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FAMSA: Fast and accurate multiple 
sequence alignment of huge 
protein families
Sebastian Deorowicz, Agnieszka Debudaj-Grabysz & Adam Gudyś

Rapid development of modern sequencing platforms has contributed to the unprecedented growth of 
protein families databases. The abundance of sets containing hundreds of thousands of sequences is a 
formidable challenge for multiple sequence alignment algorithms. The article introduces FAMSA, a new 
progressive algorithm designed for fast and accurate alignment of thousands of protein sequences. Its 
features include the utilization of the longest common subsequence measure for determining pairwise 
similarities, a novel method of evaluating gap costs, and a new iterative refinement scheme. What 
matters is that its implementation is highly optimized and parallelized to make the most of modern 
computer platforms. Thanks to the above, quality indicators, i.e. sum-of-pairs and total-column scores, 
show FAMSA to be superior to competing algorithms, such as Clustal Omega or MAFFT for datasets 
exceeding a few thousand sequences. Quality does not compromise on time or memory requirements, 
which are an order of magnitude lower than those in the existing solutions. For example, a family of  
415519 sequences was analyzed in less than two hours and required no more than 8 GB of RAM. FAMSA 
is available for free at http://sun.aei.polsl.pl/REFRESH/famsa.

Multiple sequence alignment (MSA) is one of the most important analyzes in molecular biology. Most algorithms 
use progressive heuristics1 to solve the MSA problem. The scheme consists of three stages: (I) calculation of a 
similarity matrix for investigated sequences, (II) a guide tree construction, (III) greedy alignment according to 
the order given by the tree. Pairwise similarities can be established in various ways. Some algorithms use accu-
rate although time-consuming methods, such as calculating pairwise alignments of the highest probability2 or 
maximum expected accuracy3. Others employ approximated, yet faster approaches, e.g. tuple matching4,5. As the 
sizes of the protein families to be analyzed continue to increase, the necessity to calculate all pairwise similarities 
has become a bottleneck for alignment algorithms. Therefore, several attempts have been made to accelerate this 
stage. Kalign6 and Kalign27 employ Wu-Manber8 and Muth-Manber9 fast string matching algorithms, respec-
tively, for similarity measurements. This allows thousands of sequences to be aligned in a reasonable timespan. 
The idea was further extended by the authors of the presented research in Kalign-LCS10, which introduced the 
longest common subsequence to Kalign2 for similarity measurement. This improved both the alignment quality 
and the execution time. Nevertheless, in view of the most recent developments in high throughput sequencing, 
biologists are required to align protein families containing tens of thousands of members. Progressive algorithms 
which calculate and store all pairwise similarities could not be applied to the problems of such a size due to exces-
sive time and memory requirements.

PartTree, a divisive sequence clustering algorithm for building a guide tree without calculating all pairwise 
similarities11, was one of the ideas to tackle the problem. With average time complexity of O(k log k) and space 
complexity of O(k) (k being the number of sequences in the input set), PartTree was successfully adopted by 
MAFFT 6 package12. As a result tens of thousands of sequences could be aligned on a typical desktop computer. 
A different approach is presented in Clustal Omega13. It uses mBed, an algorithm for embedding sequences into 
a lower-dimensional space14, which requires only O(k log k) exact similarity values to approximate other values.  
Embedding is combined with sequence clustering with the use of K-means algorithm, which prevents the storage 
of the whole similarity matrix, and keeps memory requirements under control. Both MAFFT and Clustal Omega 
use tuple matching for similarity calculation.
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A different approach to large-scale alignments was introduced in UPP15. The algorithm creates a set of profile 
models on the basis of a subset of sequences referred to as a backbone. The backbone is then used in the process 
of aligning the remaining elements of the input set.

While MAFFT, Clustal Omega, and UPP are computationally applicable for families of even 100 000 proteins, 
we show that the quality of the results for such problems is often unsatisfactory. This article presents FAMSA, 
a progressive multiple alignment algorithm, particularly suitable for large sets of sequences. Pairwise similari-
ties are established, by analogy to Kalign-LCS, on the basis of the longest common subsequences (LCS). Unlike 
MAFFT and Clustal Omega, FAMSA calculates all pairwise similarities. The process is highly efficient due to 
the multithreaded, bit-parallel LCS algorithm suited for AVX extensions16 of modern processors. Employing a 
memory-saving, single-linkage algorithm17 for guide tree construction, reduces first-stage memory requirements 
to O(k). A novel, in-place algorithm of profile alignment which prevents memory reallocations during the pro-
gressive stage is an important factor contributing to the computational scalability of FAMSA. As a result, FAMSA 
is the fastest and most memory-efficient alignment software when large protein families are taken into account. 
FAMSA’s superiority was observed for sets ranging from thousands to half a million of sequences.

FAMSA is not only efficient, but also very accurate thanks to a number of algorithmic features. They include 
LCS for similarity measurement, MIQS substitution matrix18, and a correction of gap penalties inspired by 
MUSCLE4. The penalties are additionally adjusted to the set size, which is a novel technique in alignment soft-
ware, particularly useful in large sets of sequences. Misalignments during the progressive stage are fixed with a 
refinement scheme similar to the one included in QuickProbs 219. Consequently, when sets of a few thousand or 
more sequences are considered, FAMSA is significantly more accurate than any other algorithm. Interestingly 
enough, the difference increases along with the growing number of sequences. For instance, for sets exceeding  
25 000 proteins, FAMSA aligned 25–45% more columns in a correct manner than UPP or the most accurate 
variants of MAFFT or Clustal Omega. When the largest benchmark family containing 415 519 sequences was 
investigated, the difference was even more remarkable—FAMSA successfully restored three times more columns 
than its competitors, at a fraction of the required time and memory.

