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The development and progression of melanoma have
been attributed to independent or combined genetic and
epigenetic events. There has been remarkable progress in
understanding melanoma pathogenesis in terms of genetic
alterations. However, recent studies have revealed a complex
involvement of epigenetic mechanisms in the regulation of
gene expression, including methylation, chromatin
modification and remodeling, and the diverse activities of
non-coding RNAs. The roles of gene methylation and miRNAs

have been relatively well studied in melanoma, but other
studies have shown that changes in chromatin status and in
the differential expression of long non-coding RNAs can lead
to altered regulation of key genes. Taken together, they affect
the functioning of signaling pathways that influence each
other, intersect, and form networks in which local
perturbations disturb the activity of the whole system. Here,
we focus on how epigenetic events intertwine with these
pathways and contribute to the molecular pathogenesis of
melanoma.

Introduction

Melanoma, a malignant tumor of melanocytes, is considered
to be the most aggressive of all skin cancers.1 The genesis and
progression of melanoma arise from complex changes in multiple
signaling pathways that control cell proliferation and the ability
to evade cell death processes. Aberrant behavior of key signaling
pathways, such as RAS/RAF/MAPK, JNK, PI3K/Akt, Jak/
STAT, and MITF (Fig. 1A and B), can affect cell cycle
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progression and apoptosis con-
trol, contributing eventually to
the development of melanoma.2

Causes of aberrant behavior
include alteration of DNA
sequence (genetic) and alteration
of gene expression (epigenetic
regulation). The development of
effective treatment options, as
well as improved diagnosis and
prognosis, therefore requires
greater understanding of the
genetic and epigenetic changes
that underlie melanoma
development.

Genetic predisposition is a
known risk factor associated with
melanoma and accounts for 10%
of melanoma cases.3 CDKN2A
located at chromosome 9p was
the first gene locus linked to
familial melanoma and codes for
2 tumor suppressor proteins,
p14ARF and p16INK4A.4 p14ARF

restricts cell proliferation through
stabilization of p53, which in
turn induces cyclin-dependent
kinase inhibitor p21. p16INK4A,
on the other hand, controls cell
proliferation by inhibiting the
association of cyclin-dependent
kinases 4 and 6 (CDK4/6) and
cyclin D1 (CCND1).4 CDKN2A
mutations are the most frequent
genetic events underlying familial
melanoma susceptibility and have
been reported in the germline of
8% to 57% of familial melanoma
cases (reviewed in5). In addition
to familial disposition, somatic
mutations in key genes pose as
considerable risk factors for mela-
noma.5 BRAF is the gene most
frequently mutated (50–70%) in
melanoma, as demonstrated by
genome wide-sequencing pro-
grams, with BRAFV600E being
the most common mutation and
generally found in benign nevi,
which represent a precursor in
melanomagenesis.6

In addition to the several well-
documented gene mutations that
have been associated with devel-
opment of melanoma,7 consider-
able attention is being focused on

Figure 1. Schematic of pathways that play important roles in melanocyte and melanoma development. (A)
Schematic of melanocyte differentiation through the MITF axis. KIT receptor and kit ligand are essential for
melanocyte development. NRAS, BRAF and MITF are activated by the KIT receptor. The expression of the MITF
transcription factor is regulated by a-MSH that binds to MC1R. MITF is phosphorylated by ERK. Activation of
MITF controls expression of genes that help regulate melanocyte proliferation, differentiation, pigmentation
and survival. Mutant MITF, NRAS, BRAF and KIT are known melanoma oncogenes. (B) Schematic of the EGFR
signaling pathway. Signaling is activated by a ligand binding to EGFR receptor that leads to its dimerization.
Downstream pathways through RAS and PI3K are activated. RAS signaling occurs via MEK, ERK and p38; PI3K
via PIP3 and AKT. Both pathways regulate cellular functions such as metastasis and apoptosis which are vital
for melanoma progression. Mutations in EGFR, RAS, RAF, PTEN and PI3K occur in melanoma. (C) Diagram show-
ing the CDKN2A/B locus and its signaling pathway. The top panel illustrates the genomic organization of the
CDKN2A/B locus. CDKN2A encodes for 2 proteins, p14ARF and p16INK4a, which have identical DNA sequence in
exons 2 and 3, while their first exons (E1a and E1b) are different. These proteins have different open reading
frames and act in separate pathways. CDKN2B is located upstream of CDKN2A and encodes p15. p16INK4a and
p15 are inhibitors of CDK4 and CDK6, which phosphorylate pRB, leading to progression from G1 to S phase.
p14ARF acts as an inhibitor for HDM2 which regulates p53. The suppression of p16INK4A at this locus is the
most common event reported in melanoma.
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the participation of epigenetic events. The interplay between epi-
genetic events affects the regulation of transcriptional and/or
translational activities. The epigenetic events involved in initia-
tion and progression of melanoma may be aberrant methylation
of the promoter regions, histone modification, chromatin remod-
eling, and the positioning of nucleosomes.8

Additional epigenetic phenomena described more recently
involve regulation of gene expression by non-coding RNAs
(ncRNAs).9 ncRNAs (small and long) are a new class of regula-
tory molecules, the differential expression of which is associated
with normal physiological and diseased conditions, including
cancer.10 These ncRNAs are therefore suspected to play crucial
roles in the pathogenesis of melanoma as well.

This review will focus on how these epigenetic events either
act as triggers to initiate melanoma or promote further progres-
sion of the disease.

Emergence of Melanoma

Figure 1A summarizes the normal pathways involved in mela-
nogenesis. In response to UV exposure, melanocytes initiate
melanogenesis, which is primarily regulated by microphthalmia-
associated transcription factor (MITF). G-protein coupled recep-
tors (GPCRs), which include the melanocortin-1 receptor
(MC1R), play a crucial role in melanocyte development, prolifer-
ation, and differentiation. Activation of the MC1R by the
a-melanocyte stimulating hormone (a-MSH) leads to the activa-
tion of the cAMP signaling pathway and of MITF expression,
which in turn promotes differentiation and increases the tran-
scription of genes underlying melanin synthesis.11 MITF contrib-
utes to melanocyte survival by increasing the expression of
BCL-2, a key antiapoptotic factor.12

Intermittent intense UV exposure is considered to be an
important etiological factor for melanoma. Recently, 2 studies
reported that UV exposure aids in metastatic progression through
alternative pathways. The first pathway involves an inflammatory
response induced by keratinocyte damage. UV-induced neutro-
phil activity stimulated angiogenesis and promoted the ability of
melanoma cells to migrate toward the endothelial cells.13 A sec-
ond pathway acts through BRAFV600E, which is not a UV signa-
ture mutation, but BRAFV600E-expressing melanocytes are
susceptible to melanomagenesis through UV-induced mutation
of TP53, a tumor suppressor gene.14

Epigenetic Events Involved in the Development
of Melanoma

Epigenetic changes, as mentioned earlier, include the aberrant
methylation of DNA at cytosine (5mC), 5-hydroxymethylcyto-
sine (5hmC), histone modifications, ncRNA expression, chroma-
tin remodeling, and nucleosome positioning.15 Of these,
aberrant DNA methylation and histone modifications have been
most intensively studied.16 Characterization of epigenetic
changes that initiate and promote human melanoma

development may identify biomarkers that could be used for pre-
vention, early detection, treatment, and monitoring of the pro-
gression of this malignancy.17

DNA Methylation

DNA hypermethylation of CpG islands at promoter sites is
believed to contribute to tumorigenesis through transcriptional
silencing of tumor suppressor genes.17 Hypermethylation of spe-
cific tumor suppressor genes, including those involved in cell
cycle regulation, cell signaling, transcription, DNA repair, and
apoptosis, has been consistently reported in melanoma
(Table 1).18,19 More recent studies have shown the methylation
of gene bodies, and suggested that this correlates positively with
transcription.20 Despite our expanding knowledge of DNA
methylation, future studies investigating the mechanisms
involved in gene regulation in promoter regions as well as in gene
bodies remain priorities for melanoma research.

