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SI Appendix
 
Supplementary methods
	
Consolidating Transmembrane Topologies for the Human Membrane Proteome. The basis 
and reference for the presented human surface proteome analysis was the human proteome in 
UniProtKB/Swiss-Prot version 2015_01 (1). We first matched the 8,010 human peptides from 
the CSPA to the reference proteome, generating a list of constraints for the topology of a total of 
1,387 proteins by enforcing identified N-glycosylation sites to be non-cytoplasmic. UniProt 
provided annotation of topological domains for 7,095 human proteins (5,172 ɑ-helical TM 
domain-containing proteins, four β-barrel TM domain-containing proteins, 16 proteins with 
intramembrane loops only, and 1,903 proteins with a signal peptide only). Topological domains 
were divided into cytoplasmic (UniProt domains: “Cytoplasmic”, “Nuclear”, and “Mitochondrial 
matrix”) and non-cytoplasmic (UniProt domains: “Extracellular”, “Lumenal”, “Peroxisomal”, 
“Peroxisomal matrix”, “Vacuolar”, “Vesicular”, “Mitochondrial intermembrane”, “Perinuclear 
space”, “Intragranular”, and “Exoplasmic loop”). Topology was defined based on these domains 
in conjunction with UniProt annotated “Transmembrane”, “Intramembrane”, and “Signal peptide” 
regions. For 494 proteins, parts of the topology were missing but could be inferred logically. 
Only 15 proteins had unresolvable, inconsistent annotations and thus were ignored at this 
stage. For 1,190 proteins CSPA and UniProt topologies matched, for 105 proteins the topology 
was corrected to match the CSPA constraints either by simply switching the orientation within 
the membrane (74 proteins) or by applying a Phobius prediction (2) while constraining the 
identified N-glycosylation sites to be non-cytoplasmic and any UniProt annotated 
phosphorylation sites with experimental evidence to be cytoplasmic (31 proteins). For nine 
proteins the CSPA constraints were dropped because of questionable peptide identifications. 
Phobius (2) predicted a topology for each of the 7,819 members of the human proteome, 
including 14 proteins where there was no or inconsistent topology annotated by UniProt. 
Phobius was also used to assess the exact borders of all TM domains by applying constraints 
on the full topology except for ±6 residues around the membrane borders.
 
Defining Training Sets for Predictive Modeling. The positive training set was composed of 
human ɑ-helical TM domain-containing proteins appearing in at least two of the following three 
datasets: (i) the “high confidence” subset of the CSPA containing 735 proteins, (ii) the 
UniProtKB/Swiss-Prot (version 2015_01) containing 2,043 proteins attributed with the “Cell 
membrane” keyword, and (iii) the subcellular localization database COMPARTMENTS (3) 
containing 826 high-confidence plasma membrane proteins (5 stars), which belong to the 
COMPARTMENTS inherent “plasma membrane” positive benchmark set and also belong to the 
COMPARTMENTS inherent negative benchmark sets for each of the remaining subcellular 
locations (all but “extracellular space”). This resulted in 1,131 proteins. Seven proteins were 
removed from this dataset because they were experimentally identified using 
immunohistochemistry in some other subcellular membrane location (all but “Plasma 
membrane”, “Cell junction”, “Focal adhesion” and “Cytosol”) in the Human Protein Atlas (4), 
leaving 1,124 proteins.
 
The construction of the negative training set was based on the COMPARTMENTS benchmark 
sets. The initial set included 783 ɑ-helical TM domain-containing proteins from the negative 
benchmark set for “plasma membrane” that were also found in at least one other positive 
benchmark set (again excluding “extracellular space”); 94 proteins were removed because they 
were also identified in the CSPA. This resulted in 689 proteins.
 