The scalability of FAMSA was assessed on extHomFam, a new benchmark generated by analogy to HomFam13, 
by enriching Homstrad20 with families from Pfam database21. It contains 380 sets of sizes ranging from 218 to 415 
519 sequences. The abundance of numerous protein families (k >  10000) makes extHomFam particularly repre-
sentative for large-scale alignment problems, which are of crucial importance in the context of recent advances 
in high throughput sequencing.

Methods
Like other progressive algorithms, FAMSA consists of four stages:

(I) Calculation of pairwise similarities,
(II) Determination of a guide tree,
(III) Progressive profile merging according to the guide tree order,
(IV) Optional iterative refinement of the final profile.

Detailed descriptions of the algorithm stages together with analyzes of time and space complexities are pro-
vided in the following subsections.

Calculation of pairwise similarities. The length of a longest common subsequence (LCS) is used in order 
to determine the pairwise similarities of sequences in the input set. The choice was motivated by the promising 
results of LCS application in previous studies10,22. Given two sequences, A and B, the length of an LCS is the 
maximal number of perfectly matching columns. This can be considered as an estimation of true pairwise align-
ment. To compensate the effect of LCS length being larger for longer sequences, the value is normalized by the 
indel distance (the number of single-symbol insertions and deletions necessary to transform one sequence into 
another). This distance approximates the misalignment cost, i.e. the number of gaps in the alignment, in which 
only perfect matches are allowed:
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The LCS length can be computed using a straightforward dynamic programming (DP) rule23. Owing to the 
internal properties of the DP matrix, the calculation can be made using the bit-parallel manner. In this approach, 
w cells are computed at a time (w is a computer word size equal to 64 in modern architectures)24. The indel dis-
tance for the sequences A and B can be directly derived from the LCS length according to the formula:
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where |S| denotes the length of the S sequence. The time complexity of the pairwise similarity calculation is:
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under a reasonable assumption that w is comparable to or smaller than the longer sequence length.
As modern computers are equipped with multi-core processors, FAMSA distributes the calculation of LCS 

lengths for different pairs of sequences to several computing threads. Moreover, the presented software makes 
use of vector operations provided by technologies like SSE, AVX, AVX 216, which are supported by contemporary 
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processors. This allows multiple pairs of sequences to be processed simultaneously by the same thread. Assuming 
that there are t processing threads, a words in a single AVX vector (2 for AVX, 4 for AVX 2, and 8 for the 
announced AVX-512), and that n denotes a sequence length, the total time complexity of the first stage can be 
expressed as:





×





.O n
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Massively parallel architectures have become widespread in computationally demanding tasks. As FAMSA 
was designed for analyzing large protein families, it allows massively parallel devices, such as graphics processors, 
to be employed for the calculation of pairwise similarities. The procedure is implemented in OpenCL25, therefore 
it is suitable for GPUs manufactured by all main vendors, including NVidia and AMD. The distribution of LCS 
computation over thousands of graphics processor threads further increases the throughput of the first FAMSA 
stage. Yet, as is shown in the experimental part of the article, even without OpenCL, FAMSA is able to process 
hundreds of thousands of proteins in a very short time.

Determination of the guide tree. A number of algorithms for guide tree construction have been devel-
oped, e.g. NJ26, UPGMA27, or single-linkage28. FAMSA uses single-linkage for the following reasons:

•	 it can be computed incrementally, i.e. without storing the complete similarity matrix,
•	 it is very fast, i.e. it can be completed in O(k2) time using the SLINK algorithm17,
•	 the results were of superior quality in the previous studies22,29.

To benefit from the incremental property of SLINK, the first two stages of FAMSA are performed simultane-
ously, which restricts the memory footprint. In particular, tree generation requires only O(k) space in contrast 
to O(k2), required by other guide tree construction algorithms like UPGMA. This is of crucial importance when 
huge protein families are investigated.

Progressive construction of the alignment. The progressive construction stage requires O(k) profile 
alignments, each computed by means of dynamic programming. At least half of these alignments are degenerated 
cases in which one or both profiles consist of a single sequence. Dynamic programming implementation can be 
simplified in those cases, hence specialized variants of the general DP procedure were prepared. This resulted 
in remarkable computation time savings for huge datasets, in which most profile alignments are made against a 
single sequence due to the structure of a guide tree.

Several improvements in the classical computation rule were made in FAMSA to upgrade the quality of align-
ment as well as the processing speed. They were possible owing to the internal profile representation composed 
of three arrays storing:

•	 occurrence counters of each alphabet symbol in consecutive columns (32n* computer words, with n* being 
the profile length),

•	 costs of alignment of consecutive columns to each possible alphabet symbol (also 32n* computer words),
•	 sequences in the gapped representation.

