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Abstract We have derived a gravity field solution in spherical harmonics to degree and order 900,
GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March
to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 ×
10−4/𝓁2 was applied only for degree 𝓁 greater than 600. The model produces global correlations of gravity,
and gravity predicted from lunar topography of ≥ 0.98 through degree 638. The model’s degree strength
varies from a minimum of 575–675 over the central nearside and farside to 900 over the polar regions. The
model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 μm/s RMS,
whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2–10 km fit at 0.98 μm/s
RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.

1. Introduction

The twin spacecraft of the NASA Discovery Gravity Recovery and Interior Laboratory (GRAIL) mission
mapped the gravity field of the Moon in two phases: during the Primary Mission (1 March to 29 May 2012)
from a mean altitude of 55 km and during the Extended Mission (30 August to 14 December 2012) from
a mean altitude of 23 km [Zuber et al., 2013a, 2013b]. The main data produced by GRAIL include the Ka-Band
Range-Rate (KBRR) data between the two satellites, acquired by the GRAIL Lunar Gravity Ranging System
and the Doppler data from the antennae of the Deep Space Network (DSN) that tracked the spacecraft in
lunar orbit from the Earth [Asmar et al., 2013; Klipstein et al., 2013].

Initial analysis of the GRAIL Primary Mission data led to spherical harmonic models complete to degree and
order 420 [Zuber et al., 2013c] that improved on the pre-GRAIL gravity models derived from Lunar Prospec-
tor, Kaguya, and other historical data [Konopliv et al., 2001; Matsumoto et al., 2010] by a factor of 3 to 4 in
spatial resolution, and 3 to more than 5 orders of magnitude in quality. Subsequently, more detailed anal-
yses of the Primary Mission data by the GRAIL gravity teams at the Jet Propulsion Laboratory (JPL), and the
NASA Goddard Space Flight Center (NASA GSFC), produced models to degree 660 in spherical harmonics,
GL0660B [Konopliv et al., 2013] and GRGM660PRIM [Lemoine et al., 2013]. This paper describes GRGM900C,
a lunar gravity solution to degree and order 900 in spherical harmonics (resolving spatial blocks of 6 km)
obtained from the analysis of the Primary and Extended Mission data by the NASA GSFC GRAIL gravity team.
The JPL GRAIL gravity team solution to degree 900 is described by Konopliv et al. [2014]. The degree 900
models developed by the two gravity teams differ in terms of the orbit determination software used, a priori
models, data editing, and parameter estimation strategies.

2. Extended Mission Summary

During GRAIL’s Extended Mission, the GRAIL spacecraft orbits were maintained within a tight band of
apoapse and periapse altitudes. From 30 August to 17 November 2012 the minimum periapse altitude
ranged from 10 to 20 km and the apoapse altitude from 25 to 35 km. From 17 November 2012 through
the end of the mission, the periapse altitude generally ranged from 5 to 10 km while the apoapse altitude
ranged from 15 to 25 km. The low altitude of the GRAIL spacecraft made the mission operations more com-
plex, requiring sometimes as many as three maneuvers per week to maintain the desired orbit [Sweetser et
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al., 2012; Ryne et al., 2013]. The end-of-mission operations from 4 December 2012 onward included orbits
where the GRAIL spacecraft were targeted to fly within 5–10 km over part of Orientale [Zuber et al., 2013b].
The orbit maneuvers also maintained the spacecraft separation between 40 and 60 km in order to reduce
KBRR signal multipath, whereas during the Primary Mission the spacecraft separation ranged from 70 to
200 km. The Extended Mission included effectively 3 1/2 mapping cycles, compared to three for the
Primary Mission. A mapping cycle is a complete rotation of the Moon with respect to the ascending node
of the GRAIL spacecraft orbits. The GRAIL Extended Mission ground tracks were interleaved to improve the
longitudinal sampling of the lunar gravity field. However, the lunar gravity field was not sampled uniformly
in terms of the periapse altitude. Whereas a swath of longitudes just east of Orientale was sampled at
5–10 km periapse height, both the South Pole Aitken Basin (due partially to its depth) and a swath of
longitudes in the central nearside (∼335◦E to ∼5◦E) are sampled at about 20 km of periapse altitude. (See
Figure S1 in the supporting information.)