Using UniRef50, we clustered proteins with at least 50% sequence identity (5). For multiple 
proteins of one UniRef50 cluster, only the representative UniRef entry or (in cases where this 
entry was not part of the set) the alphabetically first entry was kept. Thus redundancy-reduced 
versions of the positive and negative training datasets included 910 and 657 proteins, 
respectively.
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Derivation of a Numerical Feature Vector for Each Protein. Numerical features were defined 
as follows for each topological domain (cytoplasmic, non-cytoplasmic, TM, and signal peptide, if 
applicable): amino acid frequencies; the number, average length, and relative fraction of ɑ-
helical TM regions; the presence of and average length of a signal peptide; and the relative 
fraction of cytoplasmic and non-cytoplasmic regions. Forty-four candidate physicochemical 
properties based on AAindex1 (6) were selected. Hierarchical clustering of these properties 
based on their correlation coefficients resulted in four major clusters, for which a representative 
property was chosen and averaged per domain: ARGP820101 “Hydrophobicity index” (7), 
KYTJ820101 “Hydropathy index” (8) (also known as GRAVY), KLEP840101 “Net charge” (9), 
and PONJ960101 “Average volumes of residues”(10). In case a protein was missing one of the 
four domains, the features were set by default to the average value across all proteins in order 
to avoid missing values in the feature matrix. The relative number of N-glycosylation consensus 
sequence motifs (N-X-S/T) in the non-cytoplasmic domains was also included. GlycoMine (11) 
was filtered to 99% specificity level using the thresholds described in the original publication and 
the relative number of predicted C-linked mannosylation, and N-linked and O-linked 
glycosylation sites in the non-cytoplasmic domains of each protein was calculated.
 
The number of occurrences of annotated features in UniProt was counted for selected classes 
(Domain, Repeat, Motif, Metal binding, Nucleotide binding, Zinc finger, and Calcium binding) 
resulting in a total of 1,193 features (e.g., “Domain EGF-like”). Those were narrowed down to 12 
annotation features that appeared in at least 20 proteins from either the positive or the negative 
training set (Domain Cadherin, Domain EGF-like, Domain Fibronectin type-III, Domain GPS, 
Domain Ig-like C2-type, Domain Ig-like V-type, Domain Protein kinase, Metal binding Iron, Metal 
binding Manganese, Motif PDZ-binding, Nucleotide binding, Zinc finger). Features were 
attributed to a topological domain if more than half of its length fell within that particular 
topological domain. Because of their small number of instances, no features were calculated for 
annotated membrane spanning regions of β-barrel TM proteins (two proteins) or annotated 
intramembrane regions (136 proteins).
 
Supervised Learning and Predictive Modeling of Human Cell Surface Proteins. We chose 
the random forest algorithm(12) as implemented in the “randomForest” package(13) of the 
statistical computing environment R 3.1.0(14) for supervised, binary classification. The predictive 
performance of our modeling approach was assessed by a 10-fold cross-validation scheme, 
where in each round 90% of the proteins in the positive and negative training set were used to 
train a random forest with 501 trees, which then predicted the class labels for the remaining 10% 
of the proteins in the training set. Sensitivity, specificity, and error rates were assessed and the 
out-of-bag performance estimates for the full model were in good agreement with the 
performance estimates from the cross-validation models (SI Appendix Dataset S11.6). Based on 
the scores of the full random forest model, a ROC curve was constructed.
 
Transfer of Functional Annotation for Membrane Proteins. Proteins were categorized by 
biological function, based on the human membrane proteome from Almén et al.(15). Protein 
sequences were matched using BLAST and annotations were transferred for hits with E-values 
of less than 0.01 and at least 50% sequence identity (blastall, version 2.2.17,(16)). Enrichment 
was tested using Fisher’s exact test comparing all groups of functional annotation within the 
2,886 surface and 2,216 non-surface proteins. Groups of functional annotation with less than 10 
proteins were not tested. Resulting p-values were corrected for multiple testing using the 
Bonferroni method(17). In case of double annotation, the first annotation was selected.