While two former components were previously employed by alignment algorithms, e.g. Kalign, the gapped 
representation is, to the best of our knowledge, a novel technique. In this representation, two equal-sized arrays 
are stored for each sequence: (i) sequence symbols, (ii) the number of gaps present before the corresponding 
sequence symbol. Moreover, to quickly localize a symbol in a column, as well as to insert or remove gaps, dynamic 
position statistics are stored in an additional array. The space for the gapped sequence is approximately 13 times 
the length of the sequence (see Fig. 1 for example). The proposed profile representation allows a dynamic pro-
gramming matrix to be computed rapidly and is memory frugal. The DP computation step for a pair of profiles 
takes

Figure 1. Illustration of gapped sequence representation of – – C A – – H – F – – – Q – G A C – – D L M 
– – – – F A – P – S. The ‘+ ’ symbol is a guard, present to simplify the implementation. The values of dps are 
computed according to the rule: dps[i] =  dps[2i] +  dps[2i +  1], provided that the necessary cells are present. 
Otherwise, they are calculated on the no_gaps and sequence vectors. For example, dps[8] is the number of 
symbols in sequence [0 …  1] (equal to 2), incremented by the number of gaps present just before these symbols, 
i.e. no_gaps[0] and no_gaps[1].
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O n n( )1 2

time, where n1, n2 are the input profile lengths.
The presence of gapped representation is especially useful when families containing tens of thousands of pro-

teins are investigated. Other aligners construct a new profile by copying the sequences symbol by symbol, with 
occasional gap insertions, which tends to be a bottleneck for large-scale analyzes. This is not the case in FAMSA, 
where entire sequences are moved from the input profiles to the new profile and gaps are rapidly inserted by 
updating gap counters in corresponding arrays. The construction time of a new profile is:

+ + − + −O k n k n n n k n n n( ( )log ( )log ),o o 1 o 1 2 o 2

where k1 and k2 are the number of sequences in both profiles, ko =  k1 +  k2, and no is the resulting profile length. 
Thus, the overall time of all profile constructions is:

+ + − = +O k n k n n k n O k n k n( ( ) log ) ( log ),2
f f

2
f

where nf is the final profile length.
By adding the time of DP matrix calculation, the total time of this stage is obtained:
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As profile alignments in the bottom part of the guide tree are independent, they can be performed in parallel.  
Therefore, to improve the computation time, FAMSA distributes profile alignments over multiple threads. It 
would also be possible to parallelize the dynamic programming computation and construction of a single profile. 
This is expected to be particularly beneficial for families of a million and more proteins. Nevertheless, this was not 
done in the current FAMSA version due to implementation complications and unavailability of such large sets in 
existing databases.

Determination of gap types and costs. Among numerous amino acid substitution matrices for dynamic 
programming calculation, MIQS was selected due to superior results reported in the recent study18. The gap 
costs are determined according to the classic affine penalty function, with a distinction between terminal and 
non-terminal gap open and gap extension costs, by analogy to MUSCLE4. In particular, four types of gaps are 
used:

•	 terminal gap open (To)—opens a sequence at the left end or opens a contiguous series of gaps at the right end 
of a sequence,

•	 terminal gap extension (Te)—extends a series of gaps inserted at the beginning or end of a sequence,
•	 gap open (Go)—opens a contiguous series of gaps inserted within a sequence,
•	 gap extension (Ge)—extends a contiguous series of gaps inserted within a sequence.

While the determination of the number of gaps and their types is straightforward in a pairwise alignment, it 
becomes problematic in MSA. Due to the fact that before aligning two profiles their sequences may have already 
contained gaps, the insertion of a column of gaps (either a single one or as the first one in a contiguous series 
of columns with gaps) does not always mean that exclusively gap opens have been inserted. Inserting only gap 
opens would result in an overestimation of their number. That is why the types of gaps within a column should 
be corrected.

Figure 2 demonstrates an example of the alignment of two profiles, X and Y. A column of gaps is to be inserted 
into profile X (the left part of the figure). The proper types of gaps together with the corrected gaps in the neigh-
boring column are shown in the right part of the figure. The following situations must be considered during 
correction of the gaps:

•	 S1: there is a terminal gap open at the right side of the inserted one; hence, the inserted gap should be a termi-
nal gap open, and the following gap should be transformed into a terminal gap extension,

•	 S2: there is a terminal gap extension at the left side of the inserted one; hence, the inserted gap should also be 
a terminal gap extension,

Figure 2. Example of how gap columns are inserted during profile alignment. 
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•	 S3: the inserted gap will be placed into the gap series, so it should be a gap extension,
•	 S4: there is a gap open at the right side of the inserted one; hence, the inserted gap should be a gap open, and to 

prevent the occurrence of two gap opens one after the other, the second gap should turn into a gap extension,
•	 S5: the inserted gap is to be placed within the series of residues as the only gap, so it should be gap open,
•	 S6: there is a terminal gap open at the left side of the inserted one; hence, the inserted gap should be a terminal 

gap extension.

The optimization of gap parameters and recognition of their influence on alignment accuracy is still the sub-
ject of intensive studies30. Various techniques have been proposed, e.g. adding a bonus score to a gap cost to 
enforce the alignment of distantly related sequences7. In our research, all gap costs (i.e. gap opens and gap exten-
sions, both terminal and non-terminal) are multiplied by a factor related to the number of sequences in the input 
collection. This prevents unnecessary widening of alignments of large collections. The scaling factor is calculated 
as:

= +g
k g

g
1

log( / )
,scale

l

d

where gl and gd are two constants set by default to 45 and 7 (values chosen experimentally).
The application of gap corrections and scaling leads to another modification of the traditional approach. It 

is usually assumed that the insertion of a gap column in to the first profile cannot be immediately followed by 
the insertion of a gap column in to the second profile. If some assumptions about the gap costs and substitution 
matrix values are made, it can be proved to be reasonable, i.e. such a situation never leads to the optimal align-
ment. Nevertheless, this does not hold true if the gap correction is applied. Therefore, it is checked whether con-
secutive insertions of gap columns in to both profiles render a higher-scored alignment. (The profile alignment 
score is the summed alignment score of each sequence pair).

