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I. Cancer Genome Interpreter platform

Ia. Overview
The  Cancer  Genome  Interpreter  (CGI)  first  identifies  the  genomic  alterations  (mutations  –i.e.  point

substitutions or small insertions/deletions–, copy number alterations and/or gene translocations) driving the

tumor growth. On detail, each mutation is classified as (i) a known oncogenic mutation in the tumor; (ii) a

known oncogenic mutation in other cancers; (iii) a predicted driver mutation of the tumor (these are further

divided into two tiers);  (iv) a predicted passenger event; (v) a variant which does not affect the protein

sequence or (vi) a polymorphism (i.e. major allele frequency greater than 1% across healthy donors 1). Each

gene amplification or deletion is classified as (i) a known oncogenic copy number alteration (CNA) of the

tumor; (ii) a known oncogenic CNA in other cancers; (iii) a predicted driver CNA of the tumor; or (iv) a

predicted passenger event. Finally, each translocation is classified as (i) a known oncogenic event of the

tumor; (ii) a known oncogenic event in other cancers; or (iii) a translocation of uncertain significance. These

analyses are supported by an ensemble of databases and bioinformatics methods based on several existing or

newly developed resources (see the Catalog of Cancer Genes, the Catalog of Validated Oncogenic Mutations

and the OncodriveMUT method sections in the present document for further details). Of note, the system

assumes  that  all  genomic  alterations  are  correctly  called  (e.g.  genes  with  unclear  copy  number  status

boundaries or mutations with low quality calls) and entered by the user.

Thereafter, the CGI explores potential therapeutic opportunities offered by the tumor's genomic makeup.

Tumor  alterations  are  compared  with  genomic  biomarkers  of  anti-cancer  drugs  response  (sensitivity,

resistance and toxicity) annotated in the Cancer Biomarkers database (see section V for further details). The

CGI  matches  this  information  to  the  alterations  observed  in  the  tumor  taking  into  account  several

considerations. First, it detects and groups co-occurring alterations that are known to interact in the response

to a given drug. This includes the co-occurrence in the tumor of biomarkers of resistance and sensitivity to

the same drug. Second, the match between the observed genomic alteration and the– biomarker of drug

response takes into account the level  of  detail  on the latter,  e.g.  –in the case of mutations– the system

distinguishes whether the biomarker refers to any mutation in the gene, in one particular exon (or domain) or

a  specific  aminoacid  change  .  The  results  of  the  alteration  analysis  step  are  considered  here;  e.g  the

OncodriveMUT classification of a variant is taken into account for the  in silico prescription in the case of

biomarkers  that  are  solely  defined  as  an  oncogenic  mutation  of  a  given  gene.  ;  Finally,  the  in  silico

prescription  considers  possibilities  of  two  types  of  repurposing  of  anti-cancer  drugs.  The  cancer-type

repurposing is used for cases in which the alteration observed in the tumor has been described as a biomarker

of response to the drug in a tumor type that is different to that of the sample(s) under analysis, following the

hierarchy of  tumor types  taxonomy. The alteration-type repurposing describescases in  which a different
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alteration than the one described in the biomarker, but with the same putative effect, is observed in the tumor

(e.g. a deletion of a tumor-suppressor when the biomarker is a loss-of-function mutation). 

Furthermore,  the  CGI  also  explores  as  potentially  interesting  compounds  that  have  been  shown

experimentally to bind to the products of genes with driver alterations in the tumor sample. This is based on

the  information  of  the  Cancer  Bioactivities  database,  which  collects  data  of  gene-compound  chemical

interactions (see the section VI for further details). This process takes into account (i) the experimentally

measured strength of the reported interaction; and (ii) whether the mechanism of action of the compound on

the targeted gene is coherent with the mode of action of the latter (i.e. inhibitors for oncogenes, and agonists

for tumor suppressors). 

All CGI analyses are cancer-specific and thus the tumor type of the sample(s) to analyze is required as an

input.  The CGI uses an in-house cancer taxonomy which takes into account the  disease hierarchy (e.g.

mutations that are known to be oncogenic in non-small cell lung carcinomas will produce a 'tumor type

match' when observed in a lung adenocarcinoma sample). Therefore, the more generic is the tumor type

supplied for the sample to be analyzed, the less specific the results of the CGI will be.

Ib. Pipeline annotations 
The input of the CGI consists in a list of genomic alterations detected in one (or more) tumor sample(s). The

CGI is  able to analyze mutations (point  substitutions and small  insertions/deletions),  gene CNAs and/or

translocations. The system accepts and automatically recognizes several formats, including Human Genome

Variation Society (HGV, either  in  genomic or  protein coordinates)  and Variant  Call  Format  (VCF) for

mutations. Direct or inverse mapping between genomic and protein coordinates of mutations is supported by

the TransVar method2.  To annotate the mutations, the CGI selects the transcript with the longest CCDS

sequence (or longest cDNA sequence if multiple CCDS transcripts of the same length exist or the gene has

no CCDS transcript),  according to data  retrieved from Ensembl v70,  except  for  a set  of  109 genes the

canonical transcript of which was manually selected. The CGI reports include several mapping attributes

such as the exon and the Pfam3 domain affected by the mutated residue.  Importantly,  data provided by

different databases included in the CGI (e.g. the aggregated data to build the Catalog of Oncogenic Variants)

is consistently re-annotated using identical syntax and versions in order to guarantee internal compatibility.

