
[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3005 3005–3011

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 22 2009, pages 3005–3011
doi:10.1093/bioinformatics/btp493

Databases and ontologies

Mobyle: a new full web bioinformatics framework
Bertrand Néron1,†, Hervé Ménager1,†, Corinne Maufrais1, Nicolas Joly1, Julien Maupetit2,
Sébastien Letort3, Sébastien Carrere3, Pierre Tuffery4 and Catherine Letondal1,∗
1Groupe Logiciels et Banques de Données, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris Cedex, 2UMR-S 936,
RPBS, Université Paris Diderot-Paris7, 75205 Paris Cedex 13, 3Laboratoire Interactions Plantes Micro-organismes
(LIPM) UMR441/2594, INRA/CNRS F-31320 Castanet Tolosan and 4UMR-S 973, RPBS, Université Paris
Diderot-Paris7, 75205 Paris Cedex 13, France
Received on April 17, 2009; revised on July 10, 2009; accepted on July 30, 2009
Advance Access publication August 17, 2009
Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: For the biologist, running bioinformatics analyses
involves a time-consuming management of data and tools. Users
need support to organize their work, retrieve parameters and
reproduce their analyses. They also need to be able to combine their
analytic tools using a safe data flow software mechanism. Finally,
given that scientific tools can be difficult to install, it is particularly
helpful for biologists to be able to use these tools through a web user
interface. However, providing a web interface for a set of tools raises
the problem that a single web portal cannot offer all the existing and
possible services: it is the user, again, who has to cope with data copy
among a number of different services. A framework enabling portal
administrators to build a network of cooperating services would
therefore clearly be beneficial.
Results: We have designed a system, Mobyle, to provide a flexible
and usable Web environment for defining and running bioinformatics
analyses. It embeds simple yet powerful data management features
that allow the user to reproduce analyses and to combine tools using
a hierarchical typing system. Mobyle offers invocation of services
distributed over remote Mobyle servers, thus enabling a federated
network of curated bioinformatics portals without the user having
to learn complex concepts or to install sophisticated software. While
being focused on the end user, the Mobyle system also addresses the
need, for the bioinfomatician, to automate remote services execution:
PlayMOBY is a companion tool that automates the publication of
BioMOBY web services, using Mobyle program definitions.
Availability: The Mobyle system is distributed under the terms of
the GNU GPLv2 on the project web site (http://bioweb2.pasteur.fr/
projects/mobyle/). It is already deployed on three servers: http://
mobyle.pasteur.fr, http://mobyle.rpbs.univ-paris-diderot.fr and http://
lipm-bioinfo.toulouse.inra.fr/Mobyle.The PlayMOBY companion is
distributed under the terms of the CeCILL license, and is available at
http://lipm-bioinfo.toulouse.inra.fr/biomoby/PlayMOBY/.
Contact: mobyle-support@pasteur.fr; mobyle-support@rpbs.univ
-paris-diderot.fr; letondal@pasteur.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

1 INTRODUCTION
Over the last 10 years, an increasing number of bioinformatics tools,
covering a growing spectrum of applications, including aspects of
genomics, systems and structural biology have been made available
to the community. The complexity of analyses undertaken in these
domains makes the publication, integration and interconnection of
these tools particularly challenging.

Several systems propose a solution to automate the access to
bioinformatics resources. Web-based user interfaces, such as the
Biology Workbench (Subramaniam, 1998), PISE (Letondal, 2001),
wEMBOSS (Sarachu and Colet, 2005), Galaxy (Giardine et al.,
2005), GenePattern (Reich et al., 2006), MOWServ (Navas-Delgado
et al., 2006), the New Generation Biology Workbench (Rifaieh
et al., 2007), BioManager (Cattley and Arthur, 2007) and BioExtract
(Lushbough et al., 2008), simplify the access to powerful computer
resources by providing a familiar graphical-based environment for
inexperienced users and by saving them from installing software on
their own computer. In contrast with these tools which focus on the
execution of programs, and where the users can often interactively
chain analyses, GBrowse MOBY (Wilkinson, 2006) and Seahawk
(Gordon and Sensen, 2007b) propose data-centric solutions where
the user can explore a set of BioMOBY (Wilkinson, 2004) services to
analyse a set of given data, with edition, navigation and visualization
components which fully exploit the composite nature of BioMOBY
objects.