Iterative refinement. The idea of an iterative refinement is to correct misalignments made in the early 
phase of the profile alignment. Several algorithms were proposed for this task, like REFINER31 or the methods 
implemented in MMSA22, MSAProbs32. This problem was investigated in our recent paper19. It was shown that 
the classical methods do not work for sufficiently large collections of sequences. A column-oriented refinement 
was also proposed to improve the quality of alignments for collections up to 1000 sequences. In this approach, the 
algorithm scans the profile to localize columns that contain at least one gap. Then, it randomly selects one of such 
columns and splits the profile into two subprofiles, depending on the gap presence in the selected column. Empty 
columns are removed afterwards, and subprofiles are realigned. Finally, if new alignment is scored higher than the 
original one, it is accepted as the current solution.

To simplify the time complexity analysis of the refinement, the input and the output profiles are assumed to be 
of comparable lengths (which is usually the case). A single refinement iteration requires

+ + − ⁎O kn n k n n n( ( )log )f f
2

f

time, with n* being the length of the shorter of the two profiles obtained after splitting the original profile.
Preliminary analyzes showed the refinement to be particularly beneficial for smaller sets of sequences. For this 

reason, and to improve the processing time of large protein families, the refinement is applied only for k ≤  1000. 
The number of iterations was experimentally set to 100.

Results
Benchmark selection. An assessment of MSA algorithms was performed using benchmark datasets. The 
presence of high-quality, manually curated reference alignments allowed supervised accuracy measures to be 
calculated. They were sum-of-pairs (SP) and total-column (TC) scores, defined as fractions of correctly aligned 
symbol pairs and columns, respectively. The scores were determined with a use of QSCORE software33.

Our aim was to propose an efficient and robust algorithm for the alignment of thousands of proteins. The 
largest available benchmarks contain sets of at most hundreds of sequences, with an exception of HomFam intro-
duced by Sievers et al.13. HomFam consists of 92 families constructed by extending Homstrad reference align-
ments (only those having 5 or more sequences were taken into account) with corresponding families from Pfam 
database. This protocol results in large benchmark sets: 18 of them consist of more than 10 000 members (the 
number of reference sequences ranges from a few to a few tens, though).

Since 2011, when HomFam was introduced, Pfam and Homstrad databases have demonstrated significant 
growth. Hence, we present the new benchmark, extHomFam, to carry out more extensive experiments. It was 
constructed according to the HomFam generation protocol, with several modifications. 399 high-quality align-
ments containing at least 3 proteins were selected from Homstrad (ver. 1 Apr 2015). By decreasing the threshold 
from 5, the larger benchmark could be obtained than the original HomFam. If two-protein families were also 
taken into account, extHomFam would be increased to 1013 sets, at the cost of positively biasing the TC score 
(with two reference sequences it becomes equal to SP). Therefore, pairwise-only alignments were excluded. Next, 
selected Homstrad sets were enriched with the corresponding Pfam (ver. 28) families. After removing duplicated 
sequences, sets of less than 200 proteins were filtered out to provide the final benchmark of 380 families. For 
convenience extHomFam was divided at thresholds k =  4000, 10000, and 25000 to obtain subsets named small, 
medium, large, and extra-large. Note, that sets of ~1000 sequences are usually referred to in the literature as 
large—our naming convention is intended to show size diversity. ABC_tran, the most numerous set in extHom-
Fam, contains 415 519 sequences, which is the largest benchmark protein family available.
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The scalability of algorithms was evaluated on the 53 largest extHomFam families, containing at least 30000 
sequences each. These sets were recursively downsampled to the desired sizes, with a guarantee of preserving 
sequences from reference alignments. This scheme has a valuable property: smaller sets are contained in larger 
ones, which reduces results variability.

To evaluate the performance of the presented algorithm on smaller alignment problems, classic benchmarks, 
i.e. BAliBASE34, PREFAB4, OXBench-X35, and SABmark36, were also considered in the experiments.

Competitive algorithms and system setup. From among numerous sequence alignment algorithms, 
only those able to handle families of thousands of sequences were investigated on HomFam and extHomFam. 
They were MUSCLE4, Kalign27, Kalign-LCS10, UPP15, Clustal Omega13 and MAFFT37. MAFFT was analyzed 
in default configuration in which it calculates O(k2) pairwise similarities, as well as -parttree and -dpparttree 
modes, especially suited for large sets of sequences due to lower computational requirements. Clustal Omega 
was executed with default parameters and with two combined iterations (-iter2), which delivered superior 
results in the previous studies13,38. MUSCLE in default mode was unfeasible for immense protein families, hence 
-maxiters2 variant was also considered. Details on execution parameters and program versions are given in the 
Supplementary material.

The experiments on smaller benchmarks (BAliBASE, PREFAB, OXBench-X, SABmark) included also top 
consistency-based algorithms: MSAProbs32, QuickProbs19,39, and GLProbs40.

A workstation equipped with two 12-core Intel Xeon E5-2670v3 processors (clocked at 2.3 GHz), Nvidia 
Quadro M6000 graphic card (3072 cores clocked at 1.0 GHz), and 128 GB RAM was used for the experiments. To 
investigate the behavior of the algorithms on modern workstations and servers containing from a few to several 
tens of cores, all methods were run with 8 computing threads, unless stated otherwise. FAMSA was run in the 
CPU mode, except for the experiment on the algorithm scalability w.r.t. the number of CPU cores, where the GPU 
variant was additionally investigated.