Therefore,  the  CGI  pipeline  re-maps  the  mutations  introduced  by  the  user  accordingly  to  guarantee

appropriate cross-matches.
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Ic. Web interface
The CGI framework is freely available on the web at http://cancergenomeinterpreter.com. As stated before,

the input of the CGI is (a) the genomic alterations of the tumor/s; and (b) its cancer type. The latter can be

selected  from a  taxonomy tree  that  follows  the  in-house  cancer  classification.  Note  that  several  tumor

samples can be analyzed in a single CGI run as far as they belong to the same tumor type, since the analysis

is cancer-specific. The list of alterations may be provided as (i) one (or more) tab-separated files; and/or (ii)

via a free text box. Once the user executes a new analysis, the process may be tracked using the identifier

assigned to it by the system, and --once completed-- the results are stored during 48 hours. The execution

time of each analysis depends on (i) how long the job takes to get a slot in our computer cluster, (ii) the time

required to load the data structures used by the CGI, and (iii) the number of entries to analyzed. With the aim

of reducing the overall time in some of these analyses, the results for the most frequent alterations observed

in tumors are pre-computed. Once finished, the resulting CGI output is provided via a web report that can be

interactively browsed and filtered. This report is divided into two parts. The first one presents the result of

the alterations analysis (which may be further divided into three tabs containing the results of mutations,

CNAs and/or translocations as appropriate) and the other with the in silico prescription (organized in a tab

showing the match of the tumor with the Cancer Biomarkers database and another tab showing the match

with the Cancer Bioactivities database). If the user logs into the system, these reports are stored in a Results

page within the CGI website associated with that user's account. The login process only requires a valid

email address and the access is thereafter immediately granted. The CGI reports may be shared by creating a

unique link and the results may be downloaded as tab-separated files. To prevent unauthorized access or

disclosure, to maintain data accuracy, and to ensure the appropriate use of information, CGI uses a range of

reasonable physical, technical, and administrative measures to safeguard the information, in accordance with

current  technological  and industry standards.  In  particular,  all  connections  to  and from our  website  are

encrypted using Secure Socket Layer (SSL) technology. The CGI never has access to users’ password and

uses a trusted third party protocol to authenticate the user. While the analyses are running, they are stored in

our private servers. The results can be downloaded, shared or deleted and they are organized by an editable

title. When a CGI analysis is deleted, it is completely and permanently removed from the servers. 

Id. Application Programming Interface
The CGI resource can also be accessed programmatically by an API created via REST. Only registered users

can make use of the API, since a token is needed for any communication between the end user and the REST

API. Further details can be found at https://www.cancergenomeinterpreter.org/rest_api
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II. Catalog of Cancer Genes
The CGI focuses the analysis on genomic alterations that affect the genes thought to be potentially involved

in the pertinent cancer type. Although all the variants are annotated with relevant attributes (see section IV),

only those affecting cancer genes qualify for further consideration as potential driver events. The Catalog of

Cancer  Genes  is  a  collection  of  genes  driving  tumorigenesis  in  a  certain  tumor  type(s)  upon a  certain

alteration type (mutation, CNA and/or gene translocation). This information is supported by (a) validated

data;  and/or  (b)  bioinformatics  prediction.  For  the  former,  known cancer  genes  are  collected  from the

following manually curated resources: (i) the Cancer Gene Census4; (ii) genes bearing mutations known to

lead to tumor phenotypes (see the Catalog of Validated Oncogenic Mutations); and (iii) genes with validated

alterations  that  confer  increased  sensitivity  to  targeted  anti-cancer  drugs  (see  the  Cancer  Biomarkers

database). The cancer type names used in the original sources are translated as appropriate to the in-house

CGI tumor taxonomy. 

The Catalog of Cancer Genes also contains putative driver genes identified by bioinformatics analyses of

large tumor cohorts resequenced by consortia such as  The Cancer Genome Atlas,  and the International

Cancer  Genome Consortium.  The  identification  of  mutational  driver  genes  was  carried  out  through the

combination  of  three  orthogonal  signals  of  positive  selection  across  each  tumor  cohort,  namely,  the

frequency of the mutations, a bias of mutations towards high functional impact and their spatial clustering

along the protein sequence5,6. For the identification of CNA driver genes, we first collected genes located

within chromosomal regions that suffer recurrent focal amplifications or deletions across the samples of each

tumor type7. Second, the CNAs were required to be coherent with the (predominant) mode of action of the

gene, i.e. deletions for known (or predicted, see below8) tumor suppressors and amplifications for known (or

predicted) oncogenes. Note that both alteration types are accepted if the gene has an ambiguous/uncertain

role (see below) for that cancer type. Finally, only genes with a significant change in expression coherent

with the copy number change (up-regulation for gene amplifications, down-regulation for gene deletions)

were finally nominated as the predicted drivers upon CNAs of that  cancer type.  The misregulation was

evaluated via the comparison of RNAseq values of the group of samples diploid for the gene locus versus

samples with the CNAs (only homozygous deletions or multi-copy gains were included). 

At  present,  these  analyses  have  been  carried  out  across  a  6,792-overall  samples  pan-cancer  cohort

comprising 28 different tumor types. 

Finally, the mode of action (loss-of-function  versus gain-of-function) of each cancer gene has been also

included in the Cancer Genes Catalog. This information can be (a) validated and as such, obtained from

manually  curated  resources; or  (b)  predicted  via  bioinformatics  analyses8.  Of  note,  the  mode  of  action

includes an 'ambiguous' role, which is stated when it is not known and it can not be predicted with reliability
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by the computational methods employed to estimate so or the gene acts as both a tumor suppressor and an

oncogene in a context-dependent manner.
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III. Catalog of Validated Oncogenic Mutations 
Not all mutations identified in cancer genes are capable of driving tumorigenesis. Consequently, the CGI

considers whether a gene is mutated, but also which particular variant occurs. Therefore, we first compiled

an inventory of mutations in cancer genes that are demonstrated to drive tumor growth or predispose to

cancer.  This  was  retrieved  by  combining  the  data  contained  in  the  DoCM 9 ,  ClinVar10 and

OncoKB11 databases as well as the results of several published experimental assays, as those compiled by

Martelotto et al.12. We also considered as oncogenic the mutations reported to increase sensitivity to targeted

drugs included in the Cancer Biomarkers Database (see below). Germline variants found to predispose to

cancer, which we retrieved from the ClinVar and IARC resources10,13, were also included. Contradictory data

(i.e. a variant stated as oncogenic and neutral by different resources) was flagged and filtered out. In all, 24

variants (0.4% of the total) were filtered out due to this. The current version of the Catalog of Validated