Standalone workflow systems such as Taverna (Oinn et al., 2004),
Kepler (Altintas et al., 2004) or BioSide (Hallard et al., 2004) enable
to combine tools within desktop applications, using graphically
specified workflows. It is hence possible, for bioinformaticians, to
organize and automate complex data processing. Such possibilities
have also been offered on web interfaces, either in dedicated systems
such as Remora (Carrere and Gouzy, 2006), or within some of the
web-based systems cited above. PISE, Galaxy and BioExtract also
offer the possibility to save interactively designed protocols.

Many of these systems now offer the possibility of accessing
distributed resources, often using dedicated web-service solutions
such as BioMOBY and SoapLab (Senger et al., 2003). While
SoapLab offers a system to automate the distribution of
asynchronous analytical services, the BioMOBY protocol provides
in addition more detailed descriptions, including semantic metadata
and a registration system to facilitate the discovery of relevant
resources. A number of tools facilitates the publication and

© The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3006 3005–3011

B.Néron et al.

management of BioMOBY services, such as MoSeS (http://
biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/
Moses-generators.html) and the BioMOBY dashboard (http://
biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/
Dashboard.html). Many of the existing user interfaces rely on the
descriptions provided by these systems to generate user interfaces:
Ajax Command Definition from EMBOSS (Rice et al., 2000),
BioMOBY or even pure WSDL definitions.

Mobyle is a generic web-based framework. While including
advanced technologies such as web services, remote execution and
dataflow mechanisms, it addresses major end-user concerns arising
from the use of sophisticated bioinformatics systems. A recent study
(Gordon and Sensen, 2007a) shows how simple issues in the user
interface can impede the use of a system by scientists, causing them
to waste time and even preventing them from using it further. To
address this issue, the design of Mobyle’s interface is user-centered,
to provide a usable yet customizable access to a large panel of
services, from genome analysis to structural bioinformatics. The
description language it uses to generate user interfaces is sufficiently
extensive and flexible for rich user interfaces to be generated. Its
core partly relies on concepts previously embedded in PISE and
the RPBS portal (Alland et al., 2005). Moreover, different Mobyle
servers can be federated to integrate services distributed over various
sites. This functionality enables the federation of a network of
curated portals, combining the skills of each of them. The Mobyle
program description language also enables to define web services, as
shown by the PlayMOBY Mobyle companion tool, which automates
the publication of BioMOBY web services, and has monitoring
capabilities that provide the bases for service quality monitoring.

2 SYSTEM DESIGN
The Mobyle design process was based on a user-centered design
process (Javahery et al., 2004; Letondal and Amanatian, 2004;
Shachak et al., 2007), involving numerous interviews and a number
of users workshops (see Section 4.1). We identified the major
end-user concerns that needed to be addressed:

(1) An integrated bioinformatics framework needs to provide
end users with several important capabilities: (i) reuse
of data and results without the burden of unsafe copy-
and-paste operations; (ii) management of scientific studies
(e.g. retrieving parameters of a job, comparing results or
relaunching an analysis using different data); and (iii) access
to a wide range of local or remote services within a unique
user interface.

(2) A bioinformatics framework should enable scientists to share
knowledge: (i) on setting up analyses, through tutorials based
on curated examples; (ii) by accessing protocols designed
and validated by experts in the domain; and (iii) through the
use of a confidence network, allowing the interconnection
of distributed resources, taking advantages of local skills
to improve service quality, instead of favouring centralized
platforms.

Technical requirements for such criteria to be satisfied include:
(i) a well-designed web user interface, enabling easy navigation
and data management within a user workspace; (ii) a distributed
architecture, enabling access to and combined use of local and

remote services; (iii) workflow authoring and enacting tools to
support protocols; (iv) sound software architecture and APIs, to
simplify system maintenance, configuration and extension; (v) a
flexible description language to enable domain-specific adaptation
needs, including visualization of results using special-purpose
graphics components.

3 SYSTEM OVERVIEW
In this section, we provide an overview of Mobyle. We describe
the underlying concepts of the system, the design of the web user
interface, the server components and the distributed architecture.