HomFam and extHomFam benchmark evaluation. Following Sievers et al.13, HomFam was divided 
into three parts depending on the family size. As is shown in Table 1, for k ≤  3000, FAMSA was inferior only 
to both Clustal Omega configurations. For k >  3000, the presented algorithm took the lead in both measures, 
revealing its potential for large protein families. More importantly still, FAMSA was from several to hundreds 
of times faster than its competitors. For instance, it processed the entire HomFam in less than 12 minutes while 
Clustal-default and MAFFT-default required, respectively, 8 h 40 m and 2 h 30 m. An even greater difference was 
observed for Clustal-iter2, which completed the analyzes in over 51 hours. Interestingly enough, MAFFT-parttree 
and -dpparttree were also inferior to FAMSA. This is especially noteworthy because they calculate only selected 
pairwise similarities (usually O(klog k)) instead of the full matrix (O(k2)).

The experiments on extHomFam confirmed superior accuracy and execution time of FAMSA to scale well 
with the number of sequences (Fig. 3; more detailed results are given in Supplementary material). FAMSA was 
inferior to Clustal-iter2 by a small margin, and only on the small subset. For  k > 4000, it became the best aligner 
and, depending on the subset and quality measure, was followed by Clustal, MAFFT, or UPP. As MUSCLE and 
MAFFT -parttree rendered inferior results, they were excluded from Fig. 3. Kalign2, Kalign-LCS, and MUSCLE 
did not complete the analyzes on extra-large due to excessive memory or time requirements. Clustal Omega and 
MAFFT-default failed to process, respectively, one and four largest extHomFam families (the missing MAFFT 
results were taken from -dpparttree variant, though). Advances in SP and TC measures of FAMSA over the com-
peting software on medium, large, and extra-large subsets were assessed statistically with the use of the Wilcoxon 
signed-rank test with the Bonferroni-Holm correction for multiple testing. The differences are significant at 
α =  0.005; p-values for all pairwise comparisons can be found in Table 2.

As can be seen in Fig. 3, the quality advance of the presented software over other algorithms increased for 
consecutive subsets. For instance, on extra-large, FAMSA aligned in a proper manner approximately 25% more 
columns than UPP—the second best algorithm. A more detailed analysis of FAMSA accuracy compared to the 

Algorithm

93 ≤ k ≤ 3000 3000 < k ≤ 10000 10000 < k ≤ 50157 All

41 families 33 families 18 families 92 families

SP TC time SP TC time SP TC time SP TC time

FAMSA 83.2 64.3 34 88.3 71.3 2:36 79.4 56.9 8:25 84.3 65.4 11:35

Clustal-iter2 86.3 71.5 2:14:18 85.0 68.9 14:33:00 69.5 48.3 34:50:54 82.5 66.0 51:38:12

Clustal-default 85.7 70.8 27:02 82.7 63.9 2:24:36 67.6 46.4 5:51:10 81.1 63.6 8:42:50

MAFFT-default 81.9 64.0 2:15 80.8 57.6 23:55 69.1 46.2 2:05:52 79.0 58.2 2:32:02

MAFFT-parttree 77.0 55.2 2:43 72.4 46.6 15:38 58.0 33.0 43:08 71.6 47.8 1:01:29

MAFFT-dpparttree 80.3 61.2 10:40 79.0 54.5 57:41 63.5 37.8 1:57:02 76.5 54.2 3:05:23

UPP 79.8 62.0 2:58:50 81.8 64.3 6:45:21 61.9 42.2 6:48:59 77.0 59.0 16:33:10

Kalign-LCS 79.8 61.3 4:17 80.6 57.6 1:31:45 67.9 44.4 64:23:14 77.8 56.7 65:59:16

Kalign2 77.4 56.2 7:04 77.6 57.1 2:30:45 64.8 41.6 97:48:46 75.0 53.7 100:26:35

MUSCLE-default 72.0 53.2 35:35:44 — — — — — — — — —

MUSCLE-maxiters2 71.8 51.4 12:35 67.1 41.6 2:27:51 40.6 21.6 30:35:03 68.8 42.1 33:15:29

Table 1.  Comparison of algorithms on HomFam. Times are given in the hours:minutes:seconds format.
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competitors is given in Fig. 4. Four extHomFam categories were further divided into 11 subsets of approximately 
35 families. Selected statistical indicators (median, mean, 12.5th and 87.5th percentile) of absolute differences 
in SP and TC measures between FAMSA and other algorithms were plotted for each interval at k axis. Clearly, 
the number of test cases for which the presented software was superior to that made by the competitors, as well 
as the absolute advance in terms of quality, increases with the growing set size. This observation is supported 
by the scalability analysis performed on the 53 largest families (k ≥  30000), randomly resampled to obtain less 
numerous sets. Figure 5 shows that FAMSA outrun the competitors when the number of proteins exceeded 5000. 
Importantly, the performance was hardly affected when more sequences were added. This might be caused by 
the bias of the guide trees towards reference sequences. Indeed, the following section shows that the reference 
sequences were slightly closer to each other in the guide trees than suggested by the random model. Nevertheless, 
this held for all analyzed algorithms, therefore can be considered as a property of the benchmark.