3. Data, Modeling, and Method of Solution
3.1. Data Overview
The Deep Space Network (DSN) tracking data (two-way tracking at S band and one-way tracking at X band)
and the intersatellite Ka-Band Range-Rate (KBRR) data obtained during the Extended Mission are similar
to those obtained in the Primary Mission [Asmar et al., 2013; Lemoine et al., 2013]. We used the Level 1B
tracking data, which are a derived product based on the dual one-way Ka-Band ranging between the two
satellites [Klipstein et al., 2013]. The GRAIL Level 1B data are time-tagged in Barycentric Dynamic Time using
a procedure outlined by Kruizinga et al. [2012]. The time-tagging of the data is dependent on the quality of
the reconstructed orbits, and so the Level 1B team produced several versions of the intersatellite tracking
data, as improved lunar gravity models were developed [Kruizinga et al., 2013]. The GRGM900C gravity solu-
tion discussed in this paper was based on the processing of the version 3 Level 1B KBRR data. The Primary
Mission Level 1B KBRR data had a sampling of 5 s, whereas the Extended Mission data had a sampling of
2 s. As a consequence, the noise floor of the Primary Mission KBRR data is thought to be 0.03 μm/s, but for
the Extended Mission the noise floor is thought to be 0.05–0.07 μm/s (N. Harvey, Jet Propulsion Laboratory,
unpublished data, 2013).

3.2. Force Modeling
The gravity field potential due to the Moon is modeled as a spherical harmonics series [Kaula, 1966;
Heiskanen and Moritz, 1967],

U = GM
r

+ GM
r

∞∑
𝓁=1

𝓁∑
m=0

(
Re

r

)𝓁

P𝓁m(sin 𝜃)
(

C𝓁m cos(m𝜑) + S𝓁m sin(m𝜑)
)

(1)

where G is the Universal constant of gravitation, M is the mass of the Moon, P𝓁m are the normalized associ-
ated Legendre polynomials, Re is the reference radius (1738 km), 𝜑, 𝜃 and r are the longitude, latitude, and
radius at the evaluation point. C𝓁m and S𝓁m are the normalized Stokes coefficients. Our solution, GRGM900C,
estimates the lunar GM and the normalized Stokes coefficients to degree and order 900. In addition, we also
estimated the degree 2 Love number k2. The model, GRGM900C, is based on the DE421 lunar and planetary
ephemerides [Williams et al., 2008].

Other aspects of the force modeling follow the strategy used for the Primary Mission [Lemoine et al., 2013].
The modeling of the solar radiation pressure for GRAIL requires the detailed modeling of the Sun’s shadow
function, since the shape of the topography can alter this function over that predicted from a spherical or
ellipsoidal Moon, especially for near-full-Sun orbits where grazing transitions are long [Lemoine et al., 2013].
We derived the shadow function for the Extended Mission, taking into account the GRAIL spacecraft trajec-
tories and the lunar topography determined by the altimeter data from the Lunar Reconnaissance Orbiter,
Lunar Orbiter Laser Altimeter (LOLA) [Smith et al., 2010], archived in the Planetary Data System (LOLA/Lunar
Reconnaissance Orbiter Radio Science Planetary Data System Data Node, http://imbrium.mit.edu). The plan-
etary radiation pressure, including the reflected solar radiation due to the lunar albedo, and the radiation
from the lunar thermal emission are modeled as described in Lemoine et al. [2013]. The relative magnitudes
of these radiation pressure accelerations on GRAIL are discussed by Park et al. [2012].
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3.3. Solution Development
We used the NASA GSFC GEODYN II Orbit Determination and Geodetic Parameter Estimation Program [Pavlis
et al., 2013] to analyze the GRAIL tracking data and to compute the partial derivatives of the adjusted param-
eters. Because GEODYN uses a fixed-step Cowell integrator, the only change introduced with respect to
Lemoine et al. [2013] was to reduce the integration step size from 1.0 to 0.5 s, in order to provide an adequate
sampling of the gravitational potential field of the Moon for the degree and order 900 fields, given the mean
spacecraft orbital velocity of ∼1.7 km/s.