3.1 Concepts
3.1.1 Homogeneous user interfaces to heterogeneous programs
The steep learning curve involved in the use of command-line tools
invocation is problematic for inexperienced users (Shneiderman,
1983). A classical solution involves wrapping each application in
a custom CGI script and providing a web interface to reduce the
burden of remembering the syntax of the command line and the
name of the parameters. Given the sheer number of bioinformatics
software programs available, we chose to automate the generation
of web interfaces using an abstract definition of a program’s
parameters. This solution provides a homogeneous interface to all
the programs, minimizing the syntactic complexity. It is also helpful
in file management issues and program chaining.

3.1.2 Persistent user workspaces One of the shortcomings of
the PISE environment is its lack of support for a persistent user
workspace (Gilbert, 2002). The new system, while still allowing a
fast and temporary ‘guest’ access to the programs, also gives to the
users the possibility to create registered accounts, which allows user
data and jobs to be maintained and managed across multiple work
sessions.

3.1.3 XML description of interfaces Based on feedback from
PISE server administrators, as well as the need to extend the
capacity of functionalities such as web service wrapping or workflow
management, we modified the schema that describes the system.
All Mobyle data, including program descriptions, job definitions
and user workspaces are stored in XML documents. The main
element of the system, the program description, is inherited from
the PISE system. It describes various aspects, in a language that
targets simplicity as much as possible (experience shows that the
authoring and maintenance of program descriptions is a complex
and tedious task). Aspects covered include:

• Program/service documentation: describes the accomplished
task and guides users through the process. It also provides
authoring and version informations.

• Data typing: characterizes the parameters and results of the
different programs. Further details are provided in Section 3.3.

• Wrapping instructions: translates a user request into a valid
execution of the program (e.g. in the case of a unix program
call, the construction of the command line will be defined by
rules included in the XML file).

• User interface layout: the layout of the program invocation form
and job result pages are by default automatically generated from
the XML definition, but can be customized.

3006



[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3007 3005–3011

Mobyle

Fig. 1. Web user interface: portal overview, displaying the multiple alignment CLUSTALW submission form. The form in the main part displays a control,
the databox, where the user can either paste data, enter a database ID or upload a file. The user can also select a previously uploaded file from the ‘File
bookmarks’ menu. When available, results from previous jobs are also provided through a ‘Results’ menu.

• BioMoby integration: the XML files can be enriched with
metadata such as BioMoby parameter types, which permits
the publication of a program as a BioMoby service using
PlayMOBY (see Section 3.6).

A formal description of the XML grammar used to describe
Mobyle programs is available on the project webpage (see http://
bioweb2.pasteur.fr/projects/mobyle/downloads.html), using Relax
NG (Clark et al., 2001).

3.1.4 Network-enabled bioinformatics tools The Mobyle system
aims at acting as a ‘hub’ for a set of programs of interest. A program
integrated in Mobyle can not only be local but also remote, using
the Mobyle Net functionality (further described in Section 3.5).
Additionally, current and future developments aim at providing
gateways to web-service-based systems such as BioMOBY (see
Section 3.6). The interest is to provide a unified framework for
bioinformatics platforms maintainers, who have to publish and
integrate various local or remote programs for both biologists and
bioinformaticians.

3.2 User interface design
Mobyle provides the scientist with a global and integrated view of
all the elements needed to perform his or her analyses. At one glance,
the user can see which programs are available and which analyses
have already been run. The portal is organized in three main parts
(Fig. 1): a left navigation panel, a central panel displaying a selection
of elements of the current work, such as forms and results, and
horizontal tabs enabling the user to navigate between these elements.

3.2.1 Program search Available programs are classified so that
they can be searched, using program and parameter names, prompts
and documentation, or bibliographic references. The page that
displays the results of a given analysis also provides the user with the
list of programs that can be run for further analysis. This list guides

users, restricting them to a view of programs that are compatible
with a given result file.

3.2.2 User workspace At any time, the user can navigate between
previously used forms and details of individual analyses, for instance
to compare results. This view persists over separate uses of the portal
during a given amount of time. This navigation model gives a ‘flat’
multi-directional access to several forms, which was not previously
possible with the classical browser history mechanism. A list of
bookmarked data is available: this provides the user with reuse-based
access and information on previously submitted data.

3.2.3 Forms and reusability Program forms are classical HTML
forms. They contain a specific control element—the databox—
designed to facilitate data reuse by biologists. This control allows
users to set parameter values for biological data (e.g. DNA sequence
or 3D protein structure) using various methods (pasting, file upload,
databank entry retrieval, bookmark reuse).

