardiac muscle SRs have longitudinal 
(free) and junctional SRs that are structurally and 
functionally distinct membrane regions. Longitudinal 
SR is a sarcotubular network that surrounds the myo-
fibrils and contains a Ca2+ pump responsible for Ca2+ 
uptake by SR. The junctional SR is mainly involved in 
Ca2+ release and houses RyR ion channels near L-type 
Ca2+ channels in the plasmalemma (RyR2) and T- 
tubule (RyR1 and RyR2; Franzini-Armstrong and Pro-
tasi, 1997). Groupings of L-type Ca2+ channels and RyRs 
in so-called Ca2+ release units or couplons comprise 10–
100 RyR1 in fast- and slow-twitch rat, guinea pig, frog, 
and toadfish skeletal muscle (Franzini-Armstrong et al., 
1999). Large protein structures termed “feet” represent 
the large cytoplasmic domains of the RyR1s that span 
the narrow gap separating the two membranes. Mor-
phological evidence suggests a well-defined interaction 
between T-tubular Cav1.1 and SR RyR1 channels in skel-
etal muscle. Clusters of four particles, tetrads represent-
ing four Cav1.1s, are located opposite four subunits of 
every other RyR1 (Block et al., 1988). The formation 
of Cav1.1 tetrads depends on the presence of apposing 
RyR1s (Takekura et al., 1995; Protasi et al., 1998). How-
ever, surface membrane–SR junctions were observed in 
mouse skeletal muscle primary cultures lacking RyR1. 
This suggests that other proteins are involved in the 
close linkage of the two membrane systems. SR junc-
tional proteins that assist in the formation of the triad 
junction include triadin (Caswell et al., 1991; Guo and 
Campbell, 1995), junctin (Jones et al., 1995), mitsugu-
min 29 (Takeshima et al., 1998), and STAC3 (Campiglio 
and Flucher, 2017).

Two populations of RyR1s in skeletal muscle, one cou-
pled to tetrads and one not, raised the question of how 
unlinked RyRs are activated. One suggestion was that 
Ca2+ released by Cav1.1-linked RyR1s activates Cav1.1-un-
linked RyR1s by a Ca2+-induced Ca2+ release mechanism 
seen in cardiac muscle (Ríos and Pizarro, 1991). How-
ever, CICR is slow in the presence of ATP and Mg2+ 
compared with physiological Ca2+ release (review by 
Endo, 2009). Ca2+ did not trigger the release of Ca2+ in 
mouse permeabilized skeletal muscle in the presence 

of physiological concentrations of ATP and Mg2+, which 
also suggested that Ca2+ is not the principal activator of 
RyR1 (Figueroa et al., 2012). On the other hand, it was 
proposed that Ca2+ may terminate the release of Ca2+ by 
binding to Ca2+ inactivation sites. Posterino and Lamb 
(2003) observed an increase in SR Ca2+ release from 
skinned rat muscle fibers in the presence of ∼400 µM 
1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic 
acid tetrakis(acetoxymethyl ester) (BAP TA), a fast 
Ca2+-chelating agent. Sztretye et al. (2011) noted that 
BAP TA changed the amplitude and kinetics of Ca2+ re-
lease in mammalian fibers. An alternative mechanism is 
that neighboring RyR1s are physically and functionally 
linked, which leads in lipid bilayers to the simultaneous 
opening and closing of two or more channels, termed 
coupled gating (Marx et al., 1998).

Clusters of tetrads of Cav1.1s in skeletal muscle lo-
cated opposite the four subunits of every other RyR1 
resulted in a Cav1.1/RyR1 ratio of 1.4:1.9 (Bers and Stif-
fel, 1993). A ratio of less than two suggested that not 
all tetrads were complete, as observed in freeze-fracture 
studies (Protasi et al., 1997).

The location and arrangement of DHPRs and RyRs 
in cardiac muscle is more diverse. The Cav1.2/RyR2 
ratio is lower, ranging from 0.27 in rabbit to 0.1 in fer-
ret myocytes (Bers and Stiffel, 1993). SR junctional do-
mains containing closely packed groupings of RyR2s 
that range in size from a few to several 100 RyR2s form 
discrete junctional domains with the surface membrane 
(peripheral couplings) and T-tubule (diads). In cardiac 
cells lacking T-tubules (e.g., conduction cells, avian 
hearts), junctional SR is near the surface membrane 
and in extended junctional SR away from the surface 
membrane (Sommer and Johnson, 1979). Frog ventri-
cle contains few if any RyRs, which suggests a reliance 
on calcium entry through surface membrane Ca2+ chan-
nels for muscle contraction (Tijskens et al., 2003).

The third mammalian RyR isoform RyR3 is ex-
pressed in diaphragm and slow-twitch skeletal muscle 
(Conti et al., 1996), brain and smooth muscle (Furui-
chi et al., 1994; Ledbetter et al., 1994; Giannini et al., 
1995), and fast-twitch skeletal muscle of young but 
not adult mice (Flucher et al., 1999). Two immuno-
logically distinct high molecular weight RyR protein 
bands corresponding to mammalian RyR1 and RyR3 
were identified in skeletal muscles from chicken (Airey 
et al., 1990) and frog (Oyamada et al., 1994). RyR3s 
in frog skeletal muscle and toadfish swim bladder are 
segregated in a parajunctional position adjacent to the 
junctional SR, where they are activated by calcium re-
leased from RyR1 channels (Felder and Franzini-Arm-
strong, 2002). Consistent with a low RyR3/RyR1 ratio, 
parajunctional feet are less frequently seen in mouse 
skeletal muscle and diaphragm. The appearance of the 
RyR1 isoform alone in some fast-contracting muscle of 
fish suggests that RyR1 is selectively expressed when 
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rapid contractions are required in muscle (O’Brien et 
al., 1993). Spontaneous or evoked activation of a few 
RyRs results in spatially limited Ca2+ release events, 
known as Ca2+ sparks (Cheng et al., 1993). Ca2+ sparks 
are observed in skeletal muscle that express RyR3, and 
in cardiac muscle.

Preparations for studying RyR function
RyR function has been studied using intact and skinned 
fibers, fragmented SR, and purified RyR preparations. 
There are two ways of accessing the intracellular com-
partment in muscle cells without disrupting the SR 
membrane (review by Stephenson, 1981). One is to me-
chanically remove the surface membrane from intact 
skeletal muscle cells. This procedure consists of physi-
cally rolling back a portion of the sarcolemma of a single 
fiber (Natori, 1954). T-tubules will reseal in mechan-
ically skinned fiber preparations. SR Ca2+ release and 
contraction can therefore be elicited by depolarizing 
T-tubule by ion substitution (Donaldson, 1985; review 
by Lamb, 2002). Fabiato and Fabiato (1975) studied 
the mechanism of CICR in cardiac muscle by removing 
the surface membrane from fragments of single car-
diac cells by microdissection. To study SR Ca2+ release 
in the absence of T-tubule depolarization, muscle cells 
were treated with low concentrations of saponin, a de-
tergent that disrupts cholesterol-containing membranes 
(surface membrane and T-tubule) but not membranes 
that lack cholesterol (SR). Skinned fiber studies were 
performed using mammalian skeletal muscle and am-
phibian skeletal muscle preparations that contain the 
RyR3 isoform, in addition to RyR1. These studies iden-
tified three principal properties of the RyRs: SR Ca2+ 
release is stimulated by Ca2+ and adenine nucleotides 
and inhibited by Mg2+.

Fragmentation of SR during homogenization of rab-
bit skeletal muscle and subsequent fractionation by 
differential and density centrifugation yielded “light” 
and “heavy” SR vesicles according to sedimentation 
properties (Meissner, 1975). Light vesicles correspond 
to the longitudinal SR and contain the SR Ca2+ pump 
as the major protein. Heavy SR vesicles derived from 
the junctional region of the SR contain “Ca2+ release 
channels” that are activated by Ca2+ and adenine nu-
cleotides and inhibited by Mg2+ (Meissner, 1984; Meis-
sner et al., 1986). Another important advance was the 
isolation of membrane fractions enriched in T-tubule 
segments sandwiched between two junctional SR com-
partments (Mitchell et al., 1983). These junctional 
complexes are known as triads. Microsomal mem-
brane fractions enriched in ryanodine-sensitive Ca2+ 
release channels were also isolated from other excit-
able tissues, such as cardiac muscle, smooth muscle, 
and brain. In these cases, however, the membrane 
fractions were typically of a lower purity than those 
from rabbit skeletal muscle.

Purification and identification of RyRs
Isolation of the SR Ca2+ release channel is facilitated by 
the identification of ryanodine as a channel-specific li-
gand (Fleischer et al., 1985; Pessah et al., 1985; Sutko et 
al., 1985; Meissner, 1986). Ryanodine is toxic and has 
different pharmacological effects depending on muscle 
type and activity. Ryanodine can increase or decrease 
the contractile force (Jenden and Fairhurst, 1969). Be-
cause the drug binds with high specificity and dissoci-
ates slowly from the high-affinity site in the receptor 
(either membrane-bound or detergent-solubilized), 
[3H]ryanodine is an ideal probe to monitor the isola-
tion of RyRs from a variety of tissues and species.