The solutions were derived using the QR method, which allows for a numerically stable way of solving the
normal equations in terms of a Cholesky square root matrix [Golub and van Loan, 1989]. The degree 900
solutions included estimates for 811,808 common parameters, and used up to 4080 processors and 6 ter-
abytes of memory belonging to the supercomputers of the NASA Center for Climate Simulation (NCCS) at
the NASA Goddard Space Flight Center. The arc lengths were 2.5 days for the data of the Primary Mission,
where the arcs were bounded by spacecraft angular momentum desaturation events. For the Extended
Mission data, we used 1 day arcs to limit the buildup of dynamical errors. Initially, these dynamical errors
were mostly due to gravity mismodeling, especially in the first interim gravity solutions we developed with
the Extended Mission data. We note that mismodeling of radiation pressure (both the direct solar radiation
pressure, and the planetary radiation pressure) will also be accommodated by the estimation of empiri-
cal accelerations. The set of estimated arc parameters included the satellite initial state, a KBRR bias, and a
KBRR time-tag bias per arc, and empirical accelerations. It is necessary to estimate a time-tag bias for the
KBRR data to accommodate any residual time offsets between these data and the time tags of the DSN data
[Kruizinga et al., 2013]. The KBRR time-tag bias is stable over a data arc and typically of the order of a few
milliseconds. We note that as updated versions of the KBRR Level1B data were made available, the values
and the dispersion in these estimated KBRR time-tag biases were reduced [e.g., Fahnestock et al., 2013]. We
estimated empirical accelerations along track and cross track to the orbit, every quarter revolution, for each
satellite. Acceleration parameters in time periods ti and tj are tied together with an exponentially decaying
weight factor that has a time correlation of one-quarter revolution [Lemoine et al., 2013, cf. equation (5)]. An
a priori sigma, 𝜎A of 1.0 × 10−9, was assigned to control the amplitude of the estimated accelerations. The
number of observations and data weights used in the GSFC degree 900 solutions are summarized in Table
S1 of the supporting information.

Using the Primary and the Extended Mission data, we developed successively several interim models of
varying size (e.g., 660 × 660, 720 × 720, and 900 × 900). Each time we obtained a new global solution, we
reconverged the orbits and recomputed the partial derivatives before obtaining the subsequent model.
The processing that resulted in the first degree and order 900 model, called GRGM900A, was based on a
starting model of degree and order 720. Then GRGM900A was used to produce the set of partial deriva-
tives that were used to develop the degree 900 models that are the subject of this paper, GRGM900B and
GRGM900C. For all the solutions we applied a constraint on the total coefficient power per spherical har-
monic degree, known as a Kaula power law constraint. For the degree 900 solutions we applied the Kaula
constraint only above degree 600, after verifying the behavior of the unconstrained solution. We applied a
power law constraint of 2.5 × 10−4/𝓁2 for GRGM900B, and a constraint of 3.6 × 10−4/𝓁2 for GRGM900C.
Also, for GRGM900C we downweighted the data after 18 November 2012 (when the spacecraft had lower
periapse altitudes), by applying a factor of 0.316 to the end-of-mission Cholesky square root matrix, which
meant the data were effectively downweighted (both DSN and KBRR) by a factor of 10, from the nominal
weights of 0.12 mm/s (for the DSN data) and 0.1 μm/s (for the KBRR data).