3.2.4 Results and interactive chaining The job status and results
page provides a preview of the job data and metadata. It also
includes an advanced control element—the resultbox—which lets
users access results in plain browser windows, download them to
their workstation, bookmark them or ’pipe’ them to a new form, i.e.
display a new form that is preloaded with the user data. This ability
to pipe data into a new form, together with databox bookmark reuse,
permits interactive program chainings within the portal.

3.2.5 Flexible layout design The portal, given a program
definition, can automatically generate a form and a result page
without any need for layout information. However, this process
can be overridden to generate program-specific forms and job result
pages with particular layouts. This possibility can prove extremely
useful, for instance to fulfil custom program requirements, or to
define a particular layout required for optimal use of a given program

3007



[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3008 3005–3011

B.Néron et al.

Fig. 2. Web user interface: example of customised interface, showing the
simultaneous display of a program output in both a text box and in a Jmol
applet.

(see Fig. 2). This functionality relies on via specific layout tags or
even HTML snippets embedded in the XML file, which can include
inline javascript or Java applets.

3.3 Data typing and helpers
A major aspect of Mobyle is its capacity to facilitates automated
data conversion and formatting for service integration, thus saving
the user from tedious and non-scientific data manipulation tasks. The
Mobyle typing system describes program parameters using a typing
mechanism that aims to help users in such tasks. It modifies the
interface display, the controls for user values (the input parameters),
the possibility of chaining between programs and data reusability.

Similarly to SWAMI (Rifaieh et al., 2007), data and parameter
characterization is multidimensional:

• the biotype describes the biological object (e.g. nucleic acid,
protein or drug);

• the datatype describes the data ‘structure’ (e.g. sequence,
alignment and matrix, but also more basic types for ‘non-bio’
parameters such as string or integer);

• the format (blast html report, fasta sequence, phylip distance
matrix).

The type of a data item or a parameter is used to:

• detect, check and convert the format of the data provided by
the user, based on external ancillary tools;

• filter the available data sources (banks) that can be used to load
data directly into a given tool;

• filter the data bookmarks that can be reused in a new analysis;

• filter the programs that a given result can be piped to;

• offer specific visualization options in the interface (such as Java
applets) (currently in development).

In contrast with other typing systems, such as the one offered by
BioMOBY, the parameter compatibility between two tasks is based
on a more abstract description. Since the Mobyle system can convert
the data to the format which is accepted by the next task, there is
no need to have service interoperability rely on a bioinformatics
format description. For instance, in the Mobyle Pasteur server,

Fig. 3. Mobyle components overview.

the user can align a set of protein sequences using the clustalw-
multialign interface, then pipe the clustalw-formatted result to
Phylip protdist: although this program only accepts Phylip-formatted
multiple alignments, the squizz program, which handles sequence
and alignment conversions, will automatically detect and convert
the multiple alignment into the accepted format. This approach
simplifies the construction of the protocol: the user does not have to
specify data transformation tasks, allowing optimal handling of the
data (the format conversion information is directly accessible in the
job result page). This typing system is configurable and relies on a
‘best-effort’ approach. Tasks such as format detection or conversion
are handled by the system only if they are compatible with the local
configuration.

This feature underlies the difference in what is considered to
be a ‘service’ between Mobyle and BioMOBY: in Mobyle, data
format conversions should be, as far as possible, considered as mere
connectors in the analysis dataflow, whereas in BioMOBY they
are considered to be on the same level as other analysis programs.
Furthermore, since some programs accept multiple data formats as
inputs, publishing them in BioMOBY involves registering multiple
services on the registry (one per accepted format), whereas they are
published as a single ‘interface’ in Mobyle.

3.4 Components
The Web portal provides a unified access to the services available
on the server which is briefly described on Figure 3. We use Ajax
(Garrett, 2005) to coordinate required information and to enable the
user to explore various functionalities on a single page. For instance,
a user action such as a job submission triggers an update of the user’s
job list and the data bookmarks list. This event triggers an update
of the history data available in the program forms, without the page
having to be completely reloaded.