Analysis of melanoma cell lines by gene expression microar-
rays has identified a large cohort of hypermethylated genes.17

However, how the hypermethylated status of these genes contrib-
utes to the pathogenesis of melanoma remains largely unknown.
Though gene transfer and RNA interference techniques are being
employed to understand the roles of these genes,18 no study to
date has been able to establish a direct relation between the
hypermethylated status of these genes and development of
melanoma.

The effects of gene hypomethylation have been less studied
but the phenomenon is common (Table 2). Lian et al.21 have
shown that 5mC is converted to 5hmC by the ten eleven
translocase (TET) family of dioxygenase enzymes in mela-
noma, and they functionally characterized this novel epigenetic
marker and its impact on melanoma progression. A high level
of 5hmC was identified as a distinctive epigenetic signature
for melanocytes and nevi, whereas its abundance decreases in
primary and metastatic melanoma. This pattern suggested that
loss of 5hmC in melanoma could be used as a diagnostic or
prognostic marker in patients. Downregulation of TET-family
enzymes, with the most dramatic decrease in TET2, was
detected in melanoma as compared to nevi.21,22 5hmC is the
most abundant intermediate of active DNA demethylation
and acts as a positive transcriptional regulator in normal devel-
opment and cancer. The study of molecular mechanisms
underlying the global loss of 5hmC through altered TET fam-
ily and isocitrate dehydrogenase (IDH2) activities remains to
be unraveled in melanoma.

Described below are some of the most frequently reported and
best characterized hypermethylated genes.

RAR-b2 (retinoic acid receptor-b2)
In malignant melanoma the frequencies of aberrant methyl-

ation and loss of expression of RAR-b2 (RARB) have been
reported to be as high as 70%.23 The product of this tumor
suppressor gene mediates growth inhibition by all-trans reti-
noic acid (ATRA).24 RARB is suppressed also in various other
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Table 1. List of genes hypermethylated in melanoma

Gene Gene Description Relevance to melanoma Ref

APC* Adenomatous Polyposis Coli Reduced expression increases cell proliferation without
compromising invasive capacity

104

ASC/PYCARD* PYD, an N terminal PYRIN-domain, and CARD, a C-
terminal caspase-recruitment domain

Expression inhibits tumorigenesis by reducing IKKa/b
phosphorylation and inhibiting NF-kB activity

105

AS3MT Arsenic (C3 Oxidation State) Methyltransferase Unknown 19

ADCY4 Adenylate Cyclase 4 Unknown 19

AKR7L Aldo-Keto Reductase Family 7-Like Unknown 19

AK3 Adenylate Kinase 3 Unknown 19

BRF1 BRF1, RNA Polymerase III Transcription Initiation Factor
90 KDa subunit

Unknown 19

BST2 Bone Marrow Stromal Cell Antigen 2 Unknown 106

COL11A1# Collagen, Type XI, Alpha 1 Promotes tumor aggressiveness via TGF-b1-MMP3; part of a
12 gene signature for melanoma diagnosis; associated
with focal adhesion

19

CMTM2 CKLF-Like MARVEL Transmembrane Domain Containing 2 Unknown 19

CCKBR Cholecystokinin B Receptor Unknown 19

Caspase 8* Apoptosis-Related Cysteine Peptidase Linked to cadmium-stimulated cell growth and inhibition of
cell death pathways

107

CDH1* E-Cadherin A cell adhesion molecule; loss correlates with high tumor
grade and poor prognosis

108

109

CDKN2A* p16 Arrests cell cycle in G1 by inhibiting CDK4 and CKD6 and
activating pRB

110

CDKN2B p15 Unknown 111

CDKN1C# p57 Arrests cell cycle in G1 by inhibiting G1 cyclin-CDK
complexes; expressed in proliferative melanocytes;
possible role in melanomagenesis

106

112

CDH8 Cadherin 8 Unknown 106

CIITA-PIV Class II, Major Histocompatibility Complex Transactivator,
Promoter IV

Acts on IFNg pathway 109

COL1A2# Collagen, Type I, Alpha 2 Loss may compromise tissue integrity 106

19

CYP1B1 Cytochrome P450, Family 1, Subfamily B, Polypeptide 1 Unknown 106

CXCR4 Chemokine (C-X-C motif) Receptor 4 Unknown 113

DLL3 Delta-Like 3 Unknown 19

DDIT4L# DNA-Damage-Inducible Transcript 4-like Loss results in depression of cell growth 19

DAL1 Erythrocyte Membrane Protein Band 4.1-like 3 Unknown 106

DAPK# Death Associated Protein Kinase Methylation higher in metastases 23

DNAJC15 DNAJ (Hsp40) Homolog, Subfamily C, Member 15 Unknown 106

DPPIV# DiPeptidyl Peptidase IV Serine protease involved in cancer progression; decline in
serum activity in melanoma patients compared to
controls

114

115

FRZB* Frizzled-Related Protein A metastasis suppressor; inhibits Wnt5a signaling 116,117

GDF15 Growth Differentiation factor 15 Unknown 106

GATA4 GATA Binding Protein 4 Unknown 26

GPX7 Glutathione Peroxidase 7 Unknown 19

HOXB13 Homeobox B13 Unknown 106

HSP11 Heat Shock protein H11 Unknown 118

HMW-MAA Human High Molecular Weight Melanoma Associated
Antigen

Unknown 119

HLA-DOA Major Histocompatibility Complex, Class II, DO Alpha Unknown 19

HSPB6 Heat Shock Protein, Alpha-Crystallin-Related, B6 Unknown 19

HPSE2 Heparanase 2 Unknown 19

HOXA7 Homeobox A7 Unknown 19

ISG15 ISG15 Ubiquitin-Like Modifier Unknown 19

IL34 Interleukin 34 Unknown 19

IGFBP4 Insulin-Like Growth Factor Binding Protein 4 Unknown 19

KCNK4 Potassium Channel, Subfamily K, Member 4 Unknown 116

KCNK6 Potassium Channel Subfamily K Member 6 Unknown 19

LOX Lysyl Oxidase Unknown 109

LRRC1 Leucine Rich Repeat Containing 1 Unknown 106

(Continued on next page)
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Table 1. List of genes hypermethylated in melanoma (Continued)

Gene Gene Description Relevance to melanoma Ref

LXN* Latexin Inhibition of cell proliferation; alters stem cell-like properties
of melanoma cells

106

120

LYNX1 Ly6/Neurotoxin 1 Unknown 19

MFAP2 Microfibrillar-Associated Protein 2 Unknown 106

MGMT# O-6-Methylguanine-DNA Methyltransferase Repairs damage caused by Temozolomide; renders cancer
cells resistant