RyRs were initially isolated from rabbit skeletal muscle 
SR membrane preparations as a spanning protein com-
plex comprised of 300-kD subunits (Kawamoto et al., 
1986) and multiprotein ryanodine-binding complexes 
that displayed a pharmacology (Pessah et al., 1986, 1987; 
Inui et al., 1987b; Lai et al., 1987) and morphology char-
acteristic of the feet structures in junctional SR (Inui et 
al., 1987b; Lai et al., 1988a). Insertion of rabbit skeletal 
muscle (Smith et al., 1985, 1986) and canine cardiac 
muscle (Rousseau et al., 1986) SR vesicles and purified 
[3H]ryanodine-binding protein complexes (Imagawa et 
al., 1987; Lai et al., 1988b; Smith et al., 1988; Anderson 
et al., 1989) in lipid bilayers showed that RyR1 and RyR2 
are Ca2+- and ATP-activated, monovalent and divalent 
ion–conducting channels composed of four ∼565-kD 
polypeptides. The high molecular weight RyR polypep-
tide was associated with isoform-specific immunophilins 
(FKBPs) that migrated on SDS acrylamide gels as 12-kD 
proteins (Collins, 1991; Timerman et al., 1996).

Cloning and sequencing rabbit, human, and pig RyR1 
(Takeshima et al., 1989; Zorzato et al., 1990; Fujii et al., 
1991), rabbit and human cardiac RyR2 (Nakai et al., 
1990; Otsu et al., 1990; Tunwell et al., 1996), and rabbit 
RyR3 (Hakamata et al., 1992) revealed that the mam-
malian RyRs are a family of closely related Ca2+-conduct-
ing channels composed of four polypeptides of ∼5,000 
amino acids each.

Structure of mammalian RyRs
The morphology of purified RyRs was examined ini-
tially by negative-staining electron microscopy (Kawa-
moto et al., 1986; Inui et al., 1987a,b; Lai et al., 1988b; 
Saito et al., 1988; Anderson et al., 1989). Mammalian 
RyR1 and RyR2 have large square, four-leaf clover struc-
tures that resemble the feet that span the T-tubule–SR 
gap. A more detailed understanding of the structure of 
the intact RyRs was revealed by cryo-EM, a method well 
suited to resolve the structure of macromolecular com-
plexes in the near-native conformation. Three-dimen-
sional reconstruction from electron micrograph data of 
frozen-hydrated RyR specimens at a resolution of ∼30 
Å revealed a 29 × 29 × 12-nm large cytoplasmic assem-
bly with a 7-nm-length and 8-nm-diameter transmem-
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brane domain (Wagenknecht et al., 1989; Radermacher 
et al., 1994; Serysheva et al., 1995). Frozen hydrated 
specimens at ∼10-Å resolution indicated that the closed 
(nonconducting; Ludtke et al., 2005; Samsó et al., 2005) 
and open (conducting; Samsó et al., 2009) RyR1 has 
a pore structure characteristic of the voltage-gated ion 
channel family. Along with revealing the global struc-
ture, cryo-EM in combination with fluorescence reso-
nance energy transfer (FRET) measurements identified 
regulatory sites on RyR1 and RyR2 such as the FKBP 
site (Wagenknecht et al., 1996; Sharma et al., 2006; Gir-
genrath et al., 2013) and sites of the Ca2+-free and Ca2+-
bound forms of CaM (Wagenknecht et al., 1994; Samsó 
and Wagenknecht, 2002; Huang et al., 2012).

Recent cryo-EM studies provide more detailed insights 
into the structure of intact RyRs. The closed and open 
pore structures of RyR1 and RyR2 were determined at 
3.6- to ∼6-Å resolution (Efremov et al., 2015; Yan et al., 

2015; Zalk et al., 2015; Bai et al., 2016; des Georges et al., 
2016; Peng et al., 2016; Wei et al., 2016). More than two 
thirds of the molecular mass of RyRs was resolved. SR 
membranes from rabbit skeletal muscle (Efremov et al., 
2015; Yan et al., 2015; Zalk et al., 2015; Bai et al., 2016; 
des Georges et al., 2016; Wei et al., 2016) and porcine 
cardiac muscle (Peng et al., 2016) were solubilized using 
the zwitterionic detergent 3-[(3-cholamidopropyl)dime-
thylammonio]-1-propanesulfonate (CHA PS). RyRs were 
purified on sucrose gradients or by affinity chromatog-
raphy using glutathione-transferase–tagged FKBP12 and 
FKBP12.6. Closed RyR2 channels were applied to grids 
in buffers containing 5 mM EDTA and the nonionic de-
tergent digitonin (Peng et al., 2016). To obtain open 
channels, RyR2 was transferred to a buffer containing 
20 µM Ca2+ and 20 µM PCB95, a RyR activator. Closed 
RyR1 structures were determined in buffers containing 
EGTA and Tween 20 (Yan et al., 2015) or CHA PS and a 

Figure 1. Open RyR1 channel structure. The structure (PDB code 5TAL) reveals the major domains and the location of Ca2+-, ATP-, 
and caffeine-binding sites.

5TAL
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low concentration of lipid (Zalk et al., 2015; des Georges 
et al., 2016). To obtain closed and open RyR1s, Bai et 
al. (2016) applied the purified RyR1 channel complex 
to grids in a buffer that contained Tween 20 or CHA PS,  
respectively. Wei et al. (2016) determined the struc-
ture of the closed RyR1 channel in a buffer containing 
amphipol A8-35, an amphipathic surfactant that stabi-
lizes and maintains solubilized membrane proteins in 
detergent-free solutions. The open RyR1 channel was 
maintained in the presence of 100 µM Ca2+ and 10 µM 
ruthenium red, an RyR channel blocker. With some ex-
ceptions, retention of function of the purified RyRs was 
not determined. Four different channel states were ob-
tained according to single-channel measurements that 
kept RyR1 in a closed state (nominal 0 µM Ca2+), par-
tially open state (30 µM Ca2+; 0 µM Ca2+, 2 mM ATP, and 
5 mM caffeine), or fully open state (30 µM Ca2+, 2 mM 
ATP, and 5 mM caffeine; Fig. 1). Addition of 10 µM ry-
anodine converted channels to an open subconducting 
state (des Georges et al., 2016).

Determination of the high-resolution closed- and 
open-channel structures provides a better understand-
ing of the mechanisms of channel gating and ion per-
meation and how they are altered in RyR-associated 
diseases. Each RyR subunit has been subdivided into 
∼10 domains (Fig. 1 and Table 1). These include (1) 
the N-terminal domain that is a hotspot of RyR1 and 
RyR2 disease mutations, (2) the SPRY1 domain that is 
part of the binding site for FKPB12, (3) the junctional 
solenoid (Jsol) and bridging solenoid (Bsol), where the 
latter contains PKA and Ca2+/CaM-dependent protein 
kinase II (CaMKII) phosphorylation sites, (4) the cen-
tral solenoid (Csol) domain that contains two EF hand 
Ca2+ binding motifs, (5) the transmembrane domain 
that forms the conductance pathway for Ca2+, and (6) 
the C-terminal domain (CTD) that forms part of the 
Ca2+, ATP, and caffeine activation sites. Crystal struc-
tures of smaller RyR fragments at resolutions of <2 Å 
and covering N-terminal, SPRY1, SPRY2, RY1 and 2, 
and RY3 and 4 domains have clarified the functional 

role of ligands and disease mutations (Yuchi and Van 
Petegem, 2016). A comprehensive description of the 
RyR1 domain structure is provided by des Georges et al. 
(2016) and Samsó (2017).

Cav1.1–RyR1 interactions
A unique property of the mammalian skeletal muscle 
RyR1 is its direct linkage to the skeletal muscle Cav1.1 
channel isoform, which acts in E-C coupling as a volt-
age-sensing molecule rather than as a Ca2+ channel. 
Cav1.1 is comprised of a pore-forming α1 subunit and 
α2δ, β, and γ subunits. Early death of dysgenic mice 
lacking the α1 subunit (Beam et al., 1986) and β-null 
mutant mice (Gregg et al., 1996) suggested that both 
subunits are required for skeletal muscle E-C coupling. 
Several regions of Cav1.1 α1 and β subunits interacted 
with RyR1 and vice versa (review by Bannister, 2016). 
Detailed structural information on the interaction be-
tween the intact Cav1.1 and RyR1 is lacking, in part 
because a Cav1.1–RyR1 complex has not been isolated. 
However, obtaining this structural information should 
be facilitated by the availability of the recently deter-
mined near-atomic resolution structure of the intact 
RyR1 (Yan et al., 2015; Zalk et al., 2015; Bai et al., 2016; 
des Georges et al., 2016; Wei et al., 2016) and Cav1.1 
(Wu et al., 2016) complexes.