The Mobyle server, based on a set of python modules, handles
the various aspects of job, data and session managements. The most
important of these, job submission, includes:

• security validation of parameters and semantic validation (data
types, range of value, compatibility between options);

• command-line construction;

• submission to an execution system, which could be local or on
a cluster managed by SGE or torque;

• job cancelling or status querying;

• data management: all data needed to replay a job are stored
(inputs, outputs, secondary parameters, etc.), ensuring the
traceability of each job.

3008



[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3009 3005–3011

Mobyle

Fig. 4. Mobyle network architecture. The Mobyle server can invoke either
local or remote programs, integrating them in a single work environment.

The server also has a substantial capacity for configuration, such
as setting program access permissions based on request address,
user limit for space size and handling user account types (registered
and/or guest accounts). All of these features are based on server
administrator needs.

3.5 The Mobyle network
The Mobyle network allows the execution of programs that are
available on different Mobyle servers from a single portal. This
feature facilitates user access to services physically distributed over
different Mobyle servers, within an integrated environment enabling
data reuse and program chaining. As opposed to BioMOBY, Mobyle
does not provide any central repository to register new services,
relying instead on a distributed registration: each Mobyle server
administrator chooses to publish a number of services, which can
be upon his choice exported to or imported from remote Mobyle
servers. Remote program invocation relies on the import of the
remote program XML descriptions. Upon submission, this allows
to generate a call to the remote server instead of generating and
submitting a local batch call. In such a configuration, the user
workspace, as well as the local jobs, remain stored on the initial
server, but remotely invoked jobs are directly linked from their
execution servers (Fig. 4).

We demonstrate the use of this facility for the easy comparative
modelling of the structure of a protein identified from analysis
of the sunflower genome. A step by step tutorial is available on
the MobyleNet help pages (http://mobyle.rpbs.univ-paris-diderot.fr/
help/MobyleTutorials_network.html). This task can be broken down
into several successive steps: inferring protein sequence from the
genomic information, performing a search for a template structure,
fitting the query sequence to the template and then generating a
3D model. Protein sequence inference can currently be performed
through the LIPM Mobyle server, using the heliagene resource
dedicated to sunflower genomic information. The next steps can
be achieved through the RPBS Mobyle server using a two pass blast
(PDBblast service) to identify candidate template structures from
the query sequence. Sequence alignment can be performed through
the Institut Pasteur Mobyle server using the clustalw service. Finally,
the 3D modelling and model visualization/analysis can be performed
through the RPBS site (Fig. 2). The Mobyle network allows efficient
organization of the complete sequence of tasks as a pipeline, without
having to leave the RPBS Mobyle portal, but making use of the
resources and services at the three sites.

3.6 Deploying BioMOBY services from Mobyle
program descriptions, using PlayMOBY

PlayMOBY is an external Mobyle companion tool allows
the publication of BioMOBY-compliant web services, using
Mobyle program descriptions. From the same XML description,
bioinformatics programs can thus be both published on the
Mobyle network and used by the code generator of PlayMOBY
in order to implement, register and validate BioMOBY web
services automatically. PlayMOBY also integrates a perl library
to generate the corresponding Mobyle XML description file from
program parameters. Thus, PlayMOBY reduces the overheads
of publishing BioMOBY web services. To date, PlayMOBY
handles more than 100 BioMOBY web services for providing
generic sequence analysis tools and ensuring the interoperability of
specialized databases (http://www.legoo.org, http://www.heliagene
.org and http://narcisse.toulouse.inra.fr).

In addition to web service deployment, PlayMOBY provides
daily monitoring tools for the deployed web services. During the
Mobyle to PlayMOBY format conversion step, a service developer
can provide a test dataset for each service input. These data are used
to test web services availability and consistency by the provider
himself. We made the choice to not allow web services users
to launch these tests, which are instead automatically launched.
The tests consist in verifying accessibility to the web service and
consistency and stability of the results on test data. Their results
are published as XML reports and RSS feeds. The PlayMOBY
description for the QoS presently follows the specifications stated
by the BioWorkflow group (Wessner et al., 2008). However, it could
easily be extended to other frameworks such as the BioCatalogue
project (Belhajjame et al., 2008). In the case of failures or
unexpected results, alerts are sent by e-mail to the developers. Thus,
PlayMOBY also provides the framework to evaluate Mobyle service
reliability and curation. This problem is particularly important in
bioinformatics, given the volatility of tools (especially web-based),
impairing the reliability of biological data processing.