108

23

121

MINT 17 Methylated-in-Tumor 17 Unknown 26

MINT 31 Methylated-in-Tumor 31 Unknown 26

MT1G Metallothionein 1G Unknown 19

MTSS1L Metastasis Suppressor 1-Like Unknown 19

MIB2 Mindbomb E3 Ubiquitin Protein Ligase 2 Unknown 122

NPM2 Nucleophosmin/Nucleoplasmin 2 Unknown 19

NAP1L5 Nucleosome Assembly Protein 1-Like 5 Unknown 19

NELF NMDA receptor synaptonuclear signaling and neuronal
migration factor

Unknown 19

NEFH Neurofilament, Heavy Polypeptide Unknown 19

NPR2 Natriuretic Peptide Receptor 2 Unknown 116

PCSK Proprotein Convertase, Subtilisin/Kexin-type Unknown 106

PRDX2 Peroxiredoxin-2 Unknown 29

PTGS2 Prostaglandin-Endoperoxidase Synthase 2 Unknown 106

PDE9a Phosphodiesterase 9A Unknown 19

PCDHGA9 Protocadherin Gamma-A9 Unknown 19

PACS2 Phosphofurin Acidic Cluster Sorting Protein 2 Unknown 19

PCDHGC4 Protocadherin Gamma-C 4 Unknown 19

QPCT Glutaminyl-Peptide Cyclotransferase Unknown 106

RAR-b2* Retinoic Acid Receptor-b2 Tumor suppressor gene; mediates growth inhibition by
ATRA

108

23

24

RASSF1A* RAS Association Domain Family Member 1 Upregulates ASK1, which activates p38 MAPK; induces
apoptosis via mitochondrial pathway

108

26

27

RUNX3# Runt-Related Transcription Factor 3 Upregulates TSP-1 expression levels 108

123

RIN3 Ras and Rab Interactor 3 Unknown 19

RAB33A Ras-Related Protein Rab-33A Unknown 19

RAB31 Ras-Related Protein Rab-31 Unknown 19

RASIP1 Ras-Interacting Protein 1 Unknown 19

RCBTB2 Regulator Of Chromosome Condensation And BTB
Domain-Containing Protein 2

Unknown 19

SOCS1* Suppression of Cytokine Signaling 1 Attenuates cytokine-induced effects; blocks G1/S and M
phases; associates with CDH1

19

26

124

SOCS2 Suppression of Cytokine Signaling 2 Attenuates cytokine-induced effects 109

SYK Spleen Tyrosine Kinase Unknown 106

SOCS3* Suppression of Cytokine signaling 3 Inhibits IL-17/Stat3 pathway; suppresses tumor growth in
murine models

125

126

SCN4B Sodium Channel Subunit Beta-4 Unknown 19

SLC30A2 Solute Carrier Family 30 Member 2 Unknown 19

SERPINF1 Serpin Peptidase Inhibitor, Clade F Unknown 19

TERC Telomerase RNA Component Unknown 108

TFPI-2 Tissue Factor Pathway Inhibitor 2 Unknown 26

TNFRSF10C (DcR1) Tumor Necrosis Factor Receptor Superfamily, 10C Decoy receptor that protects cells from TRAIL-mediated
apoptosis

109

TNFRSF10D (DcR2) Tumor Necrosis Factor Receptor Superfamily, 10D Decoy receptor that protects cells from TRAIL-mediated
apoptosis

109

TPM1 Tropomyosin-1 Control of actin-mediated cell motility 109

THBS1* Thrombospondin-1 Mediates cell-to-cell and cell-to-matrix interactions
important for platelet aggregation and angiogenesis

127

TIMP3* Tissue Inhibitor Of Metalloproteinase 3 Dominant negative regulator of angiogenesis 109

128

(Continued on next page)
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human cancers.25 Many melanoma cells are resistant to the
anti-proliferative effects of ATRA, and positive correlations
between the anti-proliferative activity of ATRA and expression
of RARB have been confirmed. However, no strict correlation
was found between the methylation status of the RARB gene
and its expression in melanoma cell lines. Hypermethylation
of RARB was predominantly found in a cell line that was
derived from vertical phase melanoma.24 This study proposed
that RARB expression was silenced through other mechanisms,

such as histone hypoacetylation.24 This indicates that silencing
mechanisms of many genes may switch during the progression
of melanoma.

RASSF1A
Ras association domain family 1A (RASSF1A) is methylated in

55% of melanoma specimens.23 The degree of methylation of
RASSF1A varies with tumor stage as hypermethylated RASSF1A
is found in stage IV, but not in stage I and II melanoma. This

Table 1. List of genes hypermethylated in melanoma (Continued)

Gene Gene Description Relevance to melanoma Ref

TM# Thrombomodulin Downregulation associated with transformation and
progression

129

TNK1 Tyrosine- Kinase Non-Receptor 1 Unknown 19

THRA Thyroid Hormone Receptor, Alpha Unknown 19

TRIP6 Thyroid Hormone Receptor Interactor 6 Unknown 16

VPS18 Vacuolar Protein Sorting-18 homolog Unknown 19

WIF1* WNT Inhibitory Factor Wnt pathway antagonist implicated in cellular proliferation 26

WFDC1 WAP Four-Disulfide Core Domain 1 Unknown 106

ZNF132 Zinc Finger Protein 132 Unknown 19

ZNF154 Zinc Finger Protein 154 Unknown 19

ZBTB47 Zinc Finger And BTB Domain Containing 47 Unknown 19

ZFYVE28 Zinc Finger FYVE Domain-Containing 28 Unknown 19

*Function validated in melanoma; # Function proposed in melanoma.

Table 2. List of genes hypomethylated in melanoma

Gene Gene Description Relevance to melanoma Ref

CD2 Cluster of Differentiation 2 Higher levels related to lower recurrence
rate and improved overall survival

116

130

CARD15 Nucleotide-Binding Oligomerization Domain Containing 2 Unknown 116

COL19A1 Collagen, Type XIX, Alpha 1 Unknown 19

DDX26B DEAD/H (Asp-Glu-Ala- Asp/His) Box Polypeptide 26B Unknown 19

EMR3 Egf-Like Module-Containing Mucin-Like Hormone Receptor 3 Unknown 116

EVI2A Ecotropic Viral Integration site 2A Unknown 116

GAGE 1–6 G antigen 1–6 Unknown 131

GPR89A G Protein-Coupled Receptor 89A Unknown 19

HLA-DP1 Major Histocompatibility Complex, Class II, DP Alpha 1 Unknown 116

IFNG Interferon Gamma Unknown 116

IL2 Interleukin 2 High levels linked to better survival 116

132

ITK IL2-Inducible T-Cell Kinase Unknown 116

KLK10 Kallikrein-Related Peptidase Unknown 116

LAT Linker for Activation Of T cells Unknown 116

LARP7 La Ribonucleoprotein Domain Family, Member 7 Unknown 19

MPO Myeloperoxidase Unknown 116

MAGE-A1 Melanoma Antigen Family A, 1 Unknown 131

MAGE-A2 Melanoma Antigen Family A, 2 Unknown 131

MAGE-A4 Melanoma Antigen Family A, 4 Unknown 131

MAGE-A6 Melanoma Antigen Family A, 6 Unknown 131

NY-ESO-1 New York Esophageal Squamous Cell Carcinoma 1 Unknown 133

NIPBL Nipped-B Homolog (Drosophila) Unknown 19

p15 Cyclin-Dependent Kinase Inhibitor 2B Unknown 134

PRAME Preferentially Expressed Antigen In Melanoma Unknown 131

PSCA Prostate Stem Cell Antigen Unknown 116

PTHLH Parathyroid Hormone-Like Hormone Unknown 116

PTHR1 Parathyroid Hormone 1 Receptor Unknown 116

POLA1 Polymerase (DNA Directed), Alpha 1, Catalytic Subunit Unknown 19

SSX 1–5 Synovial Sarcoma, breakpoint 1–5 Unknown 131

TNFSF8 Tumor Necrosis Factor (Ligand) Superfamily, Member 8 Unknown 116

TAF1 TAF1 RNA Polymerase II, TATA Box Binding Protein (TBP)-Associated Factor Unknown 19
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suggests that RASSF1A might be used as a marker of progression
and prognosis in malignant melanoma.26 The role of this gene as
a human tumor suppressor, and how it contributes to melanoma
development, have been elucidated. RASSF1A upregulates
ASK1, which in turn activates p38 MAPK. This alters the expres-
sion of multiple components of the mitochondrion-dependent
apoptosis pathway to induce apoptosis.27 Silencing of RASSF1A
expression through promoter methylation contributes to mela-
noma by suppressing apoptosis.