RyRs are high-conductance, cation-selective channels
Fusion of heavy rabbit skeletal muscle vesicles with pla-
nar lipid bilayers provided the initial evidence that the 
SR membrane contains a calcium-conducting chan-
nel of 125 pS (Smith et al., 1985). Channel activities 
recorded in the presence of Ca2+, ATP, and ruthenium 
red were compared with results obtained in vesicle flux 
measurements according to a rapid quench protocol. 
Results indicated that the 125-pS channel mediates 
rapid Ca2+- and ATP-gated release of Ca2+ from skeletal 
muscle SR vesicles. Subsequent lipid bilayer studies with 
canine cardiac muscle SR vesicles (Rousseau et al., 1986) 
and purified [3H]ryanodine-binding protein complexes 

Table 1. Cryo-EM domain nomenclature of RyR1

Domain name Alternative names Colora Sequenceb

N-terminal domain Yellow 1–627
SPRY1 Light orange 628–849
RY1 and 2 P1 Light magenta 850–1,054
SPRY2 and 3 Light orange 1,055–1,656
Jsol Handle Green 1,657–2,144
Bsol HD1&2 Cyan 2,145–3,613
 Includes RY3 and 4 P2 Orange 2,735–2,938
Csol Central domain Tomato 3,667–4,174
 Includes EF hand motifs 4,060–4,134
  TaF 4,175–4,253
Transmembrane domain Blue 4,541–4,956
C-terminal domain Brown 4,957–5,037

aDomain color in Fig. 1.
bdes Georges et al. (2016).
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(Imagawa et al., 1987; Lai et al., 1988b; Smith et al., 
1988; Anderson et al., 1989) established that RyR1 and 
RyR2 are Ca2+- and ATP-activated, Mg2+-inhibited, mon-
ovalent and divalent ion–conducting channels with a 
PCa/PK ratio of ∼7–8.

Sequence comparisons and mutagenesis studies pro-
vided evidence that the RyRs have a pore structure sim-
ilar to K+ channels (Balshaw et al., 1999; Zhao et al., 
1999; Gao et al., 2000; Du et al., 2001). RyR amino acid 
residues between the two C-terminal S5 and S6 mem-
brane-spanning segments were suggested to be lumi-
nally located, with a pore helix and an amino acid motif 
(GGG IG) similar to the selectivity filter motif (TV/
IGYG) of K+ channels. However, there are important 
differences among the RyRs relative to K+ channels. 
One is that RyRs conduct both monovalent and divalent 
cations with the following relative specificity: K+ > Rb+ > 
Na+ ≈ Cs+ > Li+, and Ba2+ > Sr2+ > Ca2+ > Mg2+ (Lindsay 
et al., 1991; Tinker and Williams, 1992). A second dif-
ference is that single-channel measurements with per-
meant and impermeant organic cations suggest a wider 
minimum radius of 3.3–3.5 Å for RyR2 (Tinker and 
Williams, 1993) than the experimentally determined 
minimum radius of 1.5 Å for K+ channels (Hille, 1973). 
Mutagenesis studies showed that two negatively charged 
amino acid residues (RyR1-D4899 and E4900) immedi-
ately after the selectivity filter motif in the luminal vesti-
bule and two negatively charged residues (RyR1-D4938 
and D4945) in the cytosolic vestibule have a critical role 
in RyR1 ion permeation and selectivity (Wang et al., 
2005; Xu et al., 2006).

Construction of a RyR1-Δ183-4006 deletion mutant 
and C-terminal construct of 1,377 amino acid resi-
dues showed that the RyR1 C-terminal portion forms 
a monovalent conducting channel activated by Ca2+ 
and modified by ryanodine (Bhat et al., 1997). The 
two C-terminal transmembrane segments that included 
the pore helix and connecting loops formed a homote-
trameric assembly that conducted K+ and Ca2+ and also 
Cl, which suggests the loss of a cation-specific pathway 
(Euden et al., 2013b).

Cryo-EM data support the view that RyR1 has a pore 
structure characteristic of the voltage-gated channel 
family. Samsó et al. (2005) and Ludtke et al. (2005) de-
termined the pore structure of the closed (nonconduct-
ing) RyR1 at a resolution of ∼10 Å. The pore-forming 
region as visualized by Ludtke et al. (2005) consisted of 
a long inner helix comprised of 31 amino acid residues 
and a pore helix of 15 residues. An increased resolution 
of ∼4 Å showed that Ile4937 in the S6 pore lining helix 
forms the hydrophobic constriction site in the closed 
RyR1 with a pore radius of less than 1 Å, rendering the 
channel impermeable to Ca2+ (Yan et al., 2015; Zalk et 
al., 2015). In the open RyR2 state, the pore constriction 
site was shifted to Gln4864 (corresponding to Gln4933 
in RyR1), widening the RyR2 minimal pore radius to 

∼2 Å (Peng et al., 2016). Ion-pulling simulations gener-
ated an open-channel conformation of RyR1 (Mowrey 
et al., 2017) from the 3.8-Å closed state of RyR1 (Yan et 
al., 2015). The pore constriction site at RyR1-Gln4933 
had a minimum open-channel pore radius of ∼2.8 Å 
(Mowrey et al., 2017), in reasonable agreement with 
the experimentally derived minimum radius of 3.3–3.5 
Å (Tinker and Williams, 1993). The cryo-EM structure 
and model data suggest that channel opening involves 
a rotation of the upper portion of the pore-lining S6 
helix away from the fourfold channel axis. Wei et al. 
(2016) used the RyR channel blocker ruthenium red to 
obtain an open channel. At variance with the aforemen-
tioned studies, Ile4937 in the closed RyR1 conferred a 
pore radius of 2.5 Å, which increased to 4.9 Å in the 
“open ruthenium-red–stabilized” channel, allowing the 
passage of hydrated Ca2+ ions.

The RyR1 S6 pore lining helix has two conserved 
hinge glycines (Gly4934 and Gly4941) associated with 
channel opening. Determination of the pore structure 
of the closed (nonconducting) RyR1 at a resolution of 
∼10 Å suggested that the inner S6 helix has a bend at 
RyR1-Gly4934 (Ludtke et al., 2005). Samsó et al. (2009) 
determined the cryo-EM structure of both the open and 
closed RyR1. As observed for the high-resolution struc-
tures of K+ channels (Jiang et al., 2002), the inner helix 
had an outward bend on a glycine (Gly4934 or Gly4941) 
in the open but not closed channel. This change along 
with other cytoplasmic structural changes widened the 
radius of a cytoplasmic ion gate from ∼4 to ∼6 Å, al-
lowing the flow of ions through the channel. Because 
cryo-EM had a resolution of only ∼10 Å, the positions 
of pore residue side chains and the structure of loops 
connecting the helices remained unknown (Ludtke et 
al., 2005; Samsó et al., 2009).

The two conserved glycines were replaced with un-
charged amino acid residues of an increased side chain 
volume. Substitution of RyR2-Gly4864 (corresponding 
to RyR1-Gly4934) with alanine resulted in no significant 
change of RyR2 function, whereas replacement with va-
line and proline profoundly altered channel gating and 
ion permeation (Euden et al., 2013a). Replacement of 
RyR1-Gly4934 and Gly4941 with alanine altered RyR1 
channel function in single-channel measurements (Mei 
et al., 2015). Mutations further increasing the side chain 
volume at these positions (RyR1-G4934V and G4941I) re-
sulted in loss of function. Molecular modeling suggested 
that the two glycines facilitate RyR channel function by 
providing flexibility and minimizing amino acid clashes.

A model of RyR2 ion permeation based on Eyring 
rate theory postulated four potential barriers within the 
pore corresponding to three putative binding sites (Tin-
ker et al., 1992). Without knowledge of the structure of 
the pore, the model quantitatively reproduced the con-
ductance data of mono- and divalent cations. Cryo-EM 
has tentatively assigned two barriers corresponding to 



1071JGP Vol. 149, No. 12

the selectivity filter and open-channel RyR2-Gln4864 
residue. A Poisson–Nernst–Planck density functional 
theory model accurately modeled the role of nega-
tively charged residues in the luminal (RyR1-Asp4899 
and Glu4900; Wang et al., 2005) and cytosolic (RyR1-
Asp4938 and Asp4945; Xu et al., 2006) vestibules of 
RyR1 in generating the high ion conductances of RyRs 
(Gillespie et al., 2005). Selectivity was attributed to 
charge-space competition, as Ca2+ could accommodate 
the most charge in the least space compared with K+ 
(Gillespie et al., 2005; Gillespie, 2008). Although the 
large dehydration energy but high conductance of Mg2+ 
suggest that ion dehydration does not play a major role 
in RyR ion permeation (Gillespie et al., 2014), the exact 
hydration states of Ca2+ ions remain to be determined 
as they pass through the pore. Gillespie and Fill (2008) 
predicted that RyR ion channels must mediate their 
own K+ countercurrents to minimize the formation of a 

membrane potential during SR Ca2+ release that would 
otherwise rapidly impede further release of Ca2+.

Regulation of RyRs by Ca2+

The mechanism of skeletal muscle and cardiac SR Ca2+ 
release has been extensively studied using isolated SR 
membrane and purified RyR preparations by applying 
three complementary methods. Macroscopic ion fluxes 
were measured from actively or passively loaded SR ves-
icles using rapid flow, quench, and filtration protocols. 
Microscopic monovalent ion and Ca2+ currents were re-
corded through single Ca2+ release channels incorpo-
rated into lipid bilayers (Fig. 2). In a widely used but less 
direct method, RyR channel activity was probed using 
the specific plant alkaloid ryanodine (Sutko et al., 1997; 
Fig.  2). All three methods showed that RyRs are acti-
vated by micromolar Ca2+ and millimolar ATP and are 
inhibited by millimolar Mg2+ and Ca2+.