 



Confocal Microscopy imaging. Coverslips used to image Jurkat-T cells were treated for 1 h 
with 0.02% Poly-L-Lysine (PLL, Sigma #P8920) at room temperature and then washed three 
times with PBS. Five millions Jurkat T-cells per sample were spun down and fixed for five 
minutes at room temperature with fixative (4 % paraformaldehyde, 2 % sucrose in PBS). Then, 
the cells were added to the PLL-coated coverslips and centrifuged 5 min at 3000 g. Cells were 
washed once with 0.1 M ammonium chloride and three times with PBS. 50’000 HT-29 cells per 
well were seeded on untreated coverslips in a 24-well plate and incubated overnight at 37°C and 
then fixed with fixative. Cells were washed with PBS and blocked for one hour at room 
temperature with 5% bovine serum albumin in PBS. The following antibodies were added to 500 
μl PBS with 4% BSA: anti-human GRAMD1B antibody (1:200, ABIN566112, antibodies online), 
anti-human MUC3A antibody (1:50, ABIN3025103, antibodies online), anti-human ULBP-1 
antibody (1:250, MAB1380-SP, R&D systems). Antibodies were incubated with the cells for 30 
min at 4°C and then washed away three times by PBS. AlexaFluor 488-conjugated anti-mouse 
IgG was added in a 1:500 dilution and incubated for 30 min at 4°C. Cells were stained with 
Hoechst stain (2 μg/ml) and mounted on microscopy slides. Images were acquired by a Zeiss 
LSM 800 upright confocal microscope with an 63x 1.4NA Oil Plan-Apochromat DIC M27 
objective. Image processing was performed using ImageJ.
 
Flow cytometry. One million Jurkat T-cells or one million HT-29 cells were harvested, washed 
with PBS and blocked for 1h at 4°C with 5 % BSA in PBS. Cells were resuspended in 500 μl 
FACS buffer (PBS, 2% FBS) and incubated with the respective antibodies (1:200 anti-GRAMD1, 
1:25 anti-MUC3A, 1:250 anti-ULBP-1) for 30 min at 4°C. Cells were washed three times with 
FACS buffer and resuspended in 500 μl PBS and 1 μl AlexaFluor 488-conjugated anti-mouse 
IgG for 30 min at 4°C. Cells were washed, stained with propidium iodide and analyzed on a BD 
Accuri C6 flow cytometer. Data was processed by FlowJo X (version X.0.7).
 
CSC-based Analysis of Surfaceome of HeLa Cells. Cell surface capture was performed as 
described previously (18), with the following slight modifications: Biotinylation of previously 
generated aldehydes was performed with 5 mM biocytin hydrazide (Pitsch Nucleic Acids) and 5 
mM 5-methoxyanthranilic acid for 1 h at 4 °C. For lysis, cells were resuspended in 800 μl 50 mM 
ammonium bicarbonate and sonicated with repeated cycles of 30 sec and cooling on ice in 
between. Membrane proteins were solubilized with RapiGest (Pitsch Nucleic Acids), reduced, 
alkylated, and digested as described in the published protocol (18). Enrichment of biotinylated 
peptides by streptavidin beads, washing of unlabeled peptides, and enzymatic elution was done 
as previously described (18). Eluted peptides were acidified to pH < 3 by the addition of formic 
acid (FA) and subjected to C18 purification using 3–30 μg UltraMicroSpin Columns (The Nest 
Group) according to manufacturer's instructions.
 