CDKN2A/INK4A/ARF
One of the most well-studied epigenetic markers implicated

in melanoma pathogenesis is hypermethylation of the INK4A
promoter. The INK4A product arrests the cell cycle in G1
phase by inhibiting the cyclin D-dependent kinases CDK4
and CKD6, thereby activating the tumor suppressive effects of
the retinoblastoma protein (pRB) (Fig. 1C). Hypermethyla-
tion of INK4A28 is apparent in 10–20% of vertical phase mel-
anomas and is associated with both increased Ki-67 index and
reduced patient survival.28 Epigenetic silencing of ARF
through hypermethylation leads to loss of p53-mediated apo-
ptosis and to melanoma progression.29 van der Velden30

reported hypermethylation of the INK4A promoter in 32% of
primary uveal melanomas and 50% of uveal melanoma cell
lines, while in many cases ARF was not affected.30 Straume
et al.28 reported loss of p16 protein expression by hypermethy-
lation of the CDKN2A promoter in 19% of primary cutaneous
melanomas and in 33% of metastases.28

MGMT
The gene encoding O6-methylguanine-DNA methyltrans-

ferase (MGMT) is located at 10q26. Epigenetic inactivation of
MGMT through promoter hypermethylation has been
reported in 34% of melanoma specimens.23 Primary and met-
astatic melanoma were compared in order to identify differen-
ces in MGMT methylation status, but no such differences
were found.31 This could be explained by the finding in vari-
ous types of cancer that histone 3 lysine 9 (H3K9) dimethyla-
tion and MeCP2 binding are common and essential for
MGMT silencing regardless of DNA methylation status at the
promoter CpG island.32 This emphasizes that functional char-
acterization of hypermethylated genes identified in melanoma
is essential and that the methylation status of a gene may not
necessarily serve as a suitable marker for tracking the progres-
sion of melanoma.

A genome-wide methylation study in BRAFV600E-mutant
melanoma cells identified numerous functionally important
genes that manifest altered methylation and expression. Knock-
down of BRAFV600E reduced expression of DNMT1. It was pro-
posed that BRAFV600E promotes gene hypermethylation by
upregulating DNMT1.33 A similar study in colorectal cancers
confirmed that a BRAFV600E-directed pathway was responsible
for aberrant CpG island hypermethylation.34 BRAFV600E pro-
moted transcriptional silencing through increased ERK-directed
phosphorylation of the transcriptional repressor MAFG, which
reduced its polyubiquitination and proteasomal degradation and

increased its binding to DNA. MAFG recruited a co-repressor
complex that includes BACH1, CHD8, and DNMT3B, leading
to promoter hypermethylation and transcriptional silencing.36 It
is not known whether this BRAFV600E-driven CpG island hyper-
methylation pathway operates in melanoma, but it could explain
the association of BRAFV600E and PTEN silencing in metastatic
melanoma.35,36

These studies provide evidence that genetic and epigenetic
events are interlinked and contribute to initiation and progres-
sion of melanoma.

Histone Modification

The close association between aberrant DNA methylation and
histone modification is well established.37 Investigation of histone
modifications in melanoma, therefore, would facilitate interpreta-
tion of the available DNA methylation data. However, the lack of
well-established and robust assays has made it difficult to charac-
terize histone modifications.38 Aberrant acetylation of histones, in
particular hypoacetylation, is thought to influence the pathobiol-
ogy of melanoma by disrupting the same pathways as are affected
by mutations and CpG island hypermethylation.39 In melanoma,
gene expression profiles revealed loss of expression of tumor sup-
pressor genes through reversible deacetylation of lysine residues in
local histones by histone deacetylases (HDACs).40 CDKN1A is
one such tumor suppressor gene, and expression of its product,
p21cip1, was upregulated following inhibition of histone deacety-
lase. This indicates that aberrant histone deacetylation leads to
loss of tumor suppressor mechanisms in melanoma.

Histone hypoacetylation has also been linked to the down-
regulation of certain pro-apoptotic proteins like Bim, Bax, and
Bak, which belong to the BCL-2 family.41 A recent study
revealed that phosphatidylinositol-4,5-biphosphate 5-phospha-
tase A (PIB5PA) has a tumor suppressive role and is com-
monly downregulated in melanoma. Its overexpression blocks
PI3K/Akt signaling, inhibits proliferation and reduces survival
of melanoma cells in vitro. Downregulation of PIB5PA, found
in a proportion of melanomas, was due to histone hypoacety-
lation mediated by histone deacetylases through binding to the
transcription factor Sp1 at the PIB5PA gene promoter.42

HDAC inhibitors are being considered for the therapy of mel-
anoma despite limited data available on posttranslational mod-
ifications of histones.43

The histone methyltransferase SET Domain, Bifurcated 1
(SETDB1) is upregulated in melanoma and accelerates tumor
development in zebrafish melanoma models harboring the
BRAFV600E mutation. SETDB1 catalyzes the trimethylation of his-
tone H3K9 and thereby promotes the repression of target genes.44

Unlike BRAFV600E, which is present in both melanoma and benign
nevi,45 SETDB1 protein is elevated in melanoma but not in benign
nevi or normal melanocytes.44 This indicates that an unknown trig-
ger may lead to the upregulation of SETDB1. The genes that are
targeted by elevated levels of SETDB1 remain unknown. This
study provides further evidence that genetic mutation interacts
with epigenetic events during the progression of melanoma.
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Chromatin Remodeling

Histone modifications are closely associated with the function
of polycomb group (PcG) proteins, which are transcriptional
repressors.46 This association leads to structural changes in the
organization of the chromatin that regulate gene expression. PcG
proteins function through the formation of the polycomb repres-
sor complexes PRC1 and PRC2, both of which are implicated in
tumor development. Enhancer of zeste homolog 2 (EZH2) is the
H3K27 methyltransferase catalytic subunit of PRC2, and plays a
role in the pathogenesis of melanoma. The protein levels of
EZH2 increase from benign nevi to melanoma. Depletion of
EZH2 in melanoma cells leads to the removal of histone deacety-
lases from, and normalizes the acetylation of, the CDKN1A locus,
and restores apoptosis.47 Increased expression of EZH2 is tightly
associated with uncontrolled proliferation in melanoma. Key
pathways, such as RAS/RAF/MEK, AKT, and E2F1, involved in
melanoma biology, also regulate EZH2 activity. Knockdown of
BRAFV600E reduced EZH2 expression levels, suggesting that
deregulated BRAF activity contributes to the abnormal overex-
pression of EZH2 seen in melanoma.33 High levels of EZH2
were associated with increased Ki-67 index, thicker primary mel-
anomas, and increased invasion.48 One of the key genes that
EZH2 targets is CDKN2A49, which is hypermethylated fre-
quently in melanoma.50 EZH2 is regulated by E2F1, a transcrip-
tion factor that acts downstream of the CDKN2A product
p16INK4A. Upregulation of E2F1 leads to increased levels of
EZH2 that represses Bim, a pro-apoptotic factor.49 In summary,
aberrant BRAF signaling and increased E2F1 activity could lead
to high expression of EZH2 resulting in increased DNA methyla-
tion and silencing of tumor suppressor genes (CDKN2A and
CDKN1A).