4 DISCUSSION AND PERSPECTIVES

4.1 System design: a user-centered approach
Over a period of 4 years leading up to Mobyle’s first release,
a series of about 30 user interviews and participatory design
workshops involving brainstorming sessions and video prototyping
were conducted. These were used to gain a deeper understanding
of how a web portal could facilitate the use of bioinformatics
tools by biologists. These studies are described in detail elsewhere
(Letondal and Amanatian, 2004). The results showed the principal
needs of biologists to be: (1) a stable and predictable set of known
tools integrated in a portal designed for inexperienced users; (2)
an overview of the analyses and careful organization of results; (3)
reusability features to re-execute previous commands; and (4) user-
defined and ready-to-use analysis pipelines, similar to benchmarked
protocols. We also concluded that caution should be taken regarding
advanced features. Indeed, (5) biologists are often sceptical about
sophisticated tools that are difficult to understand: they have to be
able to anticipate the benefits that such tools may provide.

Before opening the portal, we invited users to participate in test
sessions. We selected 16 users among the users of the previous
portal, ranging from beginners to frequent users, to participate in test

3009



[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3010 3005–3011

B.Néron et al.

sessions. We used the think-aloud method (Nielsen, 1994), involving
users working in pair. Participants were told they could bring their
own data. Most of them tried 2D structure analysis, alignment and
phylogenetic programs. Several users perceived the new system
as more complex, but more complete than the current one. They
appreciated being able to retrieve jobs results, particularly from the
databox menus. Most of the concerns, which were consequently
solved, were related to (i) having to navigate back and forth between
forms and results; (ii) user accounting; (iii) not fully understanding
some English terms (such as ‘pairwise’ alignment) used in program
classification; and (iv) ambiguities concerning data storage.

The Institut Pasteur, RPBS and LIPM Mobyle servers have been
publicly available since January 2008, October 2008 and January
2009, respectively. The Pasteur server provides access to a wide
range of bioinformatics tools mainly focused on sequence analysis
and phylogeny; the LIPM server offers access to tools related to
plant genomics; and the RPBS server publishes programs that mainly
concern structural bioinformatics. Over 400 000 jobs have already
been submitted by over 40 000 different users throughout the world
on these servers.

4.2 Original contributions
The Mobyle project arose from the natural evolution of software
such as PISE, offering a simple way to publish and to share
bioinformatics software on the Web. Program chaining is limited
to the most common usage patterns that we identified, and does
not provide any of the advanced workflow patterns included in
previously described systems (Taverna, Kepler). It is not either
intended to handle analyses of very large quantities of data,
data transfer over the network being too costly for web-based
applications.

Several aspects make this approach novel:

• the simplicity of the interface, aiming to provide advanced
functionalities without imposing the steep learning curve
generally associated with complex systems. For instance, data
can be directly uploaded onto the program form (without
having to navigate to a separate upload interface) and the data
format is automatically detected and validated. This simplicity
is in the continuity of the PISE approach, with the addition
of new features such as a persistent workspace and multiple
functionalities to facilitate data reuse.

• flexibility in the design of the program user interfaces
(submission forms and job results pages, as described in Section
3.2.5) and in the configuration of the system.

• the Mobyle network enables the integration of local software
with remote services, reducing the costs associated with
the local maintenance of an exhaustive list of programs.
Application of this strategy over several Mobyle sites should
help to connect providers, generating a framework that
emcompasses a wide spectrum of applications and covers
complementary aspects of bioinformatics. This strategy needs
to be tested for a large number of sites; however, we anticipate
the generation of a confidence network combining specific
tools offered by each platform and thus promoting quality
management of the services.

• deployment of BioMOBY web services from bioinformatics
programs is made available through PlayMOBY. It thus benefits

from the conceptual strength of the BioMOBY architecture,
while avoiding the duplication of wrapper authoring effort,
using a common format for both Mobyle and BioMOBY
publications. Additionally, it encourages good practices such
as services monitoring by integrating the design of tests into
the publication process.

4.3 Current developments
Workflows and protocols: Mobyle already embeds a prototype
dataflow-oriented workflow engine, enabling the chaining of
successive or parallel tasks to be automated. It runs on top of the
Mobyle core library, exploiting the Mobyle network to execute tasks
distributed between local and remote servers, and orchestrates the
tasks to synchronize their execution with the availability of all their
input data.