In addition to deriving the models, we also calibrate the a posteriori parameter error-covariance matrix by
estimating a scalar multiplicative factor, s2, which corresponds to treating all data and constraints as a single
statistical unit via the formula

s2 =
e2
⟂

N − M
, (2)

where e2
⟂ is the a posteriori weighted residual variance, N is the number of observations plus the Kaula

constraint, and M is the number of parameters. The effect of calibration is to bring the formal errors
into agreement with those actually observed [cf. Kusche, 2003; Lemoine et al., 2013, sections 4.2.4 and
section 5.4].
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Figure 1. Power spectra of the Primary Mission GRAIL gravity
solution, GRGM660PRIM [Lemoine et al., 2013], GRGM900C, the
new solution including Extended Mission data, and the uncon-
strained version of GRGM900C, where no Kaula constraint was
applied. The power spectra of the coefficient standard deviations
for GRGM660PRIM and GRGM900C are also shown.

4. Results
4.1. Power Spectrum for GRAIL
Gravity Solutions
We compute the root-mean-square (RMS)
power of the coefficients, RMS𝓁(U), and RMS
power of the coefficient standard deviations
following Kaula [1966]:

𝜎𝓁(U) =

[
(2𝓁 + 1)−1

𝓁∑
m=0

C
2

𝓁m + S
2

𝓁m

]1∕2

.

(3)

The RMS power for the GRAIL gravity solu-
tions GRGM660PRIM and GRGM900C are
shown in Figure 1. We show the coefficient
power spectra as well as the calibrated spec-
trums of the solution standard deviations for
GRGM900C and GRGM660PRIM. In addition,
we show the RMS power of the coefficients
for the GRGM900C unconstrained solution,
where no Kaula constraint was applied. In
Figure S2, we show the coefficient differ-

ences between the constrained and unconstrained solutions to degree 900, normalized by GRGM900C.
Since the unconstrained solution begins to deviate from a smooth power law around degrees 630–650, we
chose 𝓁 = 600 to be the degree above which we applied a Kaula constraint in GRGM900C. Note also that the
power spectrum of GRGM660PRIM starts to drop more steeply after degree 400, indicating that there is not
enough resolving power in the Primary Mission data for a global model of degree and order 660. The impact
of the Extended Mission data can be seen in the improved error estimates of the midrange degrees (𝓁=200
to 500) by 2–3 orders over GRGM660PRIM.

The calibrated errors of GRGM900C cross the coefficient power spectrum at 𝓁 = 790 (Figure 1), whereas the
uncalibrated errors do not intersect the coefficient power spectrum. Referring to equation (2), the calibra-
tion factors are 3.20 for GRGM900B and 1.93 for GRGM900C and directly scale the uncalibrated formal errors
from the two solutions. They show that the downweighting of the end-of-mission data has reduced the sys-
tematic errors in the solution. This indicates the importance of data weighting and solution calibration on
the estimation of the error spectrum.

The low-degree errors for GRGM900C are close to and even slightly above those of GRGM660PRIM. In addi-
tion, we report that the lunar gravitational parameter GM for GRGM900C is 4.90279997×1012 ±14147 m3/s2,
and the degree 2 potential Love number k2 is 0.024116 ± 0.000108. For both these values the errors are
actually higher than those reported for GRGM660PRIM in [Lemoine et al., 2013]. This is mostly due to the 1
day arcs which we used in the processing of the Extended Mission data, which slightly degrade the sensi-
tivity with respect to these parameters. Future models will extend the length of these arcs and increase the
sensitivity with respect to the lower degrees.