ATP-dependent chromatin-remodeling enzymes found in
multiprotein complexes also alter chromatin structure non-cova-
lently (reviewed in51). These complexes have been sub-classified
into different families and their different cellular functions are
summarized in Wang et al.51 SWI/SNF complexes are an exam-
ple of such a family and consist of ATP-dependent chromatin
remodeling enzymes; deregulation of this complex has been
linked to the development of melanoma.52

BRG1, a SWI/SNF complex subunit, promotes survival of
melanoma cells exposed to UV-radiation through stable activa-
tion of ML-IAP, a potent inhibitor of apoptosis and a MITF tar-
get gene (Fig. 1A).53 De la Serna54 suggested that MITF recruits
SWI/SNF complexes to melanocyte-specific promoters, where
chromatin remodeling takes place and gene expression is

activated.54 BRG1 was found to remodel chromatin on the ML-
IAP promoter and to facilitate MITF and coactivator binding.
Expression of ML-IAP is associated with increased histone acety-
lation though recruitment of histone acetyltransferases and
decreased levels of histone methylation marks through decreased
recruitment of EZH2. Thus, this mechanism promotes pro-sur-
vival function of MITF by remodeling chromatin structure.53

Chromatin assembly factor-1 (CAF-1), a trimeric protein
complex formed by the p48, p60, and p150 subunits, promotes
histone incorporation into chromatin and acts in strict associa-
tion with both the S-phase and DNA repair processes. Overex-
pression of p60 subunit has been shown to be a novel
proliferation and prognostic marker in melanoma.55

Regulatory Role of Non-Coding RNA (ncRNA)
in Melanoma

A remaining question is how these epigenetic marks are tar-
geted to these genes. Based on the evidence accumulated over the
last decade, ncRNAs have been added to the growing list of gene-
regulatory effector molecules9 that contribute toward epigenetic
regulation of gene expression and their deregulation is associated
with the development of cancer, including melanoma.10 ncRNAs
are classified into 2 broad categories based on their size: small
ncRNA (<200 bp) and long ncRNA (lncRNA, >200 bp). Small
ncRNAs are further classified into micro RNA (miRNA), piwi-
interacting RNA (piRNA), small nucleolar RNA (snoRNA), and
many others with yet uncharacterized functions.9 Among the dif-
ferent types of small ncRNAs mentioned, miRNAs are the best-
studied class in melanoma. Many miRNAs have been identified
and were shown to play a role in the progression of melanoma.

Role of miRNA in Melanoma

Significant progress has been made in identifying miRNAs
and characterizing their specific functions in skin morphogenesis
and normal regulation. miRNAs known to play a role in normal
skin development are summarized in Table 3.

Extensive reports indicating the roles of various miRNAs in
melanomagenesis have been published, and a list of miRNAs and
their targets is shown in Table 4. miRNAs can act as oncomiR-
NAs or tumor suppressive miRNAs. Regulation of miRNA is
associated with several hallmarks of melanoma pathogenesis,
such as promotion of proliferative signaling (e.g., miR-137,

Table 3. List of miRNAs known to be involved in normal skin development

miRNA Function Target Gene Ref

miR-203 Reduces proliferative potential of terminally differentiating keratinocytes TP63 135

miR-34a/c Possess anti-proliferative potential and induce cell cycle arrest, senescence and/or apoptosis SIRT1 136

miR-125b Repressor of stem cell differentiation Blimp1 137

miR-200/ miR-205 Maintains proliferation of progenitor cells and inhibits EMT ZEB1 & ZEB2 138

139

140
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miR-221), resistance to cell death (miR-18b and miR26a), repli-
cative immortality (e.g., miR-205, miR-203), and invasion or
metastasis (miR-214, let-7a).56 miR-31 is located at chromosome
9p21.3, which is often deleted in melanoma. It acts as a tumor
suppressor in melanoma by negatively regulating the expression
of EZH2 and other oncogenes. EZH2 may epigenetically regulate
the expression of miR-31 in a mutually antagonistic feedback
loop. DNA methylation at the promoter region of miR-31 has
been shown in a melanoma cell line.57 It has also been reported
that miR-10158,59 and miR-3157 both negatively regulate EZH2
and aid cancer progression. These observations provide insight
into the functional interactions of mRNA, miRNA, chromatin
modifying complexes, and DNA methylation and point to a new
era of research in complex regulatory networks in melanoma.
Some miRNAs may serve as markers to discriminate between
benign and malignant cells.60

lncRNA Mediated Epigenetic Regulation
of Gene Expression

lncRNAs, like miRNAs, play crucial roles in epigenetic con-
trol, with diverse modes of action and functional consequences.
Therefore, it is likely that aberrant expression of lncRNAs would

contribute to melanoma development as it does with other cancer
types.9

Some of the mechanisms by which lncRNAs perform these
functions are summarized in Figure 2. lncRNAs act as transcrip-
tional regulators by recruiting histone modifying complexes (e.g.,
PRC) to target loci in cis or trans mode (Fig. 2A).61 As a conse-
quence of this, the target loci are either activated (Fig. 2B and C)
or silenced (Fig. 2A) depending on the histone marks.61 This is
the most common mechanism employed by lncRNAs to exercise
control over gene regulation. An alternative mode of action
involves the binding of regulatory proteins by lncRNAs, thereby
inhibiting transcription of protein coding genes (Fig. 2D).62

Another class of lncRNA influences splicing patterns via physical
interactions with an alternative splicing regulator (Fig. 2E).63

Many lncRNAs are known to host snoRNAs, called sno-lncRNA.
The functions of many of the host lncRNAs are not known,
although some of these are associated with modulation of splicing
pattern (Fig. 4F and G).63 snoRNAs themselves are involved in
modification of rRNAs, although the targets of many of these
remain to be identified. Linear or circular lncRNAs function as
miRNA decoys and sequester miRNAs from their target mRNAs
(Fig. 4H).64,65 It has also been proposed that pseudogene tran-
scripts with high homology to mRNAs can act as miRNA decoys
and act as competitive endogenous RNAs (ceRNA) to regulate
translation, since they have common miRNA recognition

Table 4.miRNA regulated in melanoma with respect to affected hallmarks of cancer capabilities

miRNA Function Target Gene Ref

miR-221# Sustaining proliferative signaling CDKN1B, c-Kit 141,142

miR-15b# BCL2 143

miR-149# GSK3a 144

miR-506–514# HOXB7, PBX 145

miR-137# MITF 146

miR-193b* CCND1 147

miR-148* MITF 148

miR-18b* Resisting cell death MDM2 149

miR-26a* SMAD1 150

miR-205* Enabling replicative immortality E2F1, E2F5 151

miR-34a* CDK6 152

miR-203* E2F3 153

miR-34a/c* c-Met 154

miR-214# Activating invasion and metastasis ITGA3, MET 155

miR30b/ 30d# GALNT7 156

miR-182# MITF, FOXO3 157

let-7a* ITGB3 158

miR-126* ADAM9, MMP7 159

miR-145* FSCN1 160

miR-137* EZH2 161

miR-18b* MDM2 149

miR-34a/c* c-Met 154

miR-211* BRN2 162

miR-9* NK-kB, Snail 163

miR-31* Cell migration and invasion EZH2 57

miR-101* Melanocyte differentiation, cell cycle progression, proliferation and invasion MITF, EZH2 59

miR-200c# Cell proliferation and migratory capacity as well as drug resistance BMI-1, ABCG2, ABCG5 and MDR1 164

miR-99a* Cell proliferation mTOR 165

miR-449a# Cell cycle exit and epidermis differentiation HDAC-1 166

miR-29* Suppress tumorigeneis by changing the methylation status of DNA DNMT3A/B 167

# Upregulation; * Downregulation.
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elements (MREs).66 Many lncRNAs are associated with ribo-
somes and it is speculated that they help in maintaining the ribo-
some complex, thereby stabilizing the translational machinery
(Fig. 4G).67 Some lncRNAs influence the stability of protein
complexes by interacting with RNA-binding domains of compo-
nents of those complexes (Fig. 4I).68

lncRNAs Involved in Regulation of Normal
Skin Homeostasis

Functional studies using mammalian skin as a model system
have revealed that lncRNAs control normal tissue homeostasis as
well as transitions to melanoma.10 Summarized below are some
lncRNAs that are associated with maintaining normal homeosta-
sis in skin.