Mobyle workflows modelize a set of tasks, but in contrast with
existing workflow languages such as SCUFL in Taverna (Oinn
et al., 2004) or MoML in Kepler (Altintas et al., 2004), do
not specify explicitly some low-level data format detection and
transformation tasks. Authors are, whenever possible according
to local configuration, not asked to specify these steps. Hence,
the storage of workflow definitions is planned to be based on
an extension of the current Mobyle XML language, as they are
based on a higher level perspective on the analyses they describe.
An interesting outcome is the possibility to save an interactively
designed program chaining as a reusable composite service. This
perspective provides a gateway towards the publication of user-
acknowledged protocols on a community-based platform such as
myexperiment.org (De Roure et al., 2007). Future end-user access
to the workflow definitions and workflow engine will be integrated
to the current web interface.

Web services: the PlayMOBY system already allows the
automated publication of BioMOBY web services using Mobyle
program definitions. Future work also includes enabling the use
of other approaches such as custom SOAP or REST interfaces,
and SoapLab. Enabling the integration of such services as remote
programs, for which the Mobyle Web Portal acts as a client will also
be considered.

Didactic tutorials: further developments will encompass the
design of tutorials. As explained by Cattley and Arthur (2007),
integrated web portals are a very efficient learning and teaching tool.
Mobyle additionally provides technical support for implementing
interactive tutorials. A major issue to be incorporated in its design is
to make more interactive components available: as shown by user
studies, workflows should be available as semi-automatic protocols,
with interactive components enabling the biologist to customize the
visualization of the result from an analysis (e.g. a 3D molecule or
an alignment).

5 CONCLUSIONS
The design of Mobyle, which provides an effective way to
make a large panel of curated bioinformatics tools available in
a homogeneous environment, has been driven with the concern
to meet the requirements of different audiences—biologists and
bioinformaticians, mostly. Our objective was thus to facilitate the
access to complex features and advanced technologies by a design

3010



[09:28 4/11/2009 Bioinformatics-btp493.tex] Page: 3011 3005–3011

Mobyle

that suits the work of biologists, which we were able to observe and
understand during a number of interviews and workshops.

Funding: the Agence Nationale de la Recherche (GPLA06026G
ANR Genoplante, to PlayMOBY project ).

Conflict of Interest: none declared.

REFERENCES
Alland,C. et al. (2005) RPBS: a web resource for structural bioinformatics. Nucleic

Acids Res., 33, W44.
Altintas,I. et al. (2004) Kepler: An extensible system for design and execution

of scientific workflows. In SSDBM ’04: Proceedings of the 16th International
Conference on Scientific and Statistical Database Management. IEEE Computer
Society, Washington DC, p. 423.

Belhajjame,K. et al. (2008) Biocatalogue: a curated web service registry for the
life science community. In Proceedings of the Third International Biocuration
Conference, April 16–19, 2009. Berlin, Germany.

Carrere,S. and Gouzy,J. (2006) REMORA: a pilot in the ocean of BioMoby web-
services. Bioinformatics, 22, 900–901.

Cattley,S. and Arthur,J. (2007) BioManager: the use of a bioinformatics web application
as a teaching tool in undergraduate bioinformatics training. Brief. Bioinform., 8,
457–465.

Clark,J. et al. (2001) RELAX NG Specification. Available at http://www.oasis-open.
org/committees/relax-ng (last accessed date September 4, 2009).

De Roure,D. et al. (2007) Designing the myexperiment virtual research environment for
the social sharing of workflows. In eScience, Bangalore, December 10–13. IEEE
Computer Society, pp. 603–610.

Garrett,J. (2005) Ajax: a new approach to web applications. Adapt. Path, 18.
Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome analysis.

Genome Res., 15, 1451–1455.
Gilbert,D. (2002) Pise: software for building bioinformatics webs. Brief. Bioinform.,

3, 405–409.
Gordon,P.M.K. and Sensen,C.W. (2007a) A Pilot Study into the Usability of a Scientific

Workflow Construction Tool. Technical Report #2007-874-26, Department of
Computer Science, University of Calgary, Canada.

Gordon,P. and Sensen,C. (