4.2. Correlations With Topography
The gravity solutions from the GRAIL Primary Mission showed high correlations of gravity and topography.
We also evaluate this correlation for the new Extended Mission models. We compute the gravity induced by
topography following Wieczorek and Phillips [1998], assuming a uniform density of 2560 kg/m3 [Wieczorek
et al., 2013], using the topography expansion to the ninth power. We see in Figure 2 that the addition of the
Extended Mission data has extended the range of degrees with high correlations. For GRGM660PRIM, the
correlations begin to decrease below 0.98 after 𝓁 = 320, whereas for the two Extended Mission models, cor-
relations ≥ 0.98 extend to 𝓁 ≈ 638. The two Extended Mission models, GRGM900B and GRGM900C, differ in
their treatment of the end-of-extended-mission data and the magnitude of the Kaula constraint. By relax-
ing the Kaula constraint and slightly downweighting the Extended Mission data after 18 November 2012,
we modestly improve the global correlations, while maintaining the same levels of postfit residuals (see
section 4.4). For this reason, our preferred solution is GRGM900C.
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Figure 2. Correlations between gravity solutions and gravity computed
from LOLA topography, and Bouguer power spectrum. The top curves
(referred to the right axis) show global correlations for the Primary
Mission model, GRGM660PRIM, and the models including Extended
Mission data, GRGM900B and GRGM900C. The bottom curves (referred
to the left axis) show the spectrum of the Bouguer power for the three
gravity models.

4.3. Bouguer Gravity
The Bouguer gravity, which highlights
subsurface structures, is computed by
subtracting the gravity predicted from
topography, as just described, from the
estimated geopotential coefficients. The
RMS power is computed according to
equation (3).

The Bouguer power (see bottom curves
of Figure 2) begins to increase around
𝓁=300 for GRGM660PRIM, and around
𝓁 ≈ 570 for GRGM900B and GRGM900C.
These degrees represent, in global terms,
where spurious power in the geopo-
tential coefficients begins to affect the
global geophysical interpretation based
on the gravity solutions.

We also compute the Bouguer coeffi-

cient amplitude J𝓁m =
√

CB

2

𝓁m + SB

2

𝓁m.
This is illustrated in Figure 3 for two grav-

ity solutions, GRGM900C without application of a Kaula constraint and the final solution GRGM900C. The
solution derived without Kaula illustrates which degrees are most reliably determined by the KBRR data. As
pointed out by Floberghagen [2002], since the Moon is a slow rotator, resonances occur only at high degrees
(𝓁 ≈ 350–370, and 𝓁 ≈ 700–740). In the unconstrained solution, it is these resonance and near-resonance
orders that develop excess power in the Bouguer coefficients (see Figure 3a). In these GRAIL solutions, the
lower-order coefficients (m less than 300) are better determined than the “wings” of the gravity model (high
degrees and high orders). This phenomenon is also a characteristic of solutions for the Earth gravity derived
from GRACE data [Rowlands et al., 2002]. The Kaula constraint successfully reduces some of the spurious
power in the coefficients (Figure 3b), however, a signature remains in the RMS Bouguer coefficient power
spectrum (bottom curves of Figure 2).

4.4. Data Fit
In addition to examining the correlations with topography and the power spectra of the solutions, we also
computed the a posteriori orbital fits to the tracking data. The fits to GRGM900C are very similar to those
of GRGM900B, even though we note an improvement in the topography correlations with GRGM900C
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Figure 3. Amplitude of Bouguer gravity coefficients (a) based on GRGM900C-unconstrained (no Kaula constraint applied), and (b) based on GRGM900C, with a
Kaula constraint of 3.6 × 10−4/𝓁2 applied for degree 𝓁 greater than 600.

LEMOINE ET AL. ©2014. The Authors. 3386



Geophysical Research Letters 10.1002/2014GL060027

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

D
at

a 
fit

 [m
ic

ro
n/

s]

01 08 15 22 2901 08 15 22 2901 08 15 22 2901 08 15

September October November December
month

4

6

8

10

12

14

16

18

20

22

24

P
er

ia
ps

e 
he

ig
ht

 [k
m

]

GRGM900C
Periapse height

Figure 4. RMS residuals of the KBRR data per data arc in the Extended Mission with the gravity model GRGM900C, shown
together with the periapse altitude for each orbital arc.

(see section 4.2). The GRGM900C fits to the Primary Mission KBRR data are largely unchanged from those
obtained with the model GRGM600PRIM and are in the range 0.04–0.06 μm/s. The GRGM900C a posteri-
ori fits to the Extended Mission KBRR data through 18 November 2012 are in the range of 0.10–0.17 μm/s,
whereas the fits to the data beyond 18 November 2012 range from 0.2 to 3.2 μm/s. We illustrate the
Extended Mission KBRR data fits for GRGM900C in Figure 4, together with the periapse height for each data
arc. The RMS fits to the DSN S band data (not shown) are in general close to the data weights of 0.12 mm/s,
except for the latter part of the Extended Mission where they reach RMS fits of 0.5 mm/s. The low-periapse
altitude of 5–10 km dramatically increases the gravity signal inherent in the satellite-tracking data. In cer-
tain regions and along some orbital tracks, the inherent resolution is more than can be accommodated in a
global spherical harmonic model of degree and order 900.

4.5. Anomaly Errors and Degree Strength
The propagation of the gravity field errors into a map of anomaly errors is helpful for evaluating the model’s
performance geographically and aids the geophysical interpretation using that model. However, the propa-
gation of a full covariance matrix of a degree and order 900 field is computationally prohibitive. Instead, we
have applied a Monte Carlo approach which uses the Cholesky square root matrix from QR to compute an
ensemble of statistically consistent members, or “clones,” to replace the error-covariance matrix in these cal-
culations. We have verified this procedure by comparing its gravity anomaly errors for the SGM150J model
[Goossens et al., 2011] with those obtained from using the full error-covariance matrix and have found the
convergence rate to be the expected 1∕

√
K , where K is the ensemble size. An example of the use of Monte

Carlo calculations to propagate error functions for large covariances can be found in Gundlich et al. [2003].
In Figure S3 in the supporting information, we show the anomaly errors to 𝓁=720 for GRGM900C. The total
global RMS error to degree and order 720 is 8.49 mGal. This compares to an RMS global anomaly error from
GRGM660PRIM to degree and order 660 of 30.49 mGal [Lemoine et al., 2013].

We also seek to evaluate the spatial variability in the model resolution. We do this by computing the degree
strength of the solution following Konopliv et al. [1999]. First, we evaluate the anomaly error at each degree
for each geographic location using the Monte Carlo approach just described, and then we determine at
what degree the anomaly error matches the Kaula law signal strength. The result is a map that illustrates
the resolution of GRGM900C (see Figure 5). We see that the lowest degree strength is 550–600 over a broad
swath of the central farside. It is possible that the slight deweighting of the post 18 November 2012 data
affects the degree strength over the farside. Over Orientale, the degree strength of the model is 700–725;
however, we note that the KBRR data obtained from the lowest altitudes at the end of the mission over
Orientale have been deweighted in this solution. The model has the highest resolution (degree strength
of 900) over the polar regions due to the extra sampling that comes from the convergence of the orbital
ground tracks.
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Figure 5. Degree strength of the GRGM900C gravity model. The map shows spatially at what degree the gravity field
errors match the expected signal power from the applied Kaula power law. The map is a Mollweide projection centered
on 270◦E, with the lunar farside to the left of the figure center, and the lunar nearside to the right of the figure center.

5. Summary

Using the method of QR factorization, we have derived a gravity field of the Moon from the GRAIL primary
and Extended Mission data complete to degree and order 900 in spherical harmonics. The tracking data, in
particular the GRAIL KBRR data, completely resolve the coefficients below 𝓁 = 600 (9 km block size). A power
law constraint of 3.6 × 10−4/𝓁2 was applied for 𝓁 ≥ 600. The inclusion of the Extended Mission GRAIL data
improves the lunar gravity field resolution by 2–3 orders of magnitude over the midrange degree bands,
compared to the Primary Mission GRAIL model, GRGM660PRIM. The variable sampling of the Moon at low
altitude (see Figure S1 in the supporting information) combined with the RMS of fit to the KBRR data that is
higher than the intrinsic noise, especially for the data from the last month of the Extended Mission, suggest
that a degree 900 model does not capture all the signal inherent in the tracking data. Future work should
expand the solutions to higher degree to obtain improved resolution or should assess the utility of local
solutions over bounded regions to fully extract the signal inherent in the KBRR tracking data.
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