Anti-differentiation non-coding RNA (ANCR)
In an attempt to identify transcripts altered during transition

from a progenitor to a differentiated cell population, a combina-
tion of high-throughput RNA-seq and high-resolution tiling
arrays identified ANCR, which maintains keratinocyte

progenitors in their non-differentiated state.69,70 ANCR is located
on human chromosome 4 and produces an 855 bp transcript.
This locus consists of 3 exons and harbors a miRNA (miR4449)
and a snoRNA (SNORA26) in introns 1 and 2, respectively.69

ANCR is downregulated during the differentiation of progeni-
tor-containing populations. It represses a substantial portion of
the epidermal differentiation program, both in vitro and in regen-
erated organotypic human epidermal tissue. ANCR depletion led
to enhanced expression of genes associated with differentiation in
the progenitor-containing epidermal basal layer, a compartment
where expression of differentiation proteins is normally never
found.69 These data demonstrated a functional requirement for
ANCR in maintaining the undifferentiated state that is character-
istic of progenitor cells.

The molecular mechanisms by which this lncRNA mediates
suppression of epidermal differentiation have been investigated.
Decreased levels of ANCR have been reported in the case of oste-
oblast differentiation by Zhu et al.70 This study indicated that
ANCR is involved in maintaining the undifferentiated state of
osteoblasts, as with epidermis69. Zhu et al.70 found that ANCR
recruits EZH2 which catalyzes formation of H3K27me3 in the
Runx2 gene promoter. Runx2, a transcription factor required for

Figure 2. Schematic illustrating different functions proposed for lncRNAs. A-D indicate functions regulating transcription, while E-I show posttranscrip-
tional regulatory mechanisms. (A) lncRNAs can suppress transcription by interacting with PRCs or other chromatin modifying proteins. This leads to het-
erochromatin formation and gene suppression. (B) Trithorax complexes interact with lncRNA and induce transcription. Chromatin is retained in its
euchromatin, actively transcribed state. (C) lncRNAs may be transcribed at enhancer regions, and establish and maintain enhancer-promoter looping
and gene induction. (D) lncRNAs, e.g., those with decoy function, may bind to transcription factors and suppress their activities, leading to diverse
changes in cells. (E) lncRNAs regulate alternative splicing by interacting with the spliceosomal machinery or mRNA. (F) Intronic regions of many lncRNAs
encode snoRNAs. The processed lncRNA may be exported to the cytoplasm and perform roles as yet undefined. The snoRNAs remain in the nucleus. (G)
Many lncRNAs are located in the cytoplasm and most of them are associated with polysomes. (H) lncRNAs, either as linear or as circular molecules, may
sequester and inactivate miRNAs or mRNAs. The functions of many ribosome-associated lncRNAs are not known; but antisense lncRNAs, such as
UCHL1AS, regulate the translation of their associated mRNAs. (I) Decoy lncRNAs, present in the cytoplasm, may bind to proteins and regulate their
functions.
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osteoblast differentiation, is not expressed and osteoblast differ-
entiation is attenuated.70

The mechanism of action of ANCR in melanoma has yet to be
studied, although it is known that the interplay between keratino-
cytes and melanoma cells affects the invasiveness of melanoma.71

The expression pattern and role of ANCR, as well as the miRNA
and snoRNA derived from it, needs further investigation.

Tissue differentiation-inducing non-protein
coding RNA (TINCR)

Transcriptome sequencing of progenitor and differentiating
human keratinocytes revealed another lncRNA TINCR which
was highly induced during differentiation. The locus is located
on human chromosome 19, between SAFB2 and ZNRF4, and
produces a 3.7 kb RNA transcript.72 Knockdown studies using
siRNA against TINCR showed its requirement for maintaining
high mRNA abundance of key differentiation genes, such as filag-
grin and loricrin, which are responsible for epidermal barrier
function.72

Genome-scale RNA interactome analysis revealed that TINCR
is associated with a range of different mRNAs involved in epider-
mal differentiation. Human protein microarray analysis also
identified TINCR-binding proteins of relevance to epidermal dif-
ferentiation control, including Staufen1 (STAU1) protein.
STAU1-deficient tissue showed impaired epidermal differentia-
tion, as was seen with TINCR depletion. Gene set enrichment
analysis (GSEA) performed using siRNAs specific for STAU1
and TINCR showed that the set of transcripts that was suppressed
overlapped markedly with the keratinocyte differentiation signa-
ture indicating that TINCR, together with STAU1, acts to main-
tain stability of RNAs associated with the differentiated
phenotype.73 These studies indicate the importance of TINCR as
an inducible lncRNA required to stabilize mRNAs required for
differentiation.

The interaction between keratinocytes and melanocytes is of
prime importance for epidermal homeostasis, and growth of mel-
anocytes is strictly regulated by keratinocytes. Initiation of mela-
noma has therefore been thought of as a consequence of the
initial escape of melanocytes from the growth control exerted by
keratinocytes, leading to benign melanocytic lesions.71 Therefore,
increased expression of ANCR and decreased expression of
TINCR may lead to maintenance of keratinocyte progenitors in
undifferentiated states and, consequently, to melanomagenesis.
This indicates that a delicate balance needs to be maintained in
the expression levels of ANCR and TINCR to secure the opti-
mum effect of keratinocytes upon melanocytes. Any association
between these 2 lncRNAs should be investigated.

lncRNAs and Their Implicated Role in Melanoma

Several lncRNAs have been shown to have potential roles in
the transition of normal melanocytes to melanoma.10 Summa-
rized below are some lncRNAs with putative or confirmed roles
in the development of melanoma.

BRAF-activated non-coding RNA (BANCR)
RNA-seq analysis identified BANCR, a 4-exon transcript of

693 bp that is highly induced by BRAFV600E in melanocytes. It
is located on chromosome 9 and is overexpressed in human mela-
nomas. BANCR was identified as a potential regulator of mela-
noma cell migration as profound migration defects were
observed following BANCR depletion.74 The mechanism by
which BANCR regulates gene expression remains to be identified.

A recent study confirmed the contribution of BANCR to the
proliferation of melanoma cells and that expression of BANCR
increased with tumor stage. This study also demonstrated that
BANCR can promote melanoma proliferation by activating the
ERK1/2 and JNK MAPK pathways both in vitro and in vivo.
This link between BANCR and the MAPK pathways points to a
novel mechanism in the regulation of melanoma proliferation.75

In a previous section, it was mentioned that BRAFV600E was asso-
ciated with increased EZH2 expression and H3K27 trimethyla-
tion of tumor suppressor genes. It will be interesting to see if
there is any correlation between the expression of BANCR and
EZH2 or poor prognosis.