Reverse Liquid Chromatography and Mass Spectrometry. Peptide samples were separated 
by reversed-phase HPLC using a column (75 μm inner diameter, New Objective) that was 
packed in-house with a 15 cm stationary phase (ReproSil-Pur C18-AQ, 1.9 μm) and connected 
to a nanoflow HPLC combined with an autosampler (EASY-nLC II, Proxeon). The HPLC was 
coupled to a Q-Exactive plus mass spectrometer (Thermo Scientific) equipped with a nano 
electrospray ion source (Thermo Scientific). Peptides were loaded onto the column with 100% 
buffer A (99.9% H2O, 0.1% FA) and eluted for MS detection at a constant flow rate of 300 nL/
min with a 45-min stepped gradient from 6–20% buffer B (99.9% ACN, 0.1% FA) and 15 min 
from 20–32% B. MS analysis was done in data-dependent acquisition (DDA) mode. Following a 
high-resolution survey mass scan (from 375 to 1500 m/z) acquired in the Orbitrap with resolution 
R = 70 000, 200 m/z, a maximal scan time of 200 ms, and automatic gain control target value 
3x106, the ten most abundant peptide ions were selected for subsequent HCD fragmentation 
with an isolation window of 1.5 Da, and fragments were detected by MS/MS acquisition at 
resolution R = 35 000, a maximal scan time of 120 ms, and automatic gain control target value 
106. Target ions already selected for fragmentation were dynamically excluded for 30 s.



Data Analysis and Protein Quantification. Raw files were converted to mzML format with 
ProteoWizard v3.0.6002 (http://proteowizard.sourceforge.net/) and searched with comet 
(v2015.01) (19) against the human UniProt/SwissProt sequence database (version 2016, 20245 
proteins) with the following parameters: semi tryptic, 2 missed cleavages allowed, 20 ppm 
precursor mass tolerance, fixed carbamidomethylated cysteines, variable modification on 
methionines (+15.994 Da) and on asparagines (+0.9840 Da). Data were further processed with 
the transproteomic pipeline (TPP; v4.7) (20) to obtain identified peptides and a protein list at an 
estimated false-discovery rate of 1%. Transmembrane topology visualizations were produced 
with Protter (http://wlab.ethz.ch/protter) (21).
 
Datasets for Characterizing and Applying the Surfaceome. The RNA-seq datasets from Klijn 
et al. (22) from 675 cancer cell lines were downloaded. Among the 675 cell lines, 610 distinct 
cell lines identified according to Klijn et al. were used for the present analysis. Genes with a 
normalized Reads Per Kilobase per Million mapped reads (RPKME) value >1 were regarded to 
be expressed on mRNA level. A list of average physical cell sizes for the NCI-60 cell lines were 
downloaded from Nexcelom Bioscience, of which 44 overlapped with the Klijn et al. dataset. 
Protein turnover rates were retrieved from Mathieson et al. (23). Only high-quality protein half-
lives with good accordance between replicates were taken into account. Significance testing was 
done using Fisher’s exact test. Voronoi treemaps were generated using the FoamTree tool 
(carrotsearch.com). The visualized hierarchical classification of genes was created based on the 
functional annotation of human membrane proteins by Almén et al. (15), omitting olfactory 
receptors. The embryonic stem cell and neurogenesis data were downloaded from Li et al. (24). 
Clustering of expression profiles was done with the R package Mfuzz, which performs soft 
clustering of expression or abundance profiles using the fuzzy c-means algorithm based on 
minimization of a weighted square error function (25). Transcripts with a score >0.8 were 
regarded as members of the specific cluster.

Supplementary Datasets
 
Datasets S11.1: UniProt names for proteins in positive training sets.

Datasets S11.2: UniProt names for proteins in negative training sets.

Datasets S11.3: Surfaceome classifications of the 20,193 proteins in the human proteome with 
information on glycosylation sites and aggregated information from other databases and 
annotation sources.

Datasets S11.4: Features (in absolute numbers and as frequency) for the 7,903 human proteins 
with a transmembrane topology. Top five features appear in the front.

Datasets S11.5: Results from cross validation of all features and their calculated Gini scores.

Datasets S11.6: Performance estimates for the random forest models.

Datasets S11.7: Set of 2886 surfaceome proteins.

