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Abstract: The rod photoreceptors are implicated in a number of devastating 
retinal diseases. However, routine imaging of these cells has remained 
elusive, even with the advent of adaptive optics imaging. Here, we present 
the first in vivo images of the contiguous rod photoreceptor mosaic in nine 
healthy human subjects. The images were collected with three different 
confocal adaptive optics scanning ophthalmoscopes at two different 
institutions, using 680 and 775 nm superluminescent diodes for 
illumination. Estimates of photoreceptor density and rod:cone ratios in the 
5°–15° retinal eccentricity range are consistent with histological findings, 
confirming our ability to resolve the rod mosaic by averaging multiple 
registered images, without the need for additional image processing. In one 
subject, we were able to identify the emergence of the first rods at 
approximately 190 μm from the foveal center, in agreement with previous 
histological studies. The rod and cone photoreceptor mosaics appear in 
focus at different retinal depths, with the rod mosaic best focus (i.e., 
brightest and sharpest) being at least 10 μm shallower than the cones at 
retinal eccentricities larger than 8°. This study represents an important step 
in bringing high-resolution imaging to bear on the study of rod disorders. 

© 2011 Optical Society of America 

OCIS codes: (110.1080) Active or adaptive optics; (330.5310) Vision—photoreceptors; 
(170.1610) Clinical applications; (170.3880) Medical and biological imaging; (170.4470) 
Ophthalmology. 
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1. Introduction 

The human photoreceptor mosaic is multifaceted—among other things, providing exquisite 
resolution of spatial detail, single-photon sensitivity, and discrimination of millions of hues. 
These functional capabilities are a result of the presence of two interleaved mosaics of 
photoreceptors : rods and cones. Despite the majority of our daily vision being driven by the 
cone photoreceptors, nearly 95% of the total photoreceptor population in the human retina  
comprises rods [1]. Rod dysfunction is involved in a variety of devastating retinal 
degenerations, including retinitis pigmentosa [2,3], cone-rod dystrophy [4,5], congenital 
stationary night blindness [6], age-related macular degeneration [7–9], and more 
controversially in glaucoma [10,11]. Moreover, the rods are thought to be preferentially 
compromised in normal aging [12,13]. Currently lacking are tools with which to assess rod 
structure in the living retina; such tools could enable researchers to elucidate the sequence of 
events that ultimately lead to vision loss in these conditions, as well as allow for improved 
monitoring of the efficacy of current and new treatments. 

Since the introduction of adaptive optics (AO) technology to ophthalmic imaging [14], 
individual cone photoreceptors, retinal pigment epithelial (RPE) cells, and white blood cells 
have been routinely imaged by a number of investigators (e.g., [15–31]). However, despite 
rods outnumbering cones by 20:1, they have resisted visualization with these same imaging 
devices. There are only a few reports of rods being imaged in the diseased retina [32,33], and 
the single report of rod visualization in the normal retina relied on significant image 
processing and enhancement, and resulted in only intermittent rod visualization [34]. This has 
been thought to be due to their small size and/or their reduced waveguide capabilities [35,36]. 
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Here we demonstrate the first images of the contiguous rod photoreceptor mosaic in a 
series of normal subjects, obtained using adaptive optics scanning ophthalmoscopes (AOSOs). 
The complete rod mosaic is visible even in some individual AOSO frames. These results 
argue against a fundamental barrier to imaging rods in vivo, provided the optical system [37] 
and image registration software [38] are sufficiently optimized. These findings open the door 
for examining rod involvement in retinal disease using AO imaging, as has been done for eye 
conditions involving the cone photoreceptors [18–21,23,26,27]. 

2. Methods 

Written informed consent was obtained after the nature and possible risks of the imaging 
study were explained to the subjects. Studies were approved by Institutional Review Boards at 
the University of Rochester and the Medical College of Wisconsin. The eye to be imaged was 
dilated and cycloplegia was induced with topical application of one drop of a combination of 
phenylephrine hydrochloride (2.5%) and tropicamide (1%). The subjects were aligned and 
stabilized with the use of a dental impression on a bite bar. The light exposure was kept below 
the safe use of laser ANSI standard maximum permissible exposure [39,40] at all times. 
Reflectance images were recorded using three AOSOs as described in [37], with one of them 
having slightly different folding angles in the reflective afocal telescopes due to mechanical 
constraints imposed by off-the-shelf mounts for the optical elements. The use of multiple 
AOSOs with different pinhole sizes in front of the detectors and different angles of incidence 
on the spherical mirrors, allowed us to test the robustness of the minimization of astigmatism 
in planes conjugate to the pupil of the eye and the retina simultaneously [37]. 

Two superluminescent diodes (SLDs) with peak wavelengths 680 and 775 nm were used 
for imaging, with 8.5 and 13.7 nm full-width at half-maximum (FWHM) bandwidths, 
respectively. The SLDs were from Superlum Ireland (Carrigtwohill, County Cork, Ireland) 
and Inphenix Inc. (Livermore, California, USA), respectively. Confocal pinholes of 0.4, 0.6, 
1.1, or 1.5 Airy disks in diameter were used to spatially filter the scattered light from out-of-
focus retinal layers before the detector. 

The axial lengths of the eyes imaged were measured by using an IOL Master (Carl Zeiss 
Meditec, Inc., Dublin, California, USA), and are provided in Table 1, along with other 
relevant information. Eight of the nine subjects were emmetropic, and the remaining subject, 
DLAB_0003, was a mild myope (~1.0 D). While, theoretically, an eye with a shorter axial 
length would provide better resolution, it should be noted that the mean axial length of our 
subjects (23.8 mm) was comparable with that reported for a large normal population (24 mm) 
[41]. 

For an eye with a 17 mm effective focal length and a pupil diameter larger than the beam 
diameter entering the eye (7.5 mm), the lateral resolution (Rayleigh criterion) is 1.4 μm for 
680 nm light and 1.6 μm for 775 nm. Under the same assumptions, the corresponding axial 
resolution values are 15 and 17 μm. These numbers are optimistic (i.e., small) if we keep in 
mind the nonzero bandwidth of the light sources and the significant longitudinal chromatic 
aberration of the eye [42]. 

Sequences of 50–200 images were recorded, using between 0.75° and 1.00° fields-of-
view. The image stretching resulting from the sinusoidal motion of the resonant optical 
scanner was compensated by estimating the distortion from images of a Ronchi ruling and 
then resampling the images over a grid of equally spaced pixels. To increase the signal-to-
noise ratio, eye motion artifacts were removed, and then a number of registered frames were 
averaged [38]. In what follows, unless otherwise stated, all the in vivo photoreceptor images 
correspond to registered averages of multiple raw frames. No additional image processing or 
filtering techniques have been applied to any of the images analyzed in this study or shown in 
any of the figures. Because of the large spatial variation observed in photoreceptor brightness 
and for display purposes only, the images are displayed using both a linear and a logarithmic 
gray scale mapping [37]. 
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Table 1. Axial Lengths and Retinal Locations Imaged in this Study for Cell Density 
Estimation 

Subject Gender 
Age 

(years) Eyea 
Axial length 

(mm) 
Retinal location 

(deg)b Instrumentc 

WLAB001 Male 28 OS 22.83 8, 10, 15 ROC 1 

WLAB002 Male 29 OD 23.23 5, 10, 15 ROC 1 

DLAB_0003 Male 24 OS 24.32 10, 15 ROC 2 

DLAB_0007 Male 30 OS 23.59 5, 10, 15 ROC 2 

DLAB_0008 Male 21 OS 24.44 5, 10, 15 ROC 2 

DLAB_0009 Male 27 OS 24.64 5, 10 ROC 2 

JC_0565 Female 31 OS 24.01 10 MKE 1 

JC_0002 Male 27 OD 24.72 10 MKE 1 

JC_0138 Female 27 OD 22.75 10 MKE 1 
aOD corresponds to right eye and OS to left eye. 
bLocations are all temporal eccentricity, relative to fixation. 
cROC indicates University of Rochester and MKE the Medical College of Wisconsin. 

Estimates of cell density were obtained by counting the number of rods (or cones) within a 
given image patch of known area. The location of individual rods and cones was identified by 
using an automated algorithm, which also allowed manual addition/subtraction of cones or 
rods missed or selected in error by the algorithm [43,44]. Mosaic regularity and packing 
geometry was assessed by using previously described Voronoi analyses [23,44]. The relative 
retinal location of each image was determined based on the predetermined fixation location. 
In three subjects, the position based on fixation was further refined by using blood vessels as 
landmarks. 

3. Results and discussion 

Images of the full and contiguous photoreceptor mosaic at retinal locations between 5° and 
15° temporal to the fovea along the horizontal meridian were recorded in 9 healthy human 
subjects. Foveal fixation was confirmed by examining the appearance of the cone mosaic 
while the subject was fixating at the center of the raster scan (data not shown). This 
eccentricity range spans from a cone-dominated to a rod-dominated location in terms of area, 
as shown in Fig. 1 below. Note that most of the rod photoreceptor mosaic can be resolved in 
the logarithmic image, despite the 80% increase in the FWHM of the PSF with respect to the 
image displayed with a linear grayscale. 

Notably, the transmission images recorded by Packer et al. [45] (see Figs. 2a and 2b)  
resemble the in vivo images (e.g., Figure 2c). The bright spots in the histological images 
correspond to light guided by both rod and cone photoreceptor outer segments. In both our 
images and those by Packer et al., the area around the central bright spot of each cone 
typically appears as a dark ring, which represents the boundary of its inner segment. 

The images in Fig. 3 illustrate how averaging multiple registered frames reduces the 
photon and readout noise that gives single raw frames a grainy appearance. The optimal 
number of images to average depends on the inherent eye motion, signal-to-noise ratio (SNR) 
of each particular image series, the image registration algorithm, and the AO correction, 
among other factors. Three regimes can be observed, depending on the number of images 
averaged. First, when the number of images is low, assuming perfect image registration and 
AO correction, the image quality would be limited by readout, photon, or background (i.e., 
stray light) noise. Second, if the number of averaged images is adequate, and provided the 
image registration is acceptable, diffraction or residual aberrations would limit the image 
resolution. Third, when the number of images is too high, the accumulation of imperfectly 
registered images would blur the average of registered images, and thus the resolution would 
be limited by the registration algorithm itself. Determining what is an ―acceptable‖ or the 
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―optimal‖ number of images is by no means trivial, and any attempt to obtain a ―rule of 
thumb‖ is complicated by tear film disruption, intraocular scattering, residual accommodation, 
pupil diameter, and other experimental factors. Interestingly, averaging images collected at 
different times during the day reduces the large cell differences in rod (and cone) reflectivity 
across the mosaic, as illustrated by the images in Fig. 3. In addition, the uniformity of the 
reflectivity profile of certain cells also becomes more uniform as a result of averaging images 
from different time points [46]. 

 

Fig. 1. Reflectance images of the human photoreceptor mosaic at three retinal locations along 
the temporal meridian for subject DLAB_0008, collected using 680 nm light and 0.4 Airy disk 
pinhole size. The same images are shown with linear (top row) and logarithmic (bottom row) 
grayscales, to facilitate visualization of the rod mosaic. The scale bars are 10 μm across. 

 

Fig. 2. The two images on the left and middle were collected in an excised primate retina, 
imaged in a bright field microscope in transmission [45]. These images, reproduced with 
permission from the Journal of Neuroscience, show the cone and rod outer segment tips, 
respectively, as bright spots. The image on the right shows an in vivo image from WLAB001 at 
similar eccentricity, collected using 775 nm light and 0.6 Airy disk pinhole size. The scale bar 
is 5 μm across. 
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Fig. 3. Reflectance images of the human photoreceptor mosaic at 10° temporal to the fovea for 
subject JC_0138, collected using 680 nm light and 1.1 Airy disk pinhole size. From top to 
bottom the images are: a single frame, a registered average of 50 frames, and registered 
average of 6 batches of 50 frames, collected over a 6 hour period, 1 hour apart. The scale bars 
are 20 μm across. 
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While the images shown here demonstrate the ability to resolve the rod photoreceptor 
mosaic, the clinical utility of these images ultimately requires extraction of quantitative 
information. Shown in Fig. 4 are rod:cone ratio and cell density measurements for all 9 
subjects. The estimated values are in reasonable agreement with the histological findings from 
Curcio et al. [1], even at the point of maximum rod density. The small difference between our 
values and those obtained via histological analysis are likely due to inter-subject variability. 
Other sources of discrepancy could be errors in determining the retinal location, not 
accounting for shorter axial lengths at eccentric locations, or even tissue shrinkage artifacts in 
the histological data. Regardless, these data represent the first in vivo estimates of rod 
photoreceptor density in the normal retina. The fact that the rod mosaic can be fully resolved 
in young people is encouraging in terms of studying advanced stages of eye disease in older 
patients. While imaging of older subjects would be expected to result in images of lower 
resolution due to the opacification of the intraocular media and smaller pupil size, the loss and 
enlargement of rod photoreceptors observed in the aging retina [12,13] might partially 
compensate for this resolution loss. 

 

Fig. 4. Comparison of in vivo rod and cone metrics with those from Curcio et al. [1]. Shown on 
the left is a plot of the ratio of rods to cones as a function of retinal eccentricity. The solid line 
is the mean of Curcio’s measurements taken in the temporal meridian, and filled circles 
correspond to the data from this study. On the right is a plot of photoreceptor density as a 
function of retinal eccentricity. Density estimates for our subjects for rods and cones are shown 
as open squares and open circles, respectively. Also plotted is the mean rod (solid line) and 
cone (dashed line) density values reported by Curcio et al. [1] for the temporal meridian. 

With the ability to resolve the complete peripheral photoreceptor mosaic, we sought to 
investigate the spatial organization of the interleaved rod and cone mosaics. The normal 
foveal and parafoveal cone mosaic has been well described as being triangular (hexagonally 
packed) both in histological [47–49] and more recently, using in vivo imaging tools [25,43]. 
Given the normal variation in cone density, these metrics have also been employed to examine 
disruptions in mosaic regularity caused by retinal disease [21,23,51]. Shown in Fig. 5 is a 
Voronoi representation of an image of the photoreceptor mosaic taken at 10° temporal to the 
fovea. Nearly all the cones in the image have more than 8 rods surrounding them (red and 
dark blue cells in panel b). When examining only the cones, we see that 48% of them have 
six-sided Voronoi domains (green cells, panel c), indicating that even at this location, the cone 
mosaic is roughly organized in a triangular lattice. However, this is reduced in comparison to 
the parafoveal mosaic, which has been reported to have as many as 60%–70% of cones in a 
given patch of retina having six-sided Voronoi domains [23,25]. We find that at this 
eccentricity, the rods are similarly packed, with 48% of the rods having six-sided Voronoi 
domains. Of course, since at this location only a minority of the rods do not have a cone as an 
immediately adjacent neighbor, it is difficult to assess the packing geometry of the isolated 
rod mosaic without incorporating the disruptive effect of the interleaved cone mosaic. Further 
work is needed to assess the normal geometry of the rod mosaic in the context of the cone 
mosaic. 
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Fig. 5. Analysis of the regularity of the peripheral photoreceptor mosaic. Shown in a is the 6-
hour averaged image (logarithmic display) from subject JC_0138, taken at about 10° temporal 
to fixation, collected using 680 nm light and 1.1 Airy disk pinhole size. Color-coded Voronoi 
domains associated with each cell are shown in panel b), where the color indicates the number 
of sides on each Voronoi polygon (magenta = 4, cyan = 5, green = 6, yellow = 7, red = 8, dark 
blue = 9). Regions of six-sided polygons indicate a regular triangular lattice, while other color 
mark points of disruption of the mosaic. Panel c shows the color-coded Voronoi domains 
associated with just the cone photoreceptors in the image. 

Another well-known feature of the human rod mosaic is the existence of a rod-free zone at 
the center of the fovea. The resolution of our AOSOs also enables visualization of this 
anatomical feature of the rod mosaic. Images of the parafoveal photoreceptor mosaic show 
rod photoreceptors as close as 190 μm away from the foveal center (Fig. 6). This is consistent 
with previous ex vivo data, in which rod photoreceptors were found to first appear between 
100 and 200 μm from the foveal center [1], and also with in vivo AO imaging of blue cone 
monochromacy, which enabled direct visualization of both the rod free zone and S-cone free 
zone of the human fovea [32]. 

Critical to successful visualization of the rod mosaic is correct focusing of the AOSO. The 
sequence of images in Fig. 7 shows that even though many rods can be resolved over the 35 
μm range covered by the sequence, the full mosaic can only be reliably resolved in one of the 
images (8.7 μm). This suggests that the coarsest focus step used to image the rod mosaic using 
680 nm light should be no larger than 10 μm. 

Across all subjects, we find that the cones and rods do not necessarily appear in focus at 
the same time, with the rods appearing in focus 10 to 20 μm shallower than the cones. In fact, 
when the rods are in focus, the cones typically show a complex irregular intensity profile that 
can mislead both researchers and automated cell counting algorithms into identifying cones as 
rod clusters. The dark ring characteristic of cone photoreceptors at eccentricities larger than 
5°–10° is not always distinct enough to confidently identify each cone as such (see Fig. 7). It 
can be seen in the sequence of images in Fig. 7 that the complex intensity profiles 
corresponding to large cone photoreceptors vary with focus, and in fact, more rapidly than the 
rod photoreceptor mosaic. This suggests that these patterns might be artifactual, but more 
experiments following the mosaic over time, using light sources with various wavelengths and 
coherence lengths, as well as pinhole sizes, need to be performed to determine their nature. 

From the practical point of view, cones can be disambiguated from rods by recording two 
images at each retinal location, one with each of the photoreceptor mosaics in focus. While 
combining images taken over extended time periods also results in improved visualization of 
the rod and cone mosaics, this technique would be impractical for routine imaging of patients. 

Axial intensity profiles of the cone and rod mosaics estimated from image sequences such 
as the one in Fig. 7 (shown in Fig. 8) indicate that the rods are brightest 10 to 20 μm shallower 
than the cones at eccentricities greater than 8°. This is consistent with our qualitative 
observation of rods appearing in focus shallower than the cones. It is also worth noting that 
despite the inferior axial resolution of the AOSO (~15 μm) compared with current AO optical 
coherence tomographs (OCTs) (2–3 μm), the axial intensity profiles suggest two peaks that 
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might correspond to both ends of the cone outer segments [27–29]. If this were indeed the 
case, the single peak in the axial intensity profile of the rod mosaic would correspond to the 
interface between the external limiting membrane (ELM) and the rod inner segments (IS). 
This, however, would be inconsistent with spectral-domain OCT images that show a very 
faint ELM/IS boundary with respect to the reflections from both ends of the outer segment at 
all retinal eccentricities (e.g., [27–31].). Further experiments are needed to establish more 
refined AOSO axial intensity profiles of the cone and rod mosaics at different retinal 
eccentricities, to clarify the interpretation of the observed axial peaks. 

 

Fig. 6. Reflectance image of the human photoreceptor mosaic from subject JC_0138, collected 
using 680 nm light and 1.1 Airy disk pinhole size and displayed with linear (left) and 
logarithmic (right) gray scale mappings. The image is a montage of two overlapping locations, 
stitched together using i2k Retina (Dual Align, LLC, Clifton Park, NY, USA). The arrows 
point to some of the rod photoreceptors closest to the foveal center (significantly smaller than 
surrounding cones), which is located at the bottom right corner. The scale bars are 50 μm 
across. 

Pinhole sizes between 0.4 and 1.5 Airy disks were used to collect the images for this work 
in order to explore the 15%–20% lateral resolution benefit that confocal microscopy theory 
predicts will arise from using sub-Airy disk pinholes [50]. The data collected for this work 
does not appear to reflect such increase in resolution, although a more exhaustive study is 
necessary. A plausible explanation for this inconsistency is that the reflective properties of the 
photoreceptor mosaic are not accurately described by the multiplicative 2D function implied 
in the mathematical modeling by Wilson and Carlini [50]. 

Finally, most of the images collected for this study use 680 nm light, although the 
photoreceptor mosaic can also be resolved with 775 nm light (see Fig. 9), despite the 14% loss 
of resolution expected due to the longer wavelength. Image contrast when using 680 nm light 
for imaging is noticeably higher that when using 775 nm light, but the ability to image the 
photoreceptor mosaic by using infrared light might prove critical when imaging subjects with 
increased sensitivity to light. Also, note that photoreceptors that appear brighter/darker when 
imaged with 680 nm light might not necessarily appear so in the 775 nm image and vice 
versa. 
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Fig. 7. Reflectance images of the human photoreceptor mosaic from subject DLAB_007 at 10° 
temporal along the horizontal meridian at different retinal depths, shown with linear (top row) 
and logarithmic (bottom row) gray scales. The image series was collected by using 680 nm 
light and a 0.4 Airy disk pinhole size. The zero depth point indicates the innermost image of 
the stack, and, thus, increasing values indicate foci closer to the retinal pigment epithelium 
(RPE). The scale bars are 10 μm across. 

 

Fig. 8. Axial intensity profiles for the cone and rod photoreceptor mosaics shown in Fig. 7. The 
(very small) error bars correspond to the errors associated with identifying the boundary of the 
cones in the images 

4. Conclusions 

We presented the first in vivo images of the complete and contiguous rod photoreceptor 
mosaic in a series of healthy human subjects obtained by using a reflective confocal AOSO. 
The rod mosaic can be resolved with either 680 or 775 nm light, and often even within single 
raw frames. The only significant difference between the instrument used for this work and 
those reported in the bibliography is the simultaneous reduction of astigmatism in pupil and 
retina conjugate planes [37]. The image registration software used here [38], although critical 
to increase SNR by averaging multiple frames without introducing significant blur, seems to 
perform comparably to software used by other researchers [52–55]. 

Estimates of rod:cone ratio and cell density in the cone and rod photoreceptor mosaics in 
the 5°–15° eccentricities range imaged for this study are consistent with histological studies, 
and confirm that we are indeed able to resolve the rod mosaic. Individual rods at the edge of 
the foveal rod-free zone were observed as close as 190 μm from the foveal center. Qualitative 
image evaluation and quantitative analysis of axial intensity profiles indicate that the rod  
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Fig. 9. Reflectance images of the human photoreceptor mosaic collected using 680 and 775 nm 
light and 1.1 and 1.6 Airy disk pinhole sizes, respectively, shown with linear (left) and 
logarithmic (right) gray scales. Scale bars are 10 μm across. 

mosaic appears in focus 10–20 μm shallower than the cone photoreceptors at retinal 
eccentricities equal or larger than 8°. 

It is worth noting that these results were obtained by using three similarly designed AOSO 
systems at two different institutions. This represents an important step in the dissemination of 
AO imaging technology and the use of AO imaging of the photoreceptor mosaic in clinical 
trials, which typically involves multiple sites. We anticipate that as additional groups acquire 
the ability to routinely image the rod mosaic, we will see a windfall of important new data on 
the cellular phenotype in retinal degenerations emerge. 

Acknowledgments 

Alfredo Dubra-Suarez, Ph.D., holds a Career Award at the Scientific Interface from the 
Burroughs Welcome Fund. Joseph Carroll is the recipient of a Career Development Award 
from Research to Prevent Blindness. This research was supported financially by the National 
Institutes of Health, Bethesda, Maryland (R01EY014375, P30EY001319, P30EY001931, 
R01EY017607, and T32EY014537). Funding was also provided by the E. Matilda Ziegler 
Foundation for the Blind, Hope for Vision, unrestricted grants from Research to Prevent 
Blindness and the National Science Foundation Science and Technology Center for Adaptive 
Optics (Santa Cruz, California), managed by the University of California at Santa Cruz 
(cooperative agreement number AST-9876783). Part of this investigation was conducted in a 
facility constructed with support from the Research Facilities Improvement Program; from the 

#145204 - $15.00 USD Received 1 Apr 2011; revised 2 Jun 2011; accepted 3 Jun 2011; published 8 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2,  No. 7 / BIOMEDICAL OPTICS EXPRESS  1875



National Center for Research Resources, NIH, grant number C06 RR-RR016511. The authors 
would like to thank Ashavini Pavaskar and Drew Scoles for their assistance with imaging and 
data processing. 

 

#145204 - $15.00 USD Received 1 Apr 2011; revised 2 Jun 2011; accepted 3 Jun 2011; published 8 Jun 2011
(C) 2011 OSA 1 July 2011 / Vol. 2,  No. 7 / BIOMEDICAL OPTICS EXPRESS  1876