HOX transcript antisense RNA (HOTAIR)
This lncRNA originates from the HOXC cluster and acts in

trans to regulate transcription of the HOXD cluster.76 There is
growing evidence that HOTAIR has pro-metastasis activity in
several cancer types like breast,77 pancreatic78, and hepatocellular
carcinoma.79 Recently, the expression of 6 well-documented
lncRNAs associated with metastasis was evaluated in primary
melanoma and matched lymph node metastases. HOTAIR ranks
among the 6 lncRNAs most consistently expressed in metastases
compared to matched primary tumors.80 Knockdown of
HOTAIR inhibited the motility and invasiveness of melanoma
cells, with decreased degradation of extracellular matrix.80

Another study by Tian et al.81 found no statistical difference in
expression levels of HOTAIR lncRNA between melanoma and
adjacent normal tissue. This observation was attributed to the
inclusion criteria of the study that restricted samples only to
superficial spreading and nodular melanomas.81

HOTAIR recruits PRC2 to specific target genes, leading to
H3K27 trimethylation and epigenetic silencing of metastatic sup-
pressor genes.82 Further mechanistic investigation into the regu-
lation of metastasis by HOTAIR is necessary. In breast cancer
cells, HOTAIR may indirectly increase expression of STAT3.
HOTAIR suppresses expression of HOXD which produces miR-
7, which inhibits expression of the histone methyltransferase
SETDB1, required for STAT3 transcription.83 A corroborating
report indicates that SETDB1 is recurrently amplified in mela-
noma and accelerates tumor development in zebrafish melanoma
models harboring the common BRAFV600E mutation.84 Reports
of pro-metastatic activity in multiple pre-clinical model systems,
support the hypothesis that this lncRNA is a potential target for
melanoma metastasis therapy.

SPRY4-IT1
SPRY4-IT1 is derived from an intron of the Sprouty 4

(SPRY4) gene and is predicted to contain several long hairpins in
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its secondary structure. This lncRNA was identified by Khaitan
et al.,84 who compared lncRNAs in melanoma cell lines, melano-
cytes, and keratinocytes using an lncRNA microarray.84 SPRY4-
IT1 was found to be elevated in the melanoma cell lines. Knock-
down of this lncRNA caused defects in cell growth and differenti-
ation, and elevated apoptosis rates in melanoma cell lines.84

Molecular mechanisms by which SPRY4-IT1 affects mela-
noma progression require further investigation. RNA-FISH anal-
ysis showed that this lncRNA is predominantly localized in the
cytoplasm of melanoma cells67, and an association with poly-
somes has been demonstrated.85 SPRY4-IT1 associates with, and
reduces the abundance of, the lipid phosphatase lipin 2 and may
suppress apoptosis arising from lipid metabolism and lipotoxic-
ity.85 SPRY4 is an inhibitor of the MAPK signaling pathway and
may have a tumor suppressor role.84 SPRY4-IT1 is located within
an intron of SPRY4, and these genes have concordant expression
profiles84, although both of them are transcriptionally and func-
tionally independent.85 A recent study in non-small cell lung
cancer (NSCLC) has found evidence that SPRY4-IT1 controls
epithelial-mesenchymal transition (EMT) through regulation of
E-cadherin and vimentin expression leading to cell proliferation
and metastasis.86

Llme23
The mouse lncRNA VL30–1 binds to polypyrimidine tract-

binding (PTB) protein associated splicing factor (PSF) and inhib-
its PSF tumor suppression function in mouse.87 Since PSF pro-
tein is highly conserved from humans to mice, Wu et al.87

employed RNA-SELEX affinity chromatography to select human
PSF-binding lncRNAs from the nuclear RNA repertoire of the
human melanoma line YUSAC. This study identified a novel
1,600 base lncRNA which was termed Llme23.87 Gel-shift, UV-
crosslinking assays and RNA immunoprecipitation further veri-
fied that Llme23 bound PSF proteins. Llme23 was also found to
be exclusively expressed in human melanoma lines. Significant
growth defects following Llme23 knock out suggested that
Llme23 plays an oncogenic role in human melanoma.87

PSF promotes tumor suppression by binding to the promoter
of the proto-oncogene Rab23, which encodes a RAS-related small
GTPase. VL30–1 inhibits this function in mouse when it binds
to the RNA-binding domain of PSF. Identification of a con-
served PSF-targeting sequence embedded in the promoter region
of the human Rab23 gene suggested that Rab23 might be a target
for PSF in human cells. Concordant expression of Rab23 and
Llme23 was reported, indicating that the activation of the Rab23
proto-oncogene is involved in the oncogenic role of PSF-binding
Llme23.87 Taken together, these studies provide evidence that
Llme23 is involved in the etiology of human melanoma.

Antisense non-coding RNA in INK4 locus (ANRIL)
Sequence-tagged site (STS) real-time PCR-based gene dose

mapping of the entire INK4/ARF locus in a melanoma-neural
system tumor (NST) family revealed an antisense lncRNA
ANRIL.88 ANRIL consists of 19 exons, spans a region of
126.3 kb and is transcribed as a 3,834-bp lncRNA in the anti-
sense orientation relative to the p15/CDKN2B-p16/CDKN2A-

p14/ARF gene cluster. Several isoforms of ANRIL have been
reported, including various short and long isoforms, and a
recently discovered circular isoform.89 Different exons of ANRIL
are differentially expressed in melanoma cell lines, and there is
evidence for the existence of circular ANRIL in some of these
cells. This discovery suggested that alternative splicing modifies
ANRIL structure.89 This mechanism has been studied in athero-
sclerosis, and further work is required to characterize this mecha-
nism in melanoma. Interestingly, GWAS identified a single
nucleotide variant rs1011970 (intron 9 of the ANRIL isoform
with 19 exons) that is associated with melanoma risk, but only
for the variant T-allele homozygote. This polymorphism was also
associated by GWAS with breast cancer risk.90 These results
strongly suggest that ANRIL is involved in the etiology of
melanoma.

A cis-acting silencing mechanism, mediated by specific ANRIL
transcripts, was proposed to negatively regulate CDKN2A/2B
expression via chromatin remodeling.68,91 ANRIL associates with
PRC1 by RNA-binding domains of CBX7, a component required
for repression of gene transcription, and thereby represses
CDKN2A/B gene activity by H3K27 methylation. Competitive
inhibition of ANRIL binding by expression of an antisense
sequence impairs CBX7-mediated repression of the CDKN2A
locus and causes a concomitant shortening of cellular life span.
Several RNA loop structures formed by the ANRIL transcript spe-
cifically bind CBX7, and at least one of them participates in
CBX7 recognition of H3K27. CBX7 recognition of H3K27 is
required for the monoubiquitination of histone H2A lysine 119
(H2A-K119), which in turn results in maintenance of repression
in the locus.68 Binding of SUZ12 (a PRC2 component) results in
transcriptional repression ofCDKN2B and influences cell prolifer-
ation or prevents premature cell senescence.92 In a recent study,
ANRIL was found to be upregulated in gastric cancer relative to
non-tumor tissue, and could therefore serve as an independent
predictor for overall survival in gastric cancer (GC).93

Regulation of the CDKN2A/B locus by ANRIL indicates that it
has a major role in controlling cell proliferation94 and also facili-
tates cell proliferation after DNA damage repair (DDR).95 ANRIL
is induced by the E2F1 transcription factor in an ATM-dependent
manner after DNA damage. In this case, elevated expression levels
of ANRIL in later stages of DDR suppress CDKN2A/B expres-
sion.95 ANRIL is involved in progression of GC also through
induction by E2F1. ANRIL-mediated growth promotion in GC is
partially due to epigenetic suppression of miR-99a and miR-449a
in trans (controlling the mTOR and CDK6/E2F1 pathways) by
binding to PRC2, thus forming a positive feedback loop that pro-
motes GC cell proliferation.93 High miR-449a expression reduces
HDAC expression and consequently inhibits cell proliferation,
while downregulation of miR-449 is associated with cell growth.
A study found miR-449a downregulated in melanomas of older
patients compared to melanomas of young adult melanomas.96

This indicates that ANRIL might promote progression of mela-
noma through a similar process. ANRIL also regulates key genes of
glucose and fatty acid metabolism97 and, since it is regulated by
interferon-gamma-STAT1 signaling, it is predicted to have possi-
ble roles in inflammatory responses.98
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Given the role of CDKN2A as a tumor suppressor99 and the
fact that it was discovered in case of familial melanoma, the role
of ANRIL in melanoma needs to be clarified. It was found that
carriers of T-allele polymorphism rs3088440 of CDKN2A (3’
UTR of CDKN2A) had an elevated melanoma risk. This variant
tagged a total of 6 SNPs, of which 3 were found to be located in
the intergenic region and the others in intron 1 of CDKN2A, the

3’ UTR of CDKN2B and intron 3 of
ANRIL.90 Further elucidation of
ANRIL as regards to its function and
the mechanism by which it controls the
INK4a-ARF-INK4b locus will help a
great deal in understanding its role in
melanoma. ANRIL has potential as a
therapeutic target, or a diagnostic
marker for early detection of
melanoma.