The abundance of extremely large protein families makes extHomFam the most demanding benchmark in 
terms of computational resources. Apart from FAMSA, only MAFFT-dpparttree and -parttree were able to pro-
cess all of its sets. Other algorithms either crashed due to memory requirements or were terminated on purpose 
when the processing time of a family was longer than 24 hours. (An exception was made only for Clustal-iter2 
due to its superior quality results.) While MAFFT-default, MAFFT-dpparttree, UPP, and Clustal-default required 
from 50 to 188 hours, FAMSA finished the computations in less than 7 hours, which corresponds to 7- to 26-fold 
advance. Clustal-iter2 was an extreme case; it needed almost 1000 hours, and showed its combined iterations to 
be inapplicable for very large protein families. A more detailed analysis of the computational scalability of the pre-
sented algorithm is provided in Fig. 5. It confirms that FAMSA is faster than MAFFT-default, Clustal Omega, and 
UPP by 1–2 orders of magnitude. The efficiency of the presented algorithm is due to the fast bit-parallel similarity 
computation and the in-place profile joining. Yet, as FAMSA calculates more distances than Clustal Omega and 
MAFFT-dpparttree (O(k2) instead of O(k log k)), it might be expected to exceed competitor execution times for a 
sufficiently large k. To verify this, the algorithms were compared on ABC_tran, the largest family in extHomFam 
with 415 519 proteins. FAMSA processed this set in less than 2 hours. Clustal Omega crashed due to excessive 
memory requirements after 55 hours of calculations suggesting that the algorithm is dominated by stages other 
than similarity computation. The situation was different for MAFFT-dpparttree. Its execution time scaled better 
with the number of sequences, though it was still inferior to FAMSA by a factor of 2.5. Importantly enough, 
FAMSA required below 8 GB of RAM, while MAFFT-dpparttree needed 47 GB. For comparison, MAFFT-default 
and Clustal Omega failed to run on a 128 GB machine (the former demanded 318 GB just for storing the simi-
larity matrix). In conclusion, the calculation of all pairwise similarities performed by FAMSA did not prevent it 
from being the fastest and most memory efficient aligner in the comparison–even for immense protein families.

Figure 3. Comparison of algorithms on extHomFam. The solid bars (lower) represent TC scores, while 
the transparent ones (higher) —SP scores. For each subset, the algorithms were sorted in an increasing order 
according to the TC measure. Execution times are provided above the bars in an hours:minutes format.

Algorithm

medium large extra-large

SP TC SP TC SP TC

UPP < 10−9 < 10−8 < 10−7 0.00002 < 10−6 0.00168

Clustal-iter2 < 10−8 < 10−7 < 10−7 < 10−5 0.00001 0.00002

Clustal-default < 10−12 < 10−11 < 10−8 < 10−6 < 10−7 < 10−6

MAFFT-default < 10−16 < 10−16 < 10−11 < 10−11 < 10−9 < 10−8

MAFFT-dpparttree < 10−20 < 10−20 < 10−14 < 10−13 < 10−11 < 10−11

Kalign-LCS < 10−6 < 10−7 < 10−13 < 10−12 — —

Table 2.  Statistical significance of FAMSA advances over selected competitors on extHomFam; p-values 
were calculated using the Wilcoxon signed-rank test.
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As FAMSA was designed to use all the available computational power, it takes advantage of multi-core archi-
tectures of contemporary computers. The ten largest protein families from extHomFam (all which contain at least 
100 000 sequences: ABC_tran, gtp, HATPase_c, helicase_NC, kinase, mdd, response_reg, rvp, sdr, TyrKc) were 
selected to investigate the scalability of the algorithm stages with respect to the number of computing threads. The 
experiments also considered the variant of FAMSA in which similarity calculation was adapted for massively par-
allel architectures with a use of OpenCL. For convenience, processing times of ABC_tran were marked separately. 
As can be seen in Fig. 6, when FAMSA was run serially, more than 90% of the execution time was related to stages 
I and II (the algorithm performs them simultaneously). Nevertheless, as pairwise similarities can be calculated 
independently, these stages scale noticeably better with the number of threads than the progressive construction. 
In particular, when more than 12 cores were involved, stage III of the algorithm started to be the bottleneck. This 
was also the case for the GPU FAMSA variant.

Impact of guide tree computation method. A single linkage method for guide tree determination was 
used in FAMSA owing to low memory requirements of the SLINK algorithm and superior quality results reported 
in the previous studies. Nevertheless, as the tree structure was shown to be of crucial importance for the analysis 
of large protein families41, alternative methods were examined. The first one was UPGMA27, which can be com-
puted in O(k2) time and space. The memory consumption is actually close to 2k2 bytes. This is equivalent to about 
345 GB for the largest family (ABC_tran) making UPGMA unfeasible for immense sets of sequences. The perfor-
mance of trees produced by Clustal Omega was also investigated in the experiments (FAMSA provides the user 
with the possibility to import external trees in the Newick format). Finally, we examined chained guide trees41–43. 
This method was the fastest, as it did not require calculation of sequence similarities.

The comparison of the results for extHomFam is given in Table 3. As UPGMA was non-computable for ABC_tran,  
the results of the single linkage were considered in this case. The experimental results for chained trees were 
averaged for 21 trials.