Datasets S11.8: Deep-coverage CSC-derived experimental HeLa surfaceome.

Datasets S11.9: Validation of predicted cell surface proteins by SURFY. 
Datasets S11.10: Proteins belonging to group 1 to 5 as shown in Fig. 3F.
Datasets S11.11: Gene members of each cluster from Fig. 5C.



Supplementary Figures

Figure S1: Selection of positive training set. Venn diagram of the three sources for human protein 
subcellular localization used to construct a high-confidence ɑ-helical transmembrane surface protein 
training set. Proteins present in a least two of the three datasets were integrated into the positive 
training set.
 
Figure S2: SURFY score distributions with different protein groups highlighted. The predicted 
score distribution of the specific functional protein group (as indicated in the title of each graph) is 
highlighted in yellow.
 
Figure S3: SURFY  score distribution of proteins without TM domains. Predicted scores for 2,403 
proteins without ɑ-helical TM domains (gray) including 130 proteins with an annotated GPI-anchor 
(green).

Figure S4: IF and flow cytometry images of surfaceome proteins. Detection of protein localisation 
by antibody staining against GRM1B (GramD1B, left panel), MUC34 (Mucin-3A, middle panel) and 
ULBP1 (right panel). (A) Confocal microscopy images of fixed, but not permeabilized cells. Primary 
antibody was detected with AlexaFluor488-coupled anti-mouse IgG antibody (green). Nuclei were 
visualized by Hoechst staining (blue). Size bar represents 10 mm. (B) Flow cytometry-based detection 
of respective antibodies, visualized with AlexaFluor488-coupled anti-mouse IgG antibody (green). The 
black curve originated from unstained cells, the light grey curve come from cells stained with the 
secondary antibody alone. (C) Geometric mean values from B), with the gain of fluorescence produced 
by the primary antibody in dark. Control samples are labeled as in B).
 
Figure S5: Number and abundance of expressed genes per cell line. Cell lines are ordered 
according to the number of expressed surfaceome genes (ordered as in Fig. 3A). Genes with a 
RPKME value above 1 were considered expressed. The sum of all gene expression abundances (sum 
of RPKME values; right axis) is shown as black line.
 
Figure S6: Occurrence of expressed transcription factors in different cell lines. Vertical red lines 
show the cutoff for genes expressed in every cell.
 
Figure S7: Histogram of median log2 RPKME values for expressed genes of group 1 (blue), 
group 2 (red), and group 5 (green) (see Fig. 3F) over all cell lines.
 
Figure S8: PCA analysis based on expressed surfaceome genes. Principal component analysis 
based on expression levels of expressed surfaceome genes within the 610 cancer cell lines. Cells are 
color coded according to their tissue type and in analogy to Fig. 3A. Plot showing the distribution of the 
cell lines within the top three components.
 
Figure S9: Histogram of expression levels of the HeLa surfaceome. Histogram of expression 
levels of all surfaceome genes are shown in grey (22). Expression level distribution of proteins 
identified by CSC are in red, nonidentified proteins in blue.
 
Figure S10: Protein abundance vs. gene expression level of surfaceome. Scatter plot of the log2 
expression values from the RNA-seq data set from Klijn et al. (22) versus protein abundance in 
absolute copy numbers as provided in Beck et al. (26).
 



Figure S1: Selection of positive training set



Figure S2: SURFY score distributions with different protein groups highlighted
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Figure S4: IF and flow cytometry images of surfaceome proteins
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Figure S5: Number and abundance of expressed genes per cell line 
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Figure S6: Occurrence of expressed transcription factors on different cell 
lines 
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Figure S7: Histogram of median log2 RPKME values over the cell lines
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Figure S8: PCA analysis based on expressed surfaceome genes
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Figure S9: Histogram of expression levels of the HeLa surfaceome

Figure S10: Protein abundance vs. gene expression level of surfaceome
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