Urothelial carcinoma-associated
1 (UCA1)

This lncRNA was originally identi-
fied in bladder transitional cell carci-
noma and the entire sequence consists
of 3 exons 1.4 kb in length. As it is
highly expressed in bladder transitional
cell carcinoma, it was suggested to serve
as a biomarker for the diagnosis of blad-

der cancer.100 Subsequently, another isoform (2.2 kb) was identi-
fied by a different group as cancer upregulated drug resistant
(CUDR) gene in a doxorubicin-resistant subline of human squa-
mous carcinoma A431 cells. UCA1 also promotes breast cancer
cell growth both in vitro and in vivo, in addition to its role in
embryonic development.101 In a recent study that investigated
the roles of 6 cancer-related lncRNAs in paired melanoma and

Figure 3. Epigenetic regulators as central
components in melanoma signaling. (A)
Epigenetic networks. Chromatin modifica-
tions are integral to gene regulation at the
transcriptional level and are guided by
lncRNAs acting as specific sequence identi-
fiers or scaffolds. PRC and trithorax com-
plexes respectively suppress (red) and
induce (green) gene expression. Chroma-
tin-modifying enzymes are also regulated
by miRNA. DNA methylation and demeth-
ylation are late events in DNA modifica-
tion. In the cytoplasm, lncRNAs can
regulate gene expression by acting as
decoys or by undefined mechanisms
involving ribosome interaction. miRNAs
also act as key regulatory molecules in the
cytoplasm. Each of these transcripts can
be regulated through epigenetic events
and contributes to feedback regulatory
loops. (B) Example of an epigenetic inter-
twine in the melanoma signaling pathway.
The lncRNA ANRIL may be a transcriptional
target of oncogenic receptor tyrosine
kinase-NRAS-BRAF signaling. ANRIL may
recruit PRC2 and PCR1 to reduce the
expression of tumor suppressor miR-449a
and miR-99a. Other miRNAs counteract
the actions of PRC2-associated EZH2 (miR-
101) and DNMT3 (miR-29), and of PRC1-
associated BMI1 (miR-200c). EZH2 and
miR-31 engage in mutual suppression.
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adjacent normal tissues, elevated expression of UCA1 in melano-
mas was reported, especially at advanced stages.81 Knockdown of
UCA1 suppressed migration of melanoma cells in vitro, suggest-
ing that UCA1 might contribute to tumor dissemination.81

Functional studies carried out to determine the mechanism of
action of this lncRNA have revealed that UCA1 negatively regu-
lates p27 (a tumor suppressor gene) in breast cancer.101 Phos-
phorylated heterogeneous nuclear ribonucleoprotein 1 (hnRP1)
found in cytoplasm forms a complex with UCA1 and increases
UCA1 stability. hnRP1 enhances translation of p27 mRNA by
interacting with its 5’-untranslated region, and the interaction of
UCA1 with hnRNP1 suppresses the p27 protein level by compet-
itive inhibition.101 However, the mechanisms by which UCA1
promotes melanoma progression remain to be identified.

Metastasis-associated lung adenocarcinoma transcript
1 (MALAT1)

This lncRNA is also known as nuclear-enriched transcript 2
(NEAT2). It was discovered as a prognostic marker for lung can-
cer metastasis but has been linked to several other human tumor
types.102MALAT1 is highly expressed in melanoma compared to
adjacent normal tissues.81 Knockdown studies showing an effect
of MALAT1 on migration of melanoma cells suggest that
MALAT1 may promote melanoma spread as with UCA1.81

Conclusion

Despite developments in chemotherapy, the prognosis of met-
astatic melanoma remains poor and resistance to therapy remains
a challenge. Genetic risk factors associated with the etiology of
melanoma have been well characterized. However, epigenetic fac-
tors, which are also associated with the pathogenesis of mela-
noma, present many open-ended questions. High throughput
gene expression studies have helped identify candidate genes that
are thought to be aberrantly regulated through methylation or
histone modifications. These genes, however, have not been vali-
dated and their specific roles have yet to be characterized. Since
epigenetic phenomena such as DNA methylation/demethylation,
histone modifications and chromatin remodeling are interlinked,
it is important to understand both the molecular mechanisms
involved and the chronological order connecting them (Fig. 3).
Epigenetic alterations may promote genetic mutations and geno-
mic rearrangements in cancer, although the mechanisms involved
are yet to be elucidated. The vast amount of data published in
the last decade indicates how epigenetic processes result in the
differential expression of key genes in different types of cancer. A
recent study by De Raedt et al.103 has identified genetic altera-
tions of SUZ12 and EED in melanoma. Deletion of SUZ12 leads
to loss of H3K27me3 and a consequential increase in H3K27Ac,

which recruits bromodomain proteins and induces transcrip-
tional activity. Therefore, further investigation of bromodomain
inhibitors as therapy in these tumors is needed. Epigenetic events
at the early stages of neoplasia may contribute to the transforma-
tion of stem cells into cancer cells, and to the facility with which
phenotypic switches occur in cancer. Understanding these mech-
anisms will be a great achievement and provide extensive resour-
ces for future diagnosis and therapy. Recent research into the
molecular biology of ncRNAs has not only revealed their versatil-
ity but has added to the complexity of how epigenetic events
coordinate with one another. Several high throughput studies
have identified miRNA and lncRNA species that are associated
with melanoma. The tissue specificities of miRNAs and lncRNAs
make them good candidates for use as markers for early diagnosis
of melanoma. In addition, both classes of ncRNAs may provide
specific targets for treatment of melanoma. However, in order to
achieve this, further scrutiny of these regulatory phenomena at
the molecular level is required. A better understanding of the
mechanisms by which DNA methylation/demethylation, chro-
matin remodeling, and ncRNAs affect cell proliferation and dif-
ferentiation and melanoma progression will facilitate the
development of therapeutic strategies. lncRNAs may act as scaf-
folds or may aid the binding of chromatin modifying complexes,
such as PRC or trithorax, to target site(s) to regulate gene expres-
sion. It is unknown whether lncRNAs have ribozyme activity and
catalyze reactions in the same manner as rRNA. The potential
interactions of miRNA with lncRNAs in regulating chromatin
and DNA modifying enzymes57 adds further layers of complexity
to the system. Many chromatin marks are reversible and transfor-
mations depend on guidance by ncRNA(s) and chromatin modi-
fying complexes. DNA methylation normally happens post-
chromatin-modification, and was considered to be a permanent
mark on DNA for silencing genes, although demethylation is
common in melanoma (Fig. 3). The explosion of data in the last
decade has provided a peek into the existence of the multilayer
complexity in gene expression and regulation that is a goldmine
for basic research, biomarker discovery, and therapeutic options.
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