Figure 2. Ca2+ dependence of RyR1. Data obtained using the planar lipid bilayer and [3H]ryanodine binding methods. With mod-
ifications from Heiny and Meissner (2012).
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Evidence for cytosolic RyR sites involved in Ca2+ activa-
tion.  RyRs are activated by micromolar cytosolic Ca2+ 
and inhibited by millimolar cytosolic Ca2+ in the ab-
sence of other channel effectors. A biphasic behavior 
implies there are at least two classes of Ca2+-binding 
sites: a high-affinity activation site and a low-affinity in-
activation site. However, differences in Ca2+ regulation 
of the mammalian RyR isoforms have been observed. 
In single-channel measurements, RyR2 and RyR3 iso-
forms are activated to a greater extent by cytosolic Ca2+ 
than RyR1 and require higher cytosolic Ca2+ concen-
trations to be inhibited when Ca2+ is the sole activating 
ligand (Fig. 3). Similarly, in avian and amphibian skel-
etal muscle that express both mammalian RyR1 and 
RyR3 homologues, RyR3 is activated by Ca2+ to a 
greater extent than RyR1 (Percival et al., 1994; Mu-
rayama and Ogawa, 2004).

Comparison of cryo-EM maps prepared in the ab-
sence or presence of 30 µM Ca2+ revealed a Ca2+-bind-
ing site at the interdomain interfaces of the RyR1 Csol 
and C-terminal domains (des Georges et al., 2016). The 
site encompasses three amino acids conserved among 
the RyR and IP3R families directly interacting with Ca2+, 
RyR1-Glu3893, and Glu3967 of the Csol and Thr5001 
of the C-terminal domain (Fig. 4 A). Two amino acids, 
Gln3970 and His3895, indirectly interact with Ca2+. The 
channel apparently remains closed with 30 µM Ca2+ as 
the sole activating ligand, even though single-channel 
measurements showed a channel open probability (Po) 
of 0.22. Similarly, opposite results were obtained using 
ATP and caffeine alone, whereas the three ligands Ca2+, 
ATP, and caffeine opened the channel in the structural 
and single-channel studies. des Georges et al. (2016) 

proposed that Ca2+ or ATP/caffeine alone primed the 
channel for opening, but all three ligands were re-
quired to overcome a barrier for opening. An alterna-
tive explanation is that the number of open channels 
under the conditions of Ca2+ or ATP/caffeine was too 
low to be scored as a separate class.

Mutagenesis has indicated that additional regions are 
involved in the regulation of RyRs by Ca2+. In one early 
study, RyR1-Δ183-4006 deletion mutant was activated by 
micromolar Ca2+, which suggests a Ca2+-binding site dif-
ferent from the one identified by cryo-EM (Bhat et al., 
1997). Substitution of RyR1-Glu4032 by alanine and the 
corresponding amino acid residue in the RyR3 isoform 
reduced Ca2+-gated channel activity (Chen et al., 1998; 
Du and MacLennan, 1998; Fessenden et al., 2001). 
However, RyR1-Glu4032 was not a part of a Ca2+-binding 
site, but rather stabilized the interaction between two 
RyR1 regions (des Georges et al., 2016). Other exam-
ples include CCD mutations located in the pore-form-
ing region of RyR1 in skeletal muscle (McCarthy et al., 
2000; Dirksen and Avila, 2002; Xu et al., 2008), sites 
in S2 (Gomez and Yamaguchi, 2014), S4–S5 linker 
(Murayama et al., 2011; Ramachandran et al., 2013), 
N-terminal region of RyR2 (Liu et al., 2015), and S6 
of RyR2 (Sun et al., 2016). Taken together, both struc-
tural and functional studies indicate that the transition 
of the closed to Ca2+-activated open channel involves 
the coordinated motion of multiple regions outside the 
Ca2+-binding site.

Evidence for cytosolic RyR sites involved in Ca2+ inactiva-
tion.  Efremov et al. (2015) compared two RyR1 cryo-EM 
structures in the absence of Ca2+ and at 10 mM Ca2+ at a 

Figure 3. Ca2+ dependence of single 
purified RyR1, RyR2, and RyR3. Shown 
are channel Po values as a function of 
cytosolic free Ca2+ in 250  mM K+, pH 
7.4 medium. Redrawn from Xu et al. 
(1998); (RyR1 and RyR2) and Chen et al. 
(1997); (RyR3).
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resolution of 6.1 Å. Differences in the Ca2+-free and 
Ca2+-bound maps were interpreted to indicate that 
binding of Ca2+ to a two–EF hand motif in the Csol do-
main (Fig. 1 and Table 1) increased the mean gate di-
ameter, which indicated formation of an open channel. 
However, functional studies were not presented. More-
over, the addition of 10 mM Ca2+ results in a nearly fully 
closed and not open RyR1 channel (Fig. 3). Therefore, 
it seems that Ca2+ ions bound to sites involved in Ca2+ 
inactivation and not activation of RyR1.

Earlier [3H]ryanodine binding studies with RyR1/
RyR2 chimeras suggested that Ca2+ inactivation sites 
are located in the C-terminal quarter of RyR1 (Du and 
MacLennan, 1999). In this region, two EF1 and EF2 
hand motifs are located in a CaM-like domain of RyR1 
(amino acids 4,064–4,210; Xiong et al., 2006). A pep-
tide corresponding to the CaM-like domain bound Ca2+ 
with an apparent affinity of 60 µM (Xiong et al., 2006). 
Two smaller recombinant proteins from rabbit skeletal 
muscle RyR1 (amino acids 4,069–4,139), cardiac mus-
cle RyR2 (amino acids 4,025–4,095), and lobster skel-
etal muscle containing the two EF hand motifs bound 
two Ca2+ with millimolar affinities, implying that sites 
in these regions have an inhibitory role (Xiong et al., 
1998). Deletion and mutations of the two–EF hand 
motif in the full-length RyR2 suggested that the EF-
hand domain has a role in RyR2 regulation by luminal 
Ca2+ but is not required for activation by cytosolic Ca2+ 
(Guo et al., 2016). Fessenden et al. (2004) assessed the 
functional significance of five potential Ca2+ regulatory 
sites in RyR1, taking into account that, in addition to the 
two–EF hand motifs, there are three negatively charged 
EF-hand-like sequences encompassing amino acid resi-
dues 4,253–4,264, 4,407–4,416, and 4,489–4,499. Muta-
genesis of the five motifs in RyR1 did not reveal major 
functional differences in response to depolarization 
or caffeine compared with wild-type RyR1-expressing 
myotubes (Fessenden et al., 2004). However, in a bind-
ing assay using the RyR specific ligand [3H]ryanodine, 

a mutant with a scrambled EF1 hand motif exhibited 
altered Ca2+ activation and inactivation. In a scrambled 
EF2 hand mutant, [3H]ryanodine binding was lost, but 
Ca2+-dependent activity was maintained in single-chan-
nel recordings. Studying a large number of RyR1/RyR2 
chimeras, Gomez and Yamaguchi (2014) found that 
two RyR regions are involved in Ca2+-dependent inac-
tivation, one region containing the two–EF hand mo-
tifs and a second that included the S2 transmembrane 
segment. Among the two–EF hand motifs, EF1 more 
strongly controlled the isoform-specific inactivation of 
the RyRs by Ca2+.

Evidence for luminal RyR sites involved in regulation by 
luminal Ca2+.  Both cytosolic and luminal Ca2+ regulate 
RyRs. Accordingly, dependence of channel activity on 
Ca2+ has suggested the presence of at least three types of 
Ca2+-binding sites, high-affinity (activating) and low-af-
finity (inactivating) sites accessible from the cytosol in 
large cytosolic foot region of the RyRs, and luminal 
Ca2+-binding sites, whose occupancy in skeletal and car-
diac muscle depends on SR Ca2+ load (Ford and Po-
dolsky, 1972; Fabiato and Fabiato, 1979; Shannon et al., 
2000; Györke et al., 2002).

Single-channel measurements suggest two mecha-
nisms to explain the regulation of RyRs by luminal Ca2+. 
Luminal Ca2+ ions access luminal Ca2+-sensing channel 
sites of RyR1 (Sitsapesan and Williams, 1995) and RyR2 
(Sitsapesan and Williams, 1994; Györke and Györke, 
1998; Gaburjakova and Gaburjakova, 2006, 2016; Diaz- 
Sylvester et al., 2011) or bind to cytosolic sites during 
or after their passage through the open channel (see 
next section below). Evidence for the presence of lumi-
nal Ca2+ regulatory sites was obtained in single-channel 
recordings performed in the presence of cytosolic ag-
onists ATP, caffeine, or sulmazole. Channels recorded 
in the presence of sulmazole or ATP were activated to a 
greater extent by luminal Ca2+ under voltage conditions 
that suggested a luminal-to-cytosolic flow through the 

Figure 4. Structure of regulatory sites in RyR1. Ca2+ (A)-, ATP (B)-, and caffeine (C)-binding sites of open RyR1 (PDB code 5TAL).

5TAL
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channel (Sitsapesan and Williams, 1994, 1995). Differ-
ences in the number of channel events and the duration 
of open and closed events suggested that binding of 
ATP or sulmazole to cytosolic channel sites uncovered 
luminal Ca2+-binding sites. Diaz-Sylvester et al. (2011) 
compared the regulation of RyR2 by luminal Mg2+, Ca2+, 
Sr2+, and Ba2+. RyR2 activation depended on cytosolic 
Ca2+ and caffeine concentrations. Although a greater 
activation by divalent cations compared with Cs+ was 
observed in the absence of caffeine at 100 μM cytosolic 
Ca2+, caffeine was required at 100 nM cytosolic Ca2+ for 
luminal Ca2+ and Sr2+ (but not Mg2+ and Ba2+) to acti-
vate RyR2 (Diaz-Sylvester et al., 2011). This suggested 
the presence of two luminal activating cation-binding 
sites, one specific for Ca2+ and another that bound 
Ca2+ and Mg2+. Gaburjakova and Gaburjakova (2016) 
reported that at 100 nM cytosolic Ca2+ and millimolar 
caffeine, RyR2 was fully activated by luminal Ca2+ and 
Sr2+. Higher caffeine concentrations were required for 
full activation by luminal Mg2+ and Ba2+. A luminal S1-S2 
EF hand–related loop region was suggested to bind with 
an affinity of Ca2+ > Sr2+ >Mg2+ ≈ Ba2+.