The experiments confirmed that the single linkage was superior in terms of alignment quality. The smallest, yet 
statistically significant advance (pSP =  0.000011, pTC =  0.000019), was observed when compared with UPGMA. 
This, together with memory efficiency, made the authors choose the single linkage for FAMSA. To provide a 
deeper insight into the structure of the trees rendered by different strategies, the Sackin index44 was used, defined 
as the sum of heights of all leaves in the tree. Figure 7 shows the comparison of the normalized Sackin indexes 
(i.e. the Sackin indexes divided by the number of sequences in the family) for trees produced by FAMSA +  single 
linkage, FAMSA +  UPGMA, and Clustal Omega. The lines corresponding to perfectly balanced and imbalanced 
(i.e. chained) trees are also presented for convenience. It can be seen that the indexes for single linkage trees 
are noticeably higher than those for UPGMA and Clustal Omega. Interestingly enough, the normalized Sackin 
indexes for UPGMA and Clustal Omega trees are approximately twice as large as in the perfectly balanced case.

The last experimental step involved the analysis of the guide tree structure in terms of the reference alignments 
coverage (Table 4). For each family the fraction of a guide tree covering reference sequences was calculated. It 
was defined as the number of leaves in the smallest part of the tree containing all reference sequences divided by 
the family size. The results were averaged over all families in the benchmark. The obtained fractions were then 

Figure 4. Absolute differences in SP (red) and TC (blue) scores between FAMSA and competing software 
for extHomFam subsets. Each interval at the horizontal axis contains approximately 35 families. Medians are 
represented as solid lines. Dashed lines indicate 12.5th and 87.5th percentiles (thus, filled areas contain 75% of 
the observations). Means are additionally given by circular (SP) and cross (TC) markers.
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compared with a random model determined by performing a Monte Carlo simulation (1000 trials) for each 
guide tree. The trial involved a random selection of a sequence subset with the same cardinality as the reference 
alignment.

Interestingly enough, the fractions for the single linkage were smaller than those for UPGMA and Clustal 
Omega. This was probably caused by single linkage trees being noticeably more imbalanced. It can also be seen 
that for all tree generation algorithms, fractions containing reference sequences were smaller than the corre-
sponding Monte Carlo results (when analyzing the entire extHomFam, the difference varied from 0.14 to 0.19). 

Figure 5. Scalability of SP (dashed lines) and TC (solid lines) scores with respect to the number of 
sequences. Experiments were performed on the 53 largest extHomFam families, randomly resampled to obtain 
the desired set size. Processing times for selected values of k are provided as bar plots.

Figure 6. Computational scalability of FAMSA with respect to the number of cores evaluated on the ten 
largest extHomFam families (k ≥ 100000). The algorithm stages are represented by different colors. Execution 
times of the largest set (ABC_tran) are marked with solid fill, the other families are printed in with transparency.

Algorithm

small medium large extra-large

All200 < k ≤ 4000 4000 < k ≤ 10000 10000 < k < ≤ 25000 25000 < k ≤ 415519

113 families 101 families 96 families 70 families 380 families

SP TC time SP TC time SP TC time SP TC time SP TC time

FAMSA +  single linkage 82.9 71.5 1:31 82.8 71.9 8:14 76.1 60.8 29:50 66.3 47.7 6:19:10 78.1 64.5 6:58:45

FAMSA +  UPGMA 83.6 72.6 1:09 80.8 69.0 6:50 73.6 56.8 28:29 64.2 45.6 6:42:14 76.8 62.7 7:18:42

FAMSA +  chained 77.4 66.1 2:50 74.6 62.1 17:16 64.6 48.7 45:25 53.6 35.4 3:58:40 69.0 55.0 5:04:11

FAMSA +  Clustal Omega trees 79.9 67.5 — 78.9 66.1 — 72.0 55.3 — 60.0 38.8 — 74.0 58.8 —

Table 3.  Comparison of guide tree construction algorithms on extHomFam. Times are provided in the 
hours:minutes:seconds format. The largest family (ABC_tran) was analyzed using the single linkage instead of 
UPGMA due to memory requirements.
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This means that the reference sequences were located in the guide trees closer to each other than suggested by the 
random model.

The same analysis was performed on the resampled sets employed for scalability experiments. The results 
coincide with the observations made for the entire benchmark.

Classic benchmark evaluation. For completeness, the accuracy of algorithms was investigated on classic 
benchmarks with families ranging from a few to approximately one hundred sequences (Table 5). As expected, 
consistency-based methods (QuickProbs 2, MSAProbs, and GLProbs) were superior to the competitors. When it 
comes to the non-consistency approaches, FAMSA was characterized by moderate performance on the majority 
of the benchmarks, except SABmark, on which it was the best. The analysis of execution times confirms that 
FAMSA is one of the fastest algorithms for low and moderately-sized sets, like those contained in the investigated 
benchmarks.

Figure 7. The normalized Sackin indexes (Sackin indexes divided by the cardinality of input sets) for 
various guide tree computation methods. 

Dataset

single linkage UPGMA Clustal Omega

Sackin idx Ref. frac. MC frac. Sackin idx Ref. frac. MC frac. Sackin idx Ref. frac. MC frac.

small 147.09 0.624 0.835 21.30 0.691 0.879 18.71 0.726 0.882

medium 457.50 0.627 0.837 28.63 0.714 0.883 24.76 0.726 0.893

large 941.30 0.681 0.842 31.13 0.675 0.885 25.90 0.772 0.895

extra-large 3,440.74 0.750 0.857 36.09 0.697 0.901 29.39 0.839 0.910

All — 0.662 0.841 — 0.694 0.886 — 0.758 0.893

Table 4.  The structure of the guide trees generated by different algorithms in terms of the coverage of 
reference alignments. Column “Sackin idx” presents the normalized Sackin indexes. Column “Ref. frac.” 
provides the fractions of guide trees covering all reference sequences. Column “MC frac.” Shows the fractions of 
guide trees covering randomly selected subsets of sequences, averaged over 1000 trials.