Oncogenic  Mutations  includes  5,610  somatic/germline  oncogenic  variants.  This  dataset  is  available  at

https://www.cancergenomeinterpreter.org/mutations.  When  this  information  was  matched  to  the  somatic

mutations identified by exome-sequencing in the 6,792 samples pan-cancer cohort (see main text of the

manuscript), we found that only a minority of the mutations observed across cancer genes were validated

oncogenic events. Thus, a majority of the protein-affecting mutations (~88%) observed in tumors, even if

they occur in well known cancer genes,  are of unknown significance, highlighting the need for tools to

classify them (see the OncodriveMUT section). Of note, we observed some of these validated oncogenic

events in cancer types in which they had not been described before, such as  DNMT3A p.R882H, SF3B1

p.K700R and JAK2 p.V617F mutations (known in blood malignancies14–16) in breast, renal and glioblastoma

tumors in the pan-cancer cohort,  respectively.  These rare events may be further relevant  when they are

involved in the response to anti-cancer drugs. 
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IV. OncodriveMUT

IVa. Overview
We have developed a  novel  method,  OncodriveMUT, with the  aim of  gaining further  insights  into the

oncogenic potential of the mutations of unknown significance. OncodriveMUT is used by the CGI to analyze

the  mutations  in  cancer  genes  that  are  not  found  in  the  Catalog  of  Validated  Oncogenic  Mutations.

OncodriveMUT combines measurements performed at the level of each individual mutation with knowledge

about the driver genes (or regions thereof) in which these mutations are found. This knowledge is retrieved

from the analysis of large cohorts of sequenced tumors and healthy donors, which provides the statistical

power to discover gene features that are relevant to assess the importance of particular mutations. At present,

we have analyzed cohorts of tumors (6,792 samples across 28 cancer types5) and samples from healthy

donors (60,706 unrelated individuals)17. On detail, the knowledge retrieved from cohorts of healthy donors

are the allele frequency of variants and the protein domains depleted of functional variants in the general

population.  The latter  points  out  to  protein regions that  may be less  tolerant  to  functional  variants.  To

identify them, we searched for protein domains (from the Pfam3 database) enriched by very rare (1 out of

10,000 samples) variants according to ExAC data17. As a result, we identified 94 genes exhibiting 24 types of

so-called 'delicate domains', which include the tyrosine phosphorilation, the protein kinase, the homeobox

and the SH2 domains. On the other hand, the analysis of sequenced tumor cohorts yielded: (i) the signals of

positive selection of each gene in each tumor type5, which is the cornerstone to identify cancer genes; (ii) the

mode of action of each cancer gene in tumorigenesis, i.e. loss-of-function, oncogene or ambiguous 8; and (iii)

protein sites with an unexpectedly high concentration of somatic mutations, i.e. mutation clusters18. Finally,

as mutation-centric features, the OncodriveMUT uses (i) their consequence type, i.e.  missense ,  inframe

indel,  or  truncating mutation (e.g.  a  mutation within a  canonical  splice  site,  a  frameshift  variant  or  the

insertion of a premature stop codon); the location of the mutation in terms (ii) of the domain (to match it to

the list of delicate domains, see above), and (iii) of the protein site, on detail whether it occurs before the last

exon-intron junction (which is more likely to trigger the nonsense-mediated decay pathway in case of a

truncated protein) or in the last portion of the protein (since disrupting mutations may be less deleterious if

they occur at the very last protein sites); and (iv) the estimated deleteriousness of the mutation, measured by

the Combined Annotation Dependent Depletion score19. 

OncodriveMUT  combines  these  measurements  using  a  set  of  heuristic  rules,  which  are  shown  in

Supplementary Table 2. We compared the performance obtained by these rules with a machine-learning

approach; to do so, we built a random forest machine learning and classification algorithm20. Using bona fide

oncogenic mutations and neutral events observed across cancer genes (see below), a random-forest classifier

with 1,000 estimators was trained in a ten fold cross-validation with 70% of the features in order to predict

the remaining 30% (data not shown). Both, the machine-learning and the heuristic approach exhibited similar
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performance. We therefore decided to use the latter,  since the rationale behind the classification of each

variant by OncodriveMUT is then human-readable and the critical review of these results is facilitated. To

empower the user to carry out such a review, the measurements and attributes of each variant employed by

the OncodriveMUTclassification are included in the CGI output reports. In addition, these data can support

further exploration of the mode of action of each mutation.  For instance, most inframe indels detected as

driver events in tumor suppressor genes (whose effect is more difficult to estimate than their clearly more

deleterious frameshift relatives)  occur within regions where somatic mutations tend to cluster in these genes.

This  may suggest  a  loss-of-function  mechanism driven  by  the disturbance of  critical  protein sites  (e.g.

inframe deletions  in  CDKN2A binding sites  within the  second exon21),  or  the  acquisition of  dominant-

negative phenotypes driven by the creation of particular protein fragments (e.g. inframe indels in the 5th

exon of TP5322).  The incorporation of additional computational measurements developed in the future, as

well  as  the  study of  novel  data  and experimental  results,  will  help  to  further  improve  OncodriveMUT

analyses.

IVb. Benchmarking
First, bona fide driver and passenger mutations in cancer genes were collected to be used as positive and

negative data sets to benchmark the OncodriveMUT approach, respectively. The former was composed of

the entries gathered in the Catalog of Validated Oncogenic Mutations (n=5,314). For the latter, we collected

a set of protein affecting mutations observed in cancer genes and found to be non-pathogenic and/or neutral

in  terms  of  oncogenesis  (according  to  ClinVar  and  OncoKB  annotations10,11,  n=670)  or  common

polymorphisms (major  allele  frequency larger  than  1% in  the  general  population  according  to  ExAC17,

n=1,006). As a result, we found that OncodriveMUT separates the variants of these two data sets with 86%

of accuracy (Matthews correlation coefficient, 0.64) (Suppl. Figure 1A). OncodriveMUT outperformed other

methods developed with similar purpose19,23–26 (Suppl Figure 2). In addition, several data sets were collected

to assess whether the mutations classified as drivers by OncodriveMUT follow a priori expected behaviors

of oncogenic mutations. First, we downloaded the frequency of somatic protein affecting mutations in cancer

genes observed across tumor samples from COSMIC v7627. Second, the major allele frequency across the

general  population  of  germline  variants  leading  to  a  change  of  protein  sequence  in  cancer  genes  was

retrieved from ExAC17.  And third,  the  cancer  cell  fraction  of  mutations  observed in  cancer  genes  was

calculated  using  their  variant  allele  frequency  corrected  by  the  estimated  tumor  purity  and  gene  copy

number5.  As  a  result,  we  observed that  mutations  classified as  drivers  by OncodriveMUT are  enriched

amongst recurrent COSMIC mutations (Suppl. Fig. 1B). They are also enriched for rare germline variants

across healthy donors (Suppl. Fig. 1C). Both results are expected from oncogenic events. However, a certain

degree of circularity in this validation must be noted, as one of the features used by OncodriveMUT is

whether the mutation under analysis falls within a cluster of somatic mutations previously identified using

available sequenced tumor cohorts. On the other hand, mutations in cancer genes classified as drivers by

OncodriveMUT exhibit larger cancer cell fraction than those classified as passengers (Suppl. Fig. 1D), as
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expected from events that undergo positive selection within the cancer cell clonal population. Of note, only

protein-affecting mutations in cancer genes were considered in these tests, which highlights the ability of the

OncodriveMUT method to point out those with more oncogenic potential. 

Finally,  we  gathered  results  from several  available  experimental  assays  evaluating  the  effect  of  cancer

mutations to assess the agreement of OncodriveMUT with the experiment in completely independent test

sets. First, we used all possible missense mutations along the protein sequence of TP53 and their functional

effect evaluated in yeast assays28. On detail, this study measured the transactivation of the TP53 mutants on

several reporter genes. Only activities lower than 140% (activity of the mutant in relation to the wild-type)

were included. Second, the effect of rare mutations (i.e. lowly recurrent across cancer patients) in several

oncogenes  were  collected  from  three  recent  studies.  We  considered  oncogenic  (i)  PIK3CA-mutants

exhibiting activity in all the six experiments provided in ref. 29 -regardless of their strength–; (ii) mutations in

oncogenes leading to sustained tumor growth before 130 days in the in vivo experiments provided in ref. 30;

and (iii) mutations in oncogenes validated as tumorigenic in the functional screens performed in ref.  31. Of

note, any mutation included in the positive or negative sets described in the first paragraph was filtered out

from this step to avoid redundancy between the two evaluations. As a result, (a) TP53 mutants classified by

OncodriveMUT as driver mutations exhibited larger impairment of the gene activity than those predicted as

passengers  (Suppl.  Figure  1E);  and (b)  OncodriveMUT classification of  rare  mutations  in  cancer  genes

reached an 82% of agreement with the experiments (Suppl. Figure 1F). 
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V. Cancer Biomarkers Database
The Cancer Biomarkers Database is a manually curated resource collecting genomic biomarkers of drug

response found in cancer patients or in pre-clinical assays. This database follows the organization proposed

in the Gene Drug Knowledge Database (GDKD)32, which requires, among others, the evidence supporting

each alteration-drug association.  On detail,  five distinct  levels of supporting evidence are employed:  (a)

clinical  guidelines,  which  includes  FDA-approved  indications  and  recommendations  from  international

organizations such as NCCN; (b) late clinical trials (i.e. phases III-IV); (c) early clinical trials (i.e. phases I-

II); (d) clinical case reports; and (e) pre-clinical data. Genomic alterations in the database may be biomarkers

of increased sensitivity, resistance or toxicity to anti-cancer therapies. Of note, negative evidences, i.e. those

alterations that do not affect the response to a given drug (e.g. the use of BRAF V600 inhibitors as single

agent in colorectal cancers bearing that mutation), were also included in the database and labeled as 'non-

responsive'. Absence of an event (e.g. a wild-type allele) and multi-marker entries (e.g. PIK3CA oncogenic

mutation + ERBB2 amplification for Everolimus + Trastuzumab + Chemotherapy treatment in breast cancer)

are  also  contemplated.  Each  entry  also  includes  the  cancer  type(s)  in  which  this  association  has  been

demonstrated and the reference (e.g. PubMed identifier or conference abstract reference) of that study. The

data is collected by a board of clinical oncologists and research experts organized by cancer type expertise,

who are in charge of filling the minimum-required fields for each new entry following the data model.

Biomarkers supported by lower-level clinical evidences (i.e. retrieved from pre-clinical assays), which are

much more abundant in the literature, are selected based on the robustness of the supporting data and their

potential to be translated into a clinical trial. Thereafter, each new biomarker entry is annotated using a semi-

automatic  bioinformatics  pipeline,  which  ensures  –among  other  things--  the  use  of  a  systematic

nomenclature and a standardized cancer taxonomy, the accuracy of the nucleic acid – amino acid system

annotation equivalence, and the avoidance of duplications or inconsistent information for a given genomic

alteration. The data model of the information, and the creation and maintenance of the database is currently

developed under the umbrella of the H2020 MedBioinformatics project (http://www.medbioinformatics.eu/).

The  Cancer  Biomarkers  Database  has  been  made  available  at

https://www.cancergenomeinterpreter.org/biomarkers, which allows interactive browsing and the feedback

of  the  community.  The  Cancer  Biomarkers  Database  is  currently  being  integrated  with  other  resources

developed with similar purpose by the Variant Interpretation Cancer Consortium (http://cancervariants.org/)

under the umbrella of the Global Alliance for Genomics & Health.  Besides the aggregation of the data

collected by each individual initiative, this project will support the establishment of community standards to

collect, organize and share this information.
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VI. Cancer Bioactivities Database
The Cancer Bioactivities Database was built from ChEMBL v2133 data on compound assays. Ensembl v70

gene symbols were mapped to uniprot IDs, through Biomart Ensembl API, and mapped to ChEMBL target

IDs through the mapping file provided in ChEMBL v21 downloaded from its ftp server. Only genes with a

valid  HGNC symbol  were  considered.  Next,  we  retrieved  all  bioactivity  data  associated  to  the  target-

molecule interactions reported by all assays probing the interaction. We included assays that measured a

confidence score higher than or equal to 4 when this information was available, and entries suggesting errors

in the annotations (data validity comment field) were filtered out. We considered bioactivities concerning the

affinity of binding, the effective concentration, the efficacy of inhibition and the efficacy of competitive

antagonism (IC50, EC50, Ki, Kd and Kb), whose values were converted to pActivity as appropriate. Each

target-compound  bioactivity  was  finally  obtained  by  averaging  the  values  across  the  available  assays

accomplishing our inclusion criteria. The resulting values were then grouped into three categories: (i) highly

potent, with a binding affinity higher than 1 nM (pActivity >= 9); (ii) potent, with a binding affinity between

1μM and 1nM ( 9 < pActivity >= 6); and (iii) weak, with a binding affinity between 1mM and 1μM (6 <

pActivity >= 3). Additional information on chemical compounds was collected, including their market status

(e.g. approved or pre-clinical) and their mechanism of action (MOA).  If the MOA was not available, we

considered the compound as an inhibitor of the target. We grouped all MOA categories into two groups

depending on whether they have a positive effect on the target (e.g agonist or opener labels) or negative (e.g

inhibitor or  blocker labels).  The CGI  in silico prescription includes a match column stating whether the

MOA of the compound is coherent with the mechanism to drive the tumorigenesis (known or predicted) of

the cancer gene, i.e. tumor suppressors for positive MOAs and oncogenes for negative MOAs. 
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VII. Use of the CGI in pan-cancer sequenced cohorts
We exemplify the ideas on the interpretation of cancer genomes described in this commentary through their

application to a pan-cancer cohort of 6,792 exome-sequenced tumors5. First, we observed that 88% of the

protein-affecting mutations (PAMs) observed in cancer genes (those in the Catalog of Cancer Genes) are not

found in the Catalog of Validated Oncogenic Mutations and thus need further assessment to estimate their

oncogenic potential. The use of OncodriveMUT to systematically address this question provides a catalog of

putative  driver  mutations  in  cancer  that  we  have  made  available  through  the  IntOGen

(http://www.intogen.org) resource34.  This  tool  allows users  to  browse the driver  mutations  in  individual

tumor samples and their frequency across cancer types (Suppl. Fig. 3). Overall, the CGI analysis found that

40% of the PAMs observed in cancer genes are estimated to be passengers, with wide variation between

genes. Of note, we found that the proportion of driver mutations in a tumor sample decreases as the total

number of mutations increases (Pearson r=-0.15; p=1e-35). This observation is in line with the notion that

the  number  of  genomic  events  driving  the  malignancy is  relatively  small,  even  in  tumors  with  a  high

mutation burden.

Second,  the estimation of the oncogenic potential  of  the alterations are further relevant  when they may

provide potential targets of therapeutic intervention. The CGI in silico prescription showed that 62% of the

tumors of this pan-cancer cohort exhibited at least one alteration reported to be a biomarker of drug response,

although the majority corresponds to lower levels of clinical evidence; on detail, only 5.2% and 3.5% of the

samples exhibited genomic alterations fulfilling biomarkers of drug sensitivity used in the clinical practice or

reported in late (phases III-IV) clinical trials,  respectively. Larger numbers of tumors carried biomarkers

with lower level of supporting evidence, such as early (phases I-II) clinical trials (43%), case reports (11%)

or pre-clinical data (50%). Of note, 7% of these tumors exhibited more than one genomic biomarker of drug

response  with  a  similar  level  of  clinical  relevance.  This  observation  further  stresses  the  importance  of

providing tools to prioritize their relevance, including the assessment of their clonal content when possible. 

Finally, the sample-centric analysis supported by the CGI empowers the identification of alterations that are

uncommon in particular tumor types but however are considered actionable in other cancers in which that

alteration is observed more frequently. These events may provide potential re-purposing opportunities whose

outcome is currently not known (and thus not included as a positive nor negative evidence in the Cancer

Biomarkers database). Among these events, some of the most frequently observed include the possibility of

targeting loss-of-function alterations of DNA damage genes and the use of rapalogs for tumors with TSC1/2

loss-of-function. Another compelling example is PTCH1, a member of the patched gene family involved in

the response to hedgehog inhibitors, which are currently approved for clinical use in basal cell carcinoma and

in medulloblastoma35,36. PTCH1 is not routinely contemplated among the genes of potential interest in other

tumor types since it is rarely mutated. However, 82 samples across 19 other tumor types of the analysed pan-

14

http://www.intogen.org/


cancer cohort harbored mutations estimated as drivers in this gene. Moreover, most of these tumors did not

exhibit any other actionable alteration supported by strong clinical evidence. This observation may point out

these PTCH1-mutated tumors as suitable candidates to be included in a potential basket trial. 

Next,  we compared these results  with the therapeutic opportunities identified for 17,462 cancer patients

profiled by the GENIE project. In comparison with the 6,792 exome-sequenced patients, the GENIE cohort

is enriched for biomarkers employed by molecular oncology boards, since (a) the tumors were profiled by

targeted panels designed to support the clinical programs at the participating medical centers; and (b) the

project  included a higher  proportion of  recurrent/relapsing patients  and/or  later  stage cancers.  The CGI

identified 8% and 6% of tumors with biomarkers of drug response supported by clinical guidelines and late

clinical trials, respectively. Biomarkers of drug response supported by data obtained in early clinical trials,

case reports and pre-clinical studies were found in 49.7%, 18.7%, and 60% of patients, respectively. Overall,

the CGI identified at least one biomarker of drug sensitivity supported by evidences spanning from clinical

guidelines to pre-clinical data in 72% of GENIE patients, a percentage that varies across cancer types. Of

note, these tumors also exhibited a considerable number of biomarkers of drug resistance, as expected from a

cohort with a larger share of recurrent/relapse patients and in contrast to the 6,792 pan-cancer cohort, which

is mostly composed of tumors profiled at diagnosis. Among the most recurrent events, the CGI identified

EGFR T790M mutations in lung tumors (providing resistance to several EGFR inhibitors),  BRAF V600E

mutations in colorectal tumors (resistance to Cetuximab) and  ESR1 oncogenic mutations in breast tumors

(resistance to aromatase inhibitors).  In addition, the CGI also identified several  putative loss-of-function

mutations  in  JAK1,  JAK2 and  B2M genes,  which  have  been  recently  reported  to  confer  resistance  to

PDL1/PD1  axis  inhibitors.  These  mutations  were  found  in  tumors  with  high  mutation  burden  and/or

presenting co-occurring putative biomarkers of response to these immunotherapies (e.g. NF1 and PTEN-

mutant melanomas).

In summary, the CGI provides a systematic and rapid interpretation of the genomic alterations profiled for

large tumor cohorts. These analyses provide a comprehensive catalog of cancer driver variants and the  in

silico prescription refines the landscape of genomic-guided therapeutic opportunities as it stands today in

newly diagnosed and advanced cancers.
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VIII. The CGI in the support of clinical decision-making 
The CGI has been used to support the clinical decision-making process in two clinical oncology centers that

are  early  adopters  of  the  resource.  Vall  d'Hebron  Institute  of  Oncology  is  a  reference  medical  cancer

institution that routinely applies a targeted next-generation sequencing panel of –at the moment of writing

this manuscript-- 60 genes designed to identify targetable mutations in the tumors of patients eligible to

enroll  in  early  clinical  trials.  Within  this  program,  the  systematic  use  of  the  CGI  proved  particularly

informative in the interpretation of rare variants found in ERBB2, ERBB3, FGFR1, FGFR2, FGFR3 and

FGFR4. Known oncogenic mutations  in  these genes are considered inclusion criteria in various  clinical

studies with matched targeted inhibitors that are carried out in that center; however, the decisions are not

clear-cut when variants of uncertain significance are observed. Overall, out of 16 patients with ERBB2/3

mutated tumors, 5 (31%) cases (breast,  colorectal and ovarian carcinomas) carried alterations previously

unreported by the literature (as manually checked by the oncologists team). The CGI predicted them to be

drivers, and the information provided with these results supported the final decision of the molecular tumor

board to enroll the patients in clinical trials of pan-ERBB inhibitors. In the case of FGFR1/2/3/4, most of the

mutations observed in the cohort were of unknown significance (7 out of 10); 5 (50%) of them (endometrial,

colorectal,  glioblastoma and unknown primary cancer) were predicted to be drivers by the CGI, thereby

supporting the recruitment of these patients into a clinical trial for pan-FGFR inhibitors after prior revision of

these results by the clinicians. 

Hospital Sant Joan de Deu, a reference pediatric hospital, applied the CGI to analyze a prospective series of

18 patients diagnosed with developmental solid tumors (relapse or refractory disease in 16 of them). Most of

the cases were clinically aggressive sarcomas and tumors of the central nervous system. The whole exome of

the  tumors  was  sequenced  in  the  search  for  potential  actionable  mutations,  which  were  subsequently

confirmed by Sanger sequencing. Overall, the CGI revealed a total of 6 actionable alterations in 5 (28%) of

the patients for further consideration. Of note, two of them were PTCH1 mutations predicted as loss-of-

function drivers, one in a medulloblastoma and the other in a high-grade glioma, linked to the possibility of

re-purposing SHH inhibitors, whose outcome was subsequently tested in a mouse model (data not shown). In

summary, the CGI is a useful tool to support decision making of molecular tumor boards, such as those

aimed to  allocate  patients  to  the  most  appropriate  clinical  trial  or  to  comprehensively explore  off-label

opportunities for genome guided therapies in patients unresponsive to standard-of-care treatment.

Informed consent was obtained from all subjects participating in these projects, which were approved by the

ethical  committees  of  both  institutions  (Clinical  Research  Ethical  committee  and  Research  Projects

commission  from  Hospital  Universitari  Vall  d'Hebron  and  Research  Projects  Ethical  committee  from

Fundació Sant Joan de Déu PIC-153-16). 
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Supplementary Table 2 
OncodriveMUT classification details

Consequence type Gene category Condition Driver prediction Description 

Missense Tumor driver, other tumors driver Mutation in a gene cluster Tier 1 Cluster - missense

Missense Tumor driver CADD>25 Tier 1 Functional - missense

Missense Other tumors driver CADD>30 Tier 1 Functional - missense

Missense Other tumors driver CADD>25 Tier 2 Functional - missense

Missense Tumor driver, other tumors driver Mutation in a delicate domain and CADD>20 Tier 2 Functional - missense

Disrupting Tumor driver, other tumors driver LoF gene and the mutation is not in the distal protein portion Tier 1 Loss-of-function - disrupting

Disrupting Tumor driver, other tumors driver Gene with ambiguous role and the mutation is not in the distal protein portion Tier 2 Loss-of-function - disrupting

Disrupting Tumor driver, other tumors driver Mutation in a gene cluster Tier 2 Cluster - disrupting

Inframe indel Tumor driver, other tumors driver LoF (or ambiguous) gene and CADD>25 Tier 2 Loss-of-function - inframe

Inframe indel Tumor driver, other tumors driver LoF (or ambiguous) gene and mutation in a delicate domain and CADD>20 Tier 2 Loss-of-function - inframe

Inframe indel Tumor driver, other tumors driver Mutation in a gene cluster Tier 2 Cluster - inframe

This table summarizes the heuristic rules used by OncodriveMUT to classify a given variant as a potential oncogenic event. The method combines several mutation-centric features with the knowledge 

retrieved from the analyses of large tumor cohorts of the genes (and regions thereof) where that mutation occurs. 

* the consequence type of the mutation; disrupting mutations include frameshift variants, insertions of a premature stop codon and mutations within canonical splice sites

* the gene category states whether the gene has been identified as a mutational driver of the tumor or a mutational driver of other cancers (based on experimental validations and/or bioinformatic 

analyses)

* the condition that OncodriveMUT assesses to state a mutation as driver (CADD = Combined Annotation Dependent Depletion score; LoF = validated/predicted loss-of-function mechanism of action 

of the gene)

* driver prediction: mutations classified by OncodriveMUT as drivers are divided in two different tiers depending on the strength of the rationale that support that statement

* the description column labels the OncodriveMUT classification (see below)

Each of these classifications are based in the following rationale:

Cluster missense. The majority of missense mutations observed within a mutational cluster of a gene occur in oncogene hotspots and result in a gain-of-function mechanism (e.g. BRAF V600 and 

KRAS G12 mutations). To a lower extent, the regional accumulation of mutations is also observed in tumor-suppressor genes, in which the mutation clusters tend to span across wider segments of the 



protein sequence that may be more prone to drive a loss-of-function mechanism when targeted. An exception to the latter are those mutations that cause dominant-negative phenotypes, which tend to 

accumulate in specific gene sites.

Functional missense. Missense mutations outside clusters may lead to heterogeneous effects. They are prioritized on the basis of their pathogenicity score as estimated by the CADD method. Those 

variants exhibiting high CADD scores may lead to either gain-of-function (e.g. KRAS A59G) or loss-of-function (e.g. PTEN R159S) phenotypes. The Phred (scaled) CADD score used by 

OncodriveMUT as a cutoff to classify the mutations as oncogenic depends on i) whether the gene is a driver of the cancer type of the tumor under analysis or of another cancer type (less stringent 

criteria in the former); and ii) whether the mutation occurs within a protein domain that has been detected as delicate (i.e. depleted for variants in general population; less stringent criteria if this 

happens; note that this information is not included in the CADD method). Of note, the CADD score thresholds are selected according to their ranking within the distribution of CADD scores obtained 

for the whole set of possible missense mutations in the genome. Predicted driver mutations are deemed to be of tier 1 or 2 depending on the combination of these factors (see details in the table).

Loss-of-function disrupting. Disrupting mutations are likely to cause the loss of function of tumor suppressors. This may be less clear in the case of premature stop codons that are inserted after the last

exon of the gene, which are less likely to trigger nonsense mediated decay mechanisms, or more in general for disrupting mutations that happen in the latest positions of the transcript (e.g. premature 

stop codons that cause to skip the transcription of a small gene region, or frameshift mutations that lead to incorrectly transcript the latest protein aminoacids plus the addition of a varying number of 

aberrant aminoacids). Therefore, the consideration of the mutation position regarding the transcript is also considered for this classification. Of note, some genes that exhibit recurrent mutations in latest 

transcript positions are covered by their detection as clusters (see next). Whether the gene is known to (predominantly) act as tumor suppressor in cancer or its role is ambiguous (i.e. the gene act as 

tumor-suppressor in a context-dependent manner or its mechanism of action cannot be unambiguously defined) leads to OncodriveMUT to classify the mutation as tier 1 or tier 2. 

Cluster disrupting. Disrupting mutations may also occur within regions that tend to accumulate variants. They can be clusters enriched by missense mutations or clusters that also exhibit accumulation 

of disrupting mutations. In the case of oncogenes, a disrupting mutation in a cluster may point out a gain-of-function driven by a particular disruption of a negative-regulatory region of the gene, but this 

event seems rare. On the contrary, disrupting mutations in tumor suppressor sites that tend to accumulate mutations may highlight those regions that are more prone to be targeted to drive the gene loss-

of-function. This condition also encompasses those mutations that occur in the last portion of the protein (e.g., nonsense mutations in residue 2400 of NOTCH2, very close to the N-terminal of the 

aminoacid sequence), which are thus not included in the Loss-of-function disrupting category (see previous). 

Loss-of-function inframe. The effect of inframe insertions/deletions in tumor suppressors is less clear than that caused by a reading frame shift. Only if they exhibit a high functional impact (according 

to CADD score) they are considered as a potential loss-of-function event and thus classified as a driver variant. However, we did not observe this in any of the exome-sequenced samples of a 6,792 pan-

cancer cohort. 

Cluster inframe. Inframe indels that occur within mutational clusters are observed in both oncogenes and tumor suppressors. The former includes some very well known examples, as the inframe indels

in the exons 14 and 15 of FLT3. Examples of the latter would be the CDK2NA loss-of-function subsequent to inframe deletions disrupting the gene binding sites, or the TP53 acquisition of dominant

negative phenotypes due to the creation of a particular protein fragment subsequent to inframe indels in its 5th exon.
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Figure Legends

Suppl. Figure 1

(a) Performance of OncodriveMUT in the classification of validated tumorigenic and neutral protein 
affecting mutations (PAMs) in cancer genes. Common variants in general population are those with a major 
allelic frequency >1%.
(b) The fraction of mutations classified as drivers by OncodriveMUT increases with their frequency in 
cancer (according to COSMIC v76). Note that only PAMs in cancer genes have been included here.
(c) The fraction of germline variants identified as drivers by OncodriveMUT decreases with their prevalence 
across the general human population (according to ExAC v.0.3.1). Note that only PAMs in cancer genes 
have been included here.
(d) Cancer cell fraction of PAMs in cancer genes classified as putative drivers or passengers by 
OncodriveMUT. Mutations in nine tumor types (one in each boxplot) with available data to estimate the 
clonality have been evaluated. In eight of these cancers, mutations classified as drivers exhibit larger intra-
tumor cancer cell fractions than passengers (Mann-Whitney two-sided p values are shown).
(e) Biological activity of TP53 missense-mutants classified as putative driver or passenger by 
OncodriveMUT. The transactivation activity of the TP53 gene carrying each mutation in eight different 
reporter genes (one in each boxplot) was measured in yeast assays. Each dot represents a different TP53 
missense mutant. The value of the y axis represents the activity of the mutant allele relative to the wild-type 
(i.e. a value below 100% means that the TP53-mutant exhibits a lower transactivation activity than the wild-
type allele). Mutations classified as drivers by OncodriveMUT exhibit a lower transactivation activity than 
passengers across all reporter genes (Mann-Whitney two-sided p values are shown).
(f) OncodriveMUT classification of several rarely observed mutations in oncogenes shows a high degree of
agreement with the experimental assessment of their tumorigenic effect. Note that none of these mutations
are included among those considered for the analysis of panel (A). 

Suppl. Figure 2
(a) OncodriveMUT exhibited a Matthew’s correlation coefficient (MCC) of 0.64 in separating  bona fide
oncogenic and neutral mutations found in cancer genes and used as benchmarking datasets. Depending on
the cutoffs used to state each mutation as oncogenic in other methods with similar purposes, (b) CanDrA
produced a MCC of 0.2; (c) Cancer-specific High-throughput Annotation of Somatic Mutations (CHASM)
produced a MCC ranging between 0.46 and 0.47; (d) Combined Annotation Dependent Depletion (CADD)
produced a MCC ranging between 0.12 and 0.54; (e) MutationAssessor produced a MCC ranging between
0.22 to 0.36; and  (f) Functional Analysis through Hidden Markov Models (FATHMM) produced a MCC
ranging between 0.28 and 0.37. Of note, not all the variants -e.g. indels- can be analyzed by these methods
(the  percentage  of  the  variants  that  could  not  be  analysed  by  each  is  detailed  in  the  panel  legend  as
appropriate).  CanDrA  results  were  retrieved  via  the  Version  (Plus)  pipeline.  Of  note,  all  the  variants
classified as  passenger  or  drivers  by  the  method were considered regardless  of  their  significance value
(calculated as the fraction of mutations that have more extreme scores in the same class in the training data ),
since the use of any threshold in this value reduced drastically the number of variants that can be evaluated
(e.g 5.3% of the variants are classified with a CanDrA significance value lower than 0.05). CADD scores
were retrieved via their pipeline v1.3; FATHMM (v2.3), CHASM (v4.0) and Mutation Assessor (release 3)
results were retrieved by using the corresponding web sites (http://fathmm.biocompute.org.uk/cancer.html ,
http://www.cravat.us/,  http://mutationassessor.org/r3/). Of note, we used a general configuration for those
methods in which the cancer type can be stated as a parameter of the analysis. This is due to the fact that the
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cancer type is not annotated for all the variants (specially the negative data set); and even if this information
is available, some methods do not take all the cancer types into consideration for their classification. 

Suppl. Figure 3

The catalog of driver mutations retrieved by the CGI analysis of a 6,792 tumors pan-cancer cohort is 
available as a resource at http://www.intogen.org 
(a) The results can be browsed at the level of tumor type. In the example, the most frequently gene mutations
of breast adenocarcinoma are shown.
(b) The results can be browsed at the level of gene variant, including whether it is a validated oncogenic 
event (based on the Catalog of Validated Oncogenic Mutations) or whether it is classified as a putative driver
versus passenger event (based on the OncodriveMUT analysis) otherwise. In the example, the results for the 
set of PIK3CA mutations observed in breast adenocarcinomas are shown.
(c) The distribution of variants across protein domains can be seen in an interactive graphic. In the example,
mutations observed in breast adenocarcinoma tumors across the PIK3CA protein are shown.
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Supplementary legend for Figure 3

Cancer acronyms of the tumors gathered by the GENIE project.
The cancer acronyms used in the main Figure 3 are detailed above. Note that tumors were grouped according
to the most specific subtype available in the patient information.

RA : renal angiomyolipoma
SCHW : Schwannoma
BLCA : bladder carcinoma
PAAD : pancreas adenocarcinoma
GBM : glioblastoma multiforme
MA : malignant astrocitoma
COREAD : colorectal adenocarcinoma
OV : serous ovarian adenocarcinoma
RCCC : renal clear cell carcinoma
CM : cutaneous melanoma
LIP : liposarcoma
G : glioma
UCEC : uterine corpus endometrioid carcinoma
SOLID : solid tumor
BRCA : breast carcinoma
AML : acute myeloid leukemia 
LUAD : lung adenocarcinoma
SCC : squamous cell carcinoma
BCC : basal cell carcinoma
GIST : gastrointestinal stromal cancer
HNSC : head and neck squamous cell carcinoma
HCL : hairy-Cell leukemia
CER : cervix cancer
FRS : female reproductory system cancer
MESO : mesothelioma
LUSC : lung squamous cell carcinoma
BT : billiary tract cancer
TH : thyroid cancer
CH : cholangiocarcinoma
L : lung cancer
NSCLC : non small cell lung carcinoma 
LK : leukemia
DBCL : diffuse large B cell lymphoma
THYM : thymic cancer
ESCA : esophageal carcinoma
HNC : head and neck cancer
STAD : stomach adenocarcinoma
PA : pilocytic astrocytoma 
ALL : acute lymphoid leukemia 
SK : skin cancer 
RPC : renal papillary cell
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MEN : meningioma
 UVM : uveal melanoma
CTCL : cutaneous T-cell lymphoma
PRAD : prostate adenocarcinoma
AS : angiosarcoma
LY : lymphoma
HSEC: Erdheim-Chester histiocytosis
SCLC : small cell lung carcinoma
ES : endocrine system cancer 
MERC : Merkel cell carcinoma
MM : multiple myeloma
HC : hepatic carcinoma
MPN : malignant peripheral nerve sheat tumor
THF : thyroid follicular
S : sarcoma
NHLY : non-hodking lymphoma
HLY : hodking lymphoma
CML : chronic myelogenous leukemia
T : testis cancer 
B : brain cancer 
RHBDS : rhabdomyosarcoma 
MDS : myelodisplasic syndrome
CLL : chronic lymphocytic leukemia 
DFS : dermatofibrosarcoma
WT : Wilms tumor
M : melanoma
UG: urogenital cancer-related
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