A “store overload-induced Ca2+ release” (SOI CR) in 
cardiac muscle can generate Ca2+ waves and Ca2+-trig-
gered arrhythmias. Loss of luminal Ca2+ activation sug-
gested the presence of a luminal regulatory site (Jones 
et al., 2017). A point mutation in RyR2 (RyR2-E4872A 
corresponding to RyR1-E4942A) eliminated Ca2+ regula-
tion by luminal Ca2+ but not by cytosolic Ca2+. In mouse 
hearts, the RyR2-E4872 mutation suppressed SOI CR and 
Ca2+ triggered ventricular tachycardia (Chen et al., 2014).

Evidence for cytosolic RyR sites involved in regulation by 
luminal Ca2+.  An alternative suggestion is that luminal 
Ca2+ regulates RyRs by binding to cytosolic regulatory 
sites after their passage through the open channel (also 
referred to as feed-through; Herrmann-Frank and Leh-
mann-Horn, 1996; Tripathy and Meissner, 1996; Xu and 
Meissner, 1998; Uehara et al., 2017). To distinguish lu-
minal and cytosolic Ca2+ regulatory sites, voltage- and 
Ca2+-dependent regulation of single RyR1 channels was 
reported (Tripathy and Meissner, 1996). Single chan-
nels were partially opened by cytosolic ATP in the pres-
ence of low cytosolic Ca2+. As luminal Ca2+ was increased 
to micromolar concentrations, increasing channel ac-
tivity was initially only seen at negative holding poten-
tials that supported a luminal-to-cytosolic flow through 
the channels. A further increase in luminal Ca2+ to mil-
limolar levels resulted in a decrease in channel activity. 
The results suggested that luminal Ca2+ flowing through 
the skeletal muscle Ca2+ release channel regulates chan-
nel activity by accessing cytosolic Ca2+ activation and in-
activation sites.

A possible resolution of the different mechanisms 
proposed for the luminal regulation of RyRs is that it 
involves Ca2+ sensing sites on both the luminal and cyto-

solic channel sites (Laver and Honen, 2008). Modeling 
of single ATP-activated RyR2 channel activities indi-
cated four Ca2+ regulatory sites: luminal (L) activation 
site, cytosolic activation (A) site, and cytosolic high-af-
finity (I2) and low-affinity (I1) inactivation sites. Lumi-
nal Mg2+ inhibited RyR2 by competing for Ca2+ at the 
L and A sites and binding to the I1 site. As discussed 
later, luminal Ca2+ also regulates RyRs by binding calse-
questrin (CSQ), a low-affinity, high-capacity luminal 
Ca2+-binding protein.

Regulation by Mg2+

Mg2+ is thought to inhibit RyRs by (a) competing with 
Ca2+ for a high-affinity cytosolic Ca2+ activation site, (b) 
binding with similar affinity as Ca2+ to a low-affinity cyto-
solic Ca2+ inhibitory site, (c) binding to luminal regula-
tory sites, and (d) reducing the flow of Ca2+ through the 
channel (Meissner et al., 1986, 1997; Smith et al., 1986; 
Gusev and Niggli, 2008; Laver and Honen, 2008). Mg2+ 
also has an “activating” effect. Suppression of rat RyR2 
and recombinant rabbit RyR2 activities at 10–100  µM 
Ca2+ was relieved by Mg2+ in [3H]ryanodine binding 
assays (Chugun et al., 2007; Gomez and Yamaguchi, 
2014). As discussed later, Mg2+ forms a MgATP complex 
that modulates the regulation of the RyRs by Ca2+.

Regulation by other divalent and trivalent cations
High-resolution cryo-EM identified a C2H2-type Zn2+ 
finger motif formed by two cysteine (RyR1-Cys4958, 
Cys4961) and two histidine (RyR1-His4978, His4983) 
residues in the C-terminal domain of RyR1 and RyR2 
(Yan et al., 2015; Peng et al., 2016). Although total 
intracellular Zn2+ concentrations are relatively high, 
the presence of a large number of cellular Zn2+-bind-
ing proteins yields a free Zn2+ concentration in the 
picomolar to nanomolar range (Colvin et al., 2010). 
Binding of Zn2+ affects RyR2 activity in the absence 
or presence of Ca2+ (Woodier et al., 2015). In sin-
gle-channel measurements, picomolar to micromolar 
Zn2+ increased RyR2 channel open probability in a 
Ca2+-dependent manner, whereas millimolar Zn2+ in-
hibited RyR2. Mutagenesis studies showed that two 
cysteines in the Zn2+ finger motif are critical in main-
taining a stable RyR1 channel conformation (Hurne 
et al., 2005). Expression of RyR1-C4958S or C4961S 
mutants restored Cav1.1 currents in dyspedic myo-
tubes, which indicated restoration of bidirectional 
coupling between RyR1 and Cav1.1 (Sheridan et al., 
2006). The two mutants did not restore E-C coupling 
or the response to RyR1 agonists, but supported 
RyR1 conformation-sensitive excitation–coupled Ca2+ 
entry (ECCE) that upon depolarization was mediated 
by three interacting Ca2+ channels, Cav1.1, RyR1, and 
a SOCE-like channel. Mutagenesis of RyR2-Cys4888, 
Cys4891, and His4908 eliminated caffeine activation 
of RyR2 (Peng et al., 2016).
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Among nonphysiological ions tested, Sr2+ was optimal 
in activating RyR2 at 1 mM, whereas Ba2+ did not acti-
vate RyR2 (Liu et al., 1998; Diaz-Sylvester et al., 2011). 
Both inhibited RyR1 and RyR2 at high millimolar con-
centrations (Meissner et al., 1997; Diaz-Sylvester et al., 
2011). Fe2+ but not Fe3+ inhibited [3H]ryanodine bind-
ing by competing with Ca2+ for the RyR2 Ca2+ activation 
site (Kim et al., 1995). Lanthanides (Tb3+, Eu3+, Sm3+) 
are nonconducting ions that activated or inactivated 
RyR1 at submicromolar to micromolar levels by binding 
to cytosolic high-affinity Ca2+ activating and low-affinity 
Ca2+ inactivating sites (Hadad et al., 1994; Sárközi et al., 
2017). Voltage-dependent regulation by cytosolic Eu3+ 
suggested that lanthanides bind to cytosolic activating 
Ca2+-binding sites in the electrical field of the channel, 
whereas the inactivating sites are located outside the 
electrical field (Sárközi et al., 2017).

Regulation by monovalent cations and anions
Nonphysiological assay media have been used to study 
RyR function. These include 50 mM CaHEP ES/TrisHEP 
ES or 0.25 M cesium methanesulfonate in single-chan-
nel measurements with SR membrane preparations to 
suppress SR K+ and Cl− channel activities, or 0.25  M 
KCl in [3H]ryanodine binding studies or single-chan-
nel measurements with purified RyR preparations. 
However, RyR activities are greatly affected by the ionic 
composition and strength of the assay medium. An in-
crease in KCl or NaCl stimulated Ca2+ release from SR 
vesicles and increased [3H]ryanodine binding and sin-
gle-channel Po (Michalak et al., 1988; Chu et al., 1990; 
Ogawa and Harafuji, 1990; Meissner et al., 1997; Liu 
et al., 1998). Using the [3H]ryanodine ligand binding 
assay, RyR1 and RyR2 Ca2+-dependent channel activities 
were oppositely affected by (a) the competitive binding 
of monovalent cations to high-affinity Ca2+ activating 
binding sites, and (b) binding of Cl− to unknown anion 
activating sites (Meissner et al., 1997; Liu et al., 1998).

Regulation by adenine nucleotides
Comparison of cryo-EM maps prepared in the absence 
or presence ATP and caffeine revealed an ATP-binding 
site at the cytoplasmic extension of S6 and elements of 
the C-terminal domain (des Georges et al., 2016). The 
site encompasses eight RyR1 amino acids. The adenine 
base of ATP contacts RyR1-Met4954, Phe4959, Thr4979, 
and Leu4985; the ribose ring of ATP likely interacts with 
Glu4955; and the triphosphate tail of ATP with positively 
charged Lys4211, Lys4214, and Arg4215 (Fig. 4 B). Chan-
nels apparently remained closed in the presence of ATP 
and caffeine as the sole activating ligands, even though 
single-channel measurements showed a channel Po of 
0.13. des Georges et al. (2016) proposed that, similar 
to Ca2+ alone, ATP/caffeine alone primed the channel 
for opening, and that in addition, Ca2+ was required to 
open RyR1. Cross-linking studies using 2-azidoadenosine 

5′-trisphosphate 2′3′-biotin-long-chain-hydrazone identi-
fied four glycine-rich consensus motifs in the N-terminal 
95-kD fragment of RyR1, which suggests there may be 
additional nucleotide-binding sites (Popova et al., 2012).

Ca2+ and Mg2+ greatly affect the activation of RyRs by 
ATP. In single-channel measurements in the absence 
of cytosolic Ca2+ and Mg2+, millimolar ATP weakly ac-
tivated the essentially closed RyR1 (Tripathy and Meis-
sner, 1996) and RyR2 (Kermode et al., 1998). On the 
other hand, RyR1 and RyR2 were nearly fully activated 
by ATP in the presence of micromolar Ca2+. Other ade-
nine nucleotides such as ADP, AMP, adenosine, or ade-
nine enhanced the release of Ca2+ from skeletal muscle 
SR vesicles (Morii and Tonomura, 1983; Meissner, 
1984) with a decreased potency compared with AMP-
PCP (Meissner, 1984). In single channel measurements, 
ADP was less effective in activating RyR2 than ATP (Ker-
mode et al., 1998). Other nucleotides such as CTP, GTP, 
ITP, or UTP had no substantial effect on the release of 
Ca2+ (Morii and Tonomura, 1983; Meissner, 1984).

Most cellular ATP is present as MgATP complex that 
represents the predominant biologically active form of 
ATP in cells. An increase in Mg2+ that increases MgATP 
and decreases uncomplexed ATP decreased RyR activ-
ity (Meissner et al., 1986; Xu et al., 1996; Walweel et al., 
2014). However, whether MgATP or ATP is a physiolog-
ical regulator of RyRs is unclear. In support of an inter-
action with “free” ATP is that ATP activates RyRs in the 
absence of Mg2+, and three positively charged amino 
acid residues in the ATP-binding site complement the 
negatively charged triphosphate tail of ATP. Experimen-
tal evidence whether ATP or MgATP is the preferred 
physiological regulator of RyR was not obtained by des 
Georges et al. (2016) because the cryo-EM studies were 
done in the absence of Mg2+

.

Regulation of RyRs by posttranslational modifications
In addition to the regulation by Ca2+ and other small 
molecules, RyRs are regulated by posttranslational mod-
ifications involving phosphorylation and redox modifi-
cation of sites in the large cytosolic domain of the RyRs.

RyR cysteine redox modifications.  RyRs contain a large 
number of amino acid residues that are potential tar-
gets for reactive oxygen and nitrogen molecules gener-
ated in working muscle under physiological or 
pathological conditions. These include free thiols, 
amines, and tyrosines. Most attention has been directed 
toward the role of cysteines and their modification by 
redox active molecules. RyRs contain a large number of 
cysteines: 100 in RyR1 and 89 in RyR2 subunit, and 1 in 
FKBP12 and 2 in FKBP12.6. It is therefore not surpris-
ing that cysteines are involved in the regulation of  
RyR activity.

RyRs have been studied extensively in ambient O2 ten-
sion (pO2 ∼150 mm Hg), often in the absence of a re-
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ducing agent. However, muscle pO2 is ∼10 mm Hg, and 
muscle cells have a high ratio of reduced to oxidized 
glutathione (GSH). Use of the lipophilic thiol–specific 
probe monobromobimane indicated that nearly half of 
the 100 cysteines in the RyR1 subunit were free in the 
presence of 5 mM reduced GSH at pO2 ∼10 mm Hg (Eu 
et al., 2000). An increase in oxygen tension from ∼10 
mm Hg to ambient air (pO2 ∼150 mm Hg) in the pres-
ence of 5 mM GSH resulted in loss of 6–8 free thiols/
RyR1 subunit. Substitution of GSH with oxidized GSH 
(GSH disulfide [GSSG]) at pO2 ∼10 mm Hg or ambient 
air reduced the number of free thiols/RyR1 subunit to 
∼26 and increased RyR1 activity (Sun et al., 2001b). The 
number of free thiols in RyR2-enriched fractions in the 
presence of 5 mM GSH was 58 cysteines /mg protein at 
pO2 ∼10 mm Hg and 50 cysteines/mg protein at ∼150 
mm Hg (Sun et al., 2008). In the presence of 5  mM 
GSSG, a lower number of free cysteines was measured. 
However, because RyR2 was only partially purified, the 
exact number of GSH- and pO2-sensitive thiols in native 
RyR2 remains to be determined. The results suggest 
that RyR1 and RyR2 have functional thiols that respond 
to cellular pO2 and the GSH/GSSG redox state.

Treatment of SR vesicles with reduced GSH at pO2 
∼150 mm Hg and mass spectrometric analysis of tryp-
tic fragments showed that monobromobimane reacted 
with 40 cysteines in the majority of experiments, with 
20 additional monobromobimane reactive cysteines 
less often detected (Petrotchenko et al., 2011). Seven 
RyR1 cysteines (Cys1040, 1303, 2436, 2565, 2606, 2611, 
and 3635) were selectively labeled by 7-diethylamino- 
3-(4′-maleimidylphenyl)-4-methylcoumarin under con-
ditions that led to loss of RyR1 redox sensitivity (Voss 
et al., 2004). Nine RyR1 cysteines (Cys36, 315, 811, 906, 
1591, 2326, 2363, 3193, and 3635) were endogenously 
modified, and another three cysteines (Cys253, 1040, 
and 1303) were modified by exogenous reactive oxygen 
and nitrogen molecules (Aracena-Parks et al., 2006). 
Sun et al. (2013) identified 13 oxygen tension-sensitive 
cysteines (Cys36, 566, 762, 845/854, 1674, 2305/2310, 
2555, 2606, 2611, 2704, and 4238). Another eight cys-
teines (Cys120, 253, 305, 490, 1686, 2021, 3892, and 
4663) were oxidized by an NADH oxidase at high pO2.

Mutagenesis studies have shown that cysteines located 
in the Jsol and Bsol domains and a poorly resolved re-
gion of RyR1 (des Georges et al., 2016) may serve a 
redox regulatory function. Substitution of cysteines with 
serine or alanine identified three cysteines (Cys1781, 
2436, and 2606) that responded to a change in GSH 
redox potential (Petrotchenko et al., 2011). At physio-
logical O2 concentrations, nitric oxide (NO) specifically 
S-nitrosylated Cys3635 (Sun et al., 2001a). Cys3635 is 
part of the high-affinity CaM-binding domain of RyR1, 
which provides an explanation for the observation that 
NO was effective only in the presence of CaM. In addi-
tion, mutagenesis of Cys4958 and Cys4961 in C2H2-type 

Zn2+ finger motif of RyR1 resulted in an inactive chan-
nel, which supported a depolarization-dependent Ca2+ 
entry mechanism (Hurne et al., 2005). Mutagenesis of 
RyR2-Cys4888 and Cys4891 eliminated caffeine activa-
tion of RyR2 (Peng et al., 2016).

RyR phosphorylation.  The large cytoplasmic foot region 
of RyRs has many potential phosphorylation sites 
(Takeshima et al., 1989; Zorzato et al., 1990) that may 
be targeted by protein kinases and phosphatases includ-
ing PKA, CaMKII, and phosphatases 2A (PP2A), PP1, 
and PP2B (Hohenegger and Suko, 1993; Marx et al., 
2000, 2001; Dulhunty et al., 2001; Shin et al., 2002). 
RyR1 has one and RyR2 has three well-established phos-
phorylation sites per RyR subunit. Early studies indi-
cated that canine RyR2-Ser2809 is phosphorylated by 
CaMKII and by PKA to a lesser extent (Witcher et al., 
1991). Subsequent studies showed that cAMP-activated 
kinase (PKA) phosphorylates Ser2843 in rabbit RyR1 
(Suko et al., 1993), mouse RyR2 at Ser2030 (Xiao et al., 
2005), and human RyR2 at Ser2808 (Marx et al., 2000). 
CaMKII uniquely phosphorylated recombinant RyR2 at 
Ser2815 (Wehrens et al., 2004). RyR1 was phosphory-
lated at Ser2843 (corresponding to Ser2809 in RyR2) by 
cAMP-, cGMP-, and CaMKs (Suko et al., 1993). Phos-
phorylation of threonine (Suko et al., 1993) and differ-
ent functional effects of CaMKII, PKA, and 
cGMP-dependent protein kinase (Takasago et al., 1991; 
Hain et al., 1995) suggested the presence of additional 
phosphorylation sites.

Phosphorylation of rabbit RyR2-Ser2809 in the P2 
domain induced a more flexible conformation that fa-
vored the transition from the closed to open channel 
states (Dhindwal et al., 2017). Crystal structures of the 
P2 domain of RyR1 (amino acids 2,734–2,940; Sharma 
et al., 2012; Yuchi et al., 2012) and the correspond-
ing P2 domains of RyR2 and RyR3 (Yuchi et al., 2012) 
have been reported. In vitro phosphorylation showed 
that PKA phosphorylated four residues corresponding 
to human residues Ser2808, Thr2810, Ser2811, and 
Ser2814 in the RyR2 P2 domain peptide (Yuchi et al., 
2012). CaMKII also phosphorylated four residues (but 
Thr2876 instead of Thr2810).

RyR phosphorylation has been linked to the impair-
ment of SR function leading to heart failure. Increased 
sensitivity to luminal Ca2+ of phospho-mimicking mutant 
RyR2-S2030D suggested that phosphorylation of Ser2030 
is involved in stress-induced cardiac arrhythmias (Xiao 
et al., 2007). Creation of genetically modified mouse 
models indicated that CaMKII phosphorylation of RyR2 
at Ser2814 increases SR Ca2+ leak, ventricular arrhyth-
mias, and heart failure (van Oort et al., 2010; Respress 
et al., 2012; Li et al., 2014). PKA-mediated phosphory-
lation of RyR1 (Reiken et al., 2003) and RyR2 (Marx et 
al., 2000; Wehrens et al., 2006) led to leaky channels by 
dissociating the small FKBP subunit from the channel 
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complexes, which resulted in defective RyR2 regulation. 
However, other studies have challenged these findings 
(Stange et al., 2003; Xiao et al., 2005; Alvarado et al., 
2017). A recent study indicates complex PKA phosphor-
ylation-mediated regulation of RyR2-Ser2809. Both the 
complete loss of phosphorylation or maximal phosphor-
ylation of Ser2809 increased the SR leak in rabbit ven-
tricular myocytes (Bovo et al., 2017).

Modulation of RyR activity by accessory proteins
RyR activity is affected by a large number of proteins 
that interact with the RyRs, such as the FKBPs, CaM, 
S1001, triadin, junctin, and anchoring proteins for ki-
nases and phosphatases.

FKBPs.  The small 12- and 12.6-kD FKBPs are predomi-
nantly associated with RyR1 and RyR2, respectively 
(Lam et al., 1995) and are generally considered part of 
the massive RyR complexes. FKBPs belong to the family 
of immunophilins and exhibit cis/trans isomerase activ-
ity, and their pharmacological removal using rapamycin 
or FK506 functionally uncouples groups of channels 
and increases channel activity (Brillantes et al., 1994). 
Dissociation of FKBPs induced the formation of sub-
states in single-channel measurements (Brillantes et al., 
1994; Ma et al., 1995; Ahern et al., 1997), whereas in 
other studies, full conductance was maintained (Barg et 
al., 1997; Mei et al., 2013). Cryo-EM studies located 
FKBP12 (fused to GSH S-transferase) to a relatively 
large area of RyR1 (Wagenknecht et al., 1996), which in 
subsequent studies was narrowed to a site at the inter-
face of three peripheral domains corresponding to the 
SPRY1, SPRY3, and Jsol domains (Samsó et al., 2006; 
Sharma et al., 2006). Crystal structure analysis of the 
RyR2-SPRY1 domain along with FRET and mutagenesis 
studies and docking to cryo-EM maps suggested FKBP 
binding to a hydrophobic cluster within SPRY1 
(Yuchi et al., 2015).

CaM.  CaM is a 16.7-kD cytosolic protein that regulates 
SR Ca2+ release by direct binding to RyRs and through 
other proteins that interact with RyRs and bind CaM. 
Other major contributors are the voltage-regulated sur-
face membrane Ca2+ channels (Cav1s), CaM-dependent 
protein kinase (CaMKII), and CaM-stimulated protein 
phosphatase (calcineurin). CaM inhibits all three mam-
malian RyR isoforms at free [Ca2+] >1 µM. At low free 
Ca2+ concentrations (<1 µM), CaM activates RyR1 and 
RyR3 channel activity, whereas RyR2 is inhibited by 
CaM (Ikemoto et al., 1998; Fruen et al., 2000; Balshaw 
et al., 2001; Yamaguchi et al., 2005). RyR1 and RyR2 
bind with nanomolar affinity 1 apoCaM (Ca2+-free form 
of CaM) or 1 CaCaM (Ca2+-bound form of CaM) per 
RyR subunit (Balshaw et al., 2001; Yamaguchi et al., 2005).

Trypsin digestion and site-directed mutagenesis 
demonstrated that RyRs have a single conserved high-af-

finity CaM-binding domain per RyR subunit (RyR1 
amino acids 3,614–3,643, RyR2 amino acids 3,581–
3,610, and RyR3 amino acids 3,467–3,498) that inter-
acts with Ca2+-free or Ca2+-bound forms of CaM (Moore 
et al., 1999; Rodney et al., 2001; Yamaguchi et al., 2001, 
2003, 2005). Crystal structure, nuclear magnetic reso-
nance, and FRET data showed that the CaM-binding 
domain binds both CaM lobes in a complex formed by 
CaCaM and peptide corresponding to the CaM-bind-
ing domain of RyR1 (Maximciuc et al., 2006). Alterna-
tively, CaCaM bound only the C-lobe, with the N-lobe 
potentially binding to another RyR1 region. This may 
explain why several RyR1 CaCaM- and apoCaM-binding 
sites were observed, using synthetic peptides and fusion 
proteins (Chen and MacLennan, 1994; Guerrini et al., 
1995; Lau et al., 2014). Studies with RyR1/RyR2 chime-
ras and mutants indicated that N-terminal sites and two 
predicted Ca2+ binding motifs (EF1 RyR1-4081-4092 and 
EF2 RyR1-4116-4127) are involved in the isoform-spe-
cific regulation by CaM at less than 1 µM Ca2+ (Xu et al., 
2017). Determination of temperature dependence of 
CaM binding showed major differences in the energet-
ics of CaM binding to and CaM dissociation from RyR1 
and RyR2 (Meissner et al., 2009).

Cryo-EM studies with RyR1 suggest that the CaM-bind-
ing site is at least 10 nm away from the transmembrane 
channel of the receptor and that Ca2+ binding to CaM 
(and RyR1) causes an ∼33-Å shift of the binding site 
(Wagenknecht et al., 1994; Samsó and Wagenknecht, 
2002). CaCaM is located in clefts formed by structural 
domains corresponding to the Jsol (amino acids 1,657–
2,144) and Bsol (amino acids 2,145–3,613) domains, 
with the latter domain located close to the high-affinity 
CaM-binding site (Wagenknecht et al., 1997). The se-
quence corresponding to the high-affinity CaM-binding 
domain was not sufficiently resolved in high-resolution 
cryo-EM studies to reveal its structure in intact RyRs 
(des Georges et al., 2016; Peng et al., 2016).

Studies with RyR1 CaM-deficient mutants suggest a 
modest role for CaM regulation of RyR1 in skeletal mus-
cle (Yamaguchi et al., 2011). In contrast, dysfunctional 
regulation of RyR2 by CaM alters cardiac function. 
Mutations in CaM are associated with RyR2-mediated 
cardiac arrhythmias (Nomikos et al., 2014; Sønder-
gaard et al., 2017). Substitution of three amino acids 
in the CaM-binding domain (RyR2-W3587A/L3591D/
F3603A) impaired CaM inhibition of RyR2 at diastolic 
and systolic Ca2+ concentrations. In mice, the mutations 
caused severe cardiac hypertrophy and death 2–3 wks 
after birth (Yamaguchi et al., 2007). In contrast, mice 
with a single amino acid mutation in the CaM-binding 
domain (RyR2-L3591D) showed loss of CaM inhibition 
of RyR2 at diastolic but not systolic Ca2+, had a normal 
lifespan, and had only modest changes in heart size and 
function (Yamaguchi et al., 2013). This was an unex-
pected finding because a leaky RyR2 at diastolic Ca2+ is 
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commonly implicated in cardiomyopathies. In support 
of a role of CaM in terminating SR Ca2+ release, CaM 
prolonged the closed durations of RyR2 in the presence 
of ATP and Mg2+, allowing Ca2+ to diffuse away from the 
release sites and eliminating reopening of these chan-
nels by Ca2+ (Xu and Meissner, 2004).

S100A1.  S100A1 is a small Ca2+-binding protein that 
modulates the activity of multiple Ca2+-handling pro-
teins in skeletal and cardiac muscle. S100A1 modulated 
striated muscle function by binding to the CaM-binding 
domain of RyR1 (Prosser et al., 2008; Wright et al., 
2008). S100A1 inhibited RyR2 but not the single-site 
mutant RyR2-L3591D of the RyR2 CaM-binding domain 
in single-channel measurements (Yamaguchi et al., 
2013). A more recent FRET study suggested that CaM 
and S100A1 can concurrently modulate RyR1 and RyR2 
function without S100A1 competing for CaM at the RyR 
CaM-binding site (Rebbeck et al., 2016).

Other RyR accessory proteins.  RyRs interact with a large 
number of additional proteins such as triadin, junctin, 
CSQ, anchoring proteins for kinases and phosphatases, 
and homer proteins. RyR interacting sites for these pro-
teins have been described. The RyRs form a junctional 
quaternary complex with triadin, junctin, and CSQ. Tri-
adin and junctin have a single transmembrane-span-
ning domain and interact directly with the RyRs. 
Redox-sensitive cysteines on RyR1 and triadin have a 
role in regulating RyR1 function (Liu and Pessah, 
1994). Three positively charged lysines in full-length 
95-kD triadin bind to three negatively charged RyR1 
residues located in S5 pore helix (RyR1-Asp4878) and 
S6 pore helix (Asp4907, Glu4908) linkers (Lee et al., 
2004; Goonasekera et al., 2007). Junctin-binding sites 
are less well defined. Different junctin domains may 
bind to cytosolic and luminal sites (Altschafl et al., 2011; 
Li et al., 2015).

CSQ is a low-affinity, high-capacity Ca2+ storage pro-
tein (MacLennan and Wong, 1971) concentrated in 
the heavy vesicle fraction derived from the SR terminal 
cisternae of skeletal muscle (Meissner, 1975). Cloning 
studies indicated the presence of two CSQ isoforms 
(Zorzato et al., 1994). CSQ1 is present in fast-twitch 
skeletal muscle and CSQ2 in cardiac muscle. Both CSQ 
isoforms are expressed in slow-twitch skeletal muscle 
(Arai et al., 1991; Biral et al., 1992; Murphy et al., 2009). 
The two isoforms contain a large number of negatively 
charged aspartic and glutamic acid residues, with CSQ2 
having an extended negatively charged C terminus. As-
sociation with the RyR complex involved the binding of 
triadin and junctin KEKE motifs (Guo and Campbell, 
1995; Zhang et al., 1997; Kobayashi et al., 2000) to as-
paragine-rich regions in the C terminus of CSQ (Shin et 
al., 2000; Beard and Dulhunty, 2015). CSQs formed lin-
ear polymers (Park et al., 2004) and dissociated (Zhang 

et al., 1997) from their binding proteins as the Ca2+ con-
centration increased.

In addition to increasing Ca2+ store size, CSQ mod-
ulates RyR channel activity. A deficiency in SR luminal 
cardiac CSQ in humans (Postma et al., 2002; Lahat et 
al., 2004), mice (Knollmann et al., 2006), and cardio-
myocytes (Terentyev et al., 2003) resulted in an imbal-
ance of Ca2+ handling and CPVT. Overexpression of 
CSQ2 suppressed SR Ca2+ transients and led to severe 
cardiac hypertrophy in mice (Jones et al., 1998; Sato et 
al., 1998; Terentyev et al., 2003). Abnormal Ca2+ han-
dling in association with cardiac myopathies was also 
observed in mice and cardiomyocytes that lacked or 
overexpressed the RyR2-accessory proteins triadin and 
junctin (Gergs et al., 2007; Kirchhof et al., 2007; Yuan et 
al., 2007; Chopra et al., 2009).

Marx et al. (2001) identified several anchoring pro-
teins that mediate an interaction between RyR2 and 
accessory kinases and phosphatases through conserved 
leucine/isoleucine motifs. Spinophilin targeted PP1 to 
the N-terminal domain, PR130 directed PP2A to the 
SPRY 3 domain, PR130 directed PP2A to a region over-
lapping with SPRY3 domain, and A-kinase anchoring 
protein targeted PKA to Bsol domain. Homer proteins 
modulate RyR activity by binding putative proline-con-
taining motifs in the RyR SPRY1 and Jsol domains (Feng 
et al., 2002; Pouliquin and Dulhunty, 2009).

Effects of ryanodine and caffeine
Among the large number of drugs that affect SR Ca2+ 
release (Zucchi and Ronca-Testoni, 1997; Xu et al., 
1998; Thomas and Williams, 2012), ryanodine and 
caffeine have been extensively used in the assessment 
of SR-controlling cytoplasmic Ca2+ concentrations. 
Molecular dynamic simulations indicate that ryan-
odine interacts with residues in the cytosolic cavity 
of the closed RyR1 (Ngo et al., 2017). Single-chan-
nel measurements with purified RyRs provide the 
most direct information on the action of ryanodine. 
The results show that ryanodine modifies the gating 
and conductance of RyRs in a characteristic manner 
(Fig. 5). After the addition of micromolar ryanodine, 
a single RyR1 channel entered a subconductance 
state with a channel Po close to unity. Upon the subse-
quent addition of millimolar ryanodine, the channel 
converted to a fully closed state. Because ryanodine 
binds very slowly to RyRs, ryanodine concentrations 
in the micromolar to millimolar rather than nano-
molar to micromolar range were used. A characteris-
tic property of ryanodine-modified channel states is 
insensitivity to regulation by Ca2+, Mg2+, and ATP, all 
of which greatly affect the gating behavior of unmod-
ified channels. [3H]Ryanodine binding studies have 
suggested that binding to a single high-affinity site 
locks RyRs into an open state, and binding of one or 
more ryanodine to low-affinity sites closes channels 
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(Lai et al., 1989; Pessah and Zimanyi, 1991; reviewed 
by Sutko et al., 1997).

Caffeine binds to a site encompassing the S2-S3 linker 
and CTD, contacting residues RyR1-Trp4716 and RyR1-
Ile4996, respectively (des Georges et al., 2016; Fig. 4 C). 
In contrast to ryanodine, caffeine (1,3,7-trimethyl-
xanthine) activated purified RyR1 by increasing chan-
nel open probability without significantly affecting 
single-channel conductance (Rousseau et al., 1988). 
Another difference is that caffeine activates the Ca2+ 
release channel without loss of sensitivity to regulation 
by Ca2+, Mg2+, and ATP. Among 30 xanthines tested, 
1,7-dimethylxanthine and 1-hexyl-3,7-dimetylxanthine 
(pentifylline) were most effective in activating RyR1 in a 
[3H]ryanodine binding assay (Liu and Meissner, 1997).

RyRs and muscle disorders
Naturally occurring mutations in RyR1 give rise to a 
variety of muscle diseases that include MH, CCD, and 
MmD (Treves et al., 2008) A list of mutations potentially 
associated with RyR1 is available at http ://www .dmd .nl /
nmdb2 /variants .php ?select _db =RYR1 &action =search _
all &order. MH is an inherited disease that causes a rapid 
rise in body temperature and inappropriate muscle 
contraction when the affected persons receive general 
anesthesia and MH-linked RyR1 mutations release 
Ca2+ ions from the SR. MH-linked RyR1 mutations 
were initially mapped to the N-terminal and central 
domains of RyR1; however, more recently identified 
MH mutations are distributed throughout the RyR1 
coding sequence (Robinson et al., 2006; Stowell, 2008; 
Treves et al., 2008). MH is treated with dantrolene, a 
muscle relaxant that reduces the rate of SR Ca2+ release 
(Zucchi and Ronca-Testoni, 1997). Recent studies have 
shown that two RyR1 ligands, CaM (Oo et al., 2015) and 
an increase in metabolite Mg2+ from MgATP hydrolysis 

during increased muscle activity (Choi et al., 2017), 
facilitate dantrolene inhibition. CCD and MmD are 
congenital diseases associated with a dysfunctional RyR1 
(Treves et al., 2008). In many cases, dominant RyR1 
mutations linked to CCD localize to the C-terminal 
domain of the channel. RyR1 with homozygous 
mutations associated with core myopathies often do 
not conduct Ca2+, whereas heterozygous RyR1 channels 
composed of wild-type and mutant subunits conduct 
variable amounts of Ca2+ (Xu et al., 2008). More than 150 
RyR2 mutations have been potentially linked to cardiac 
diseases such as CPVT and ARVD2 (George et al., 2007; 
Leenhardt et al., 2012). CPVT is an inherited cardiac 
disorder characterized by life-threatening arrhythmias 
elicited by stress and emotional disturbances. ARVD 
is an inherited RyR2-linked disorder that results in 
arrhythmias in the right ventricle.

Conclusion
Determination of RyR structure at near atomic resolu-
tion has opened the way for systematic studies on the 
molecular properties of a key component of skeletal 
and cardiac muscle function, as well as in other tissues 
that express RyRs such as brain and smooth muscle. 
Understanding the structure–function relationships of 
RyRs will help to explain the molecular mechanisms 
associated with myocardial myopathies. The combined 
results of structural, functional, and computational ap-
proaches have contributed basic biochemical, pharma-
cological, and electrophysiological information on RyR 
function that has set the stage for future studies of the 
complex regulatory mechanisms of RyRs by Ca2+ and 
other small molecules, posttranslational modifications, 
and accessory proteins. However, the recent identifica-
tion of RyR-binding sites may not sufficiently explain 
their regulation by Ca2+ and ATP, with additional activa-

Figure 5. Effect of ryanodine on sin-
gle purified RyR1. Single-channel re-
cordings of K+ current of purified RyR1 
incorporated in a planar lipid bilayer. 
The top trace shows the appearance 
of an subconductance state with Po 
∼1, several minutes after the addition 
of 30  µM ryanodine to the cis cyto-
solic side of the bilayer. The bottom 
trace illustrates the transition from the 
subconductance state to a fully closed 
state within 1 min after the addition of 
2 mM ryanodine. Bars on left indicate 
the open (o) and closed (c) channel. 
From Lai et al. (1989).

http://www.dmd.nl/nmdb2/variants.php?select_db=RYR1&action=search_all&order
http://www.dmd.nl/nmdb2/variants.php?select_db=RYR1&action=search_all&order
http://www.dmd.nl/nmdb2/variants.php?select_db=RYR1&action=search_all&order
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tion sites possible for these ligands. The use of lantha-
nides may continue to identify Ca2+-activating sites and 
the location of Ca2+- and Mg2+-inactivating sites. In skel-
etal muscle E-C coupling, Cav1.1 activation may render 
a recently identified RyR1 activation site accessible to 
SR luminal Ca2+, resulting in Ca2+-induced Ca2+ release. 
Further studies are needed to address the mechanism 
of SR Ca2+ release and determine how SR Ca2+ release is 
terminated in cardiac muscle. Accessory proteins such 
as CaM and posttranslational modifications may affect 
RyR structure and activity. Structural information may 
facilitate genetic correction of disease-associated muta-
tions and the development of new small molecules to 
inhibit disease progression. Studies on the RyRs will 
continue to contribute to understanding the structural 
framework that underlies RyR function.
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