Algorithm

BAliBASE PREFAB OXBench-X SABmark

SP TC time SP/TC time SP TC time SP TC time

QuickProbs 2 88.0 61.7 23:41 74.2 1:41:26 89.5 80.3 1:35:35 61.1 40.8 24

MSAProbs 87.8 60.8 35:29 73.7 2:26:39 89.1 80.0 2:42:09 60.2 40.0 29

GLProbs 87.9 59.3 23:21 72.4 1:25:40 89.1 80.0 1:10:08 61.4 41.4 3:55

MAFFT auto 86.5 58.7 10:20 72.6 17:28 88.7 79.4 7:13 57.3 36.8 1:01

Clustal-iter2 84.8 56.7 67:32 71.0 2:35:46 88.5 79.5 45:30 55.2 35.7 2:52

Clustal-default 84.2 55.9 7:41 70.0 21:56 87.8 78.1 7:34 55.0 35.5 3:52

UPP 83.0 54.2 1:23:33 69.1 5:00:29 88.9 80.0 2:49:29 52.9 33.1 18:36

FAMSA 82.6 50.1 2:40 68.3 5:39 87.4 77.5 1:30 56.4 36.8 23

Kalign-LCS 83.0 50.4 29 65.9 1:51 86.8 76.4 36 55.6 35.6 2

Muscle 81.9 47.8 14:10 67.7 35:04 87.5 77.6 26:44 54.5 33.5 45

MAFFT default 81.7 47.5 1:48 68.0 5:58 86.6 76.2 1:39 53.2 33.0 39

Kalign2 81.1 47.1 37 65.5 2:03 86.3 75.9 48 52.4 32.6 2

Table 5.  Comparison of algorithms for small datasets.
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Discussion
The abundance of protein families containing hundreds of thousands of members imposes the development of 
algorithms computationally capable of aligning immense sets of sequences. The traditional progressive scheme 
was successfully modified by Clustal Omega and MAFFT aligners to eliminate its greatest bottleneck in large-scale 
analyzes—calculation of all pairwise similarities. Nevertheless, the experiments with FAMSA show that the 
computation of the entire similarity matrix with the use of LCS measure, combined with a memory-efficient 
single-linkage tree construction and in-place profile alignment, is orders of magnitude faster than the compet-
ing solutions. Importantly enough, this comes with superior alignment quality—FAMSA was significantly more 
accurate than Clustal Omega and MAFFT on sets of a few thousand and more sequences. ABC_tran, the largest 
among the investigated families containing 415 519 sequences, reveals the potential of the presented software. 
The set was processed by FAMSA within 2 hours in less than 8 GB of RAM, which is suitable for a typical laptop. 
In contrast, Clustal Omega crashed after 2 days of computations on a 128 GB machine due to excessive memory 
requirements. MAFFT in memory-efficient mode completed the analysis in 5 hours allocating 47 GB of RAM, 
yet only 5.7% of columns were successfully aligned, while FAMSA restored as much as 16.8%. No columns were 
aligned properly by UPP.

The scalability of the presented algorithm in terms of the alignment quality as well as time and memory 
requirements, makes it applicable for protein families even of a million sequences—a no-go area for the com-
peting software. Such families will likely be present in the Pfam database in the near future, as a consequence 
of advances in sequencing technologies. Importantly enough, the efficiency of FAMSA has the potential to be 
further improved. The natural option is the parallelization of the dynamic programming procedure at the profile 
construction stage; this appeared to be a bottleneck in the scalability tests. Another possibility could be better 
utilization of massively parallel architectures by optimizing the OpenCL code for GPUs or adapting it for Intel 
Xeon Phi co-processors.

An alternative development direction concerns the alignment quality. Iterative refinement is one of the 
numerous techniques designed to improve accuracy. For computational reasons, it is performed by FAMSA on 
families of fewer than 1000 sequences, though. Some limited, less time-consuming refinement scheme could 
be applied also for larger sets of sequences. Other ideas include the introduction of profile Markov models or 
consistency. Until recently the latter was found infeasible for large families because of excessive computational 
requirements. However, our latest research19 shows that consistency applied to a small, carefully selected fraction 
of sequences, may improve the alignment quality without compromising on the execution time. The experiments 
involved sets of up to a thousand of sequences. Accordingly, the scalability of the presented ideas to families two 
orders of magnitude larger is an open question. Moreover, designing a consistency scheme suitable for FAMSA 
is by no means an easy task.

Another issue related to large-scale analyzes is an accuracy assessment, particularly the unavailability of ref-
erence sequences. Evaluating the quality of the alignment of 10 000 or more proteins on the basis of a reference 
containing only a small fraction of the members is the largest flaw of the experimental pipeline used in the current 
research. The authors believe that the progress in multiple alignment domain is likely to be facilitated with the 
development of new benchmark datasets containing more reference sequences.

An interesting attempt into this direction is the recent work by Fox et al.45. The proposed ContTest benchmark 
predicts a contact map for some protein that has a known three-dimensional structure on the ground of the eval-
uated multiple sequence alignment. Then the contact map is compared with the known contact map for the same 
protein. The benchmark contains families up to 44 thousand sequences.

FAMSA executables together with the source code are available at https://github.com/refresh-bio/FAMSA; 
extHomFam can be downloaded from http://dx.doi.org/10.7910/DVN/BO2SVW. Web service for remote ana-
lyzes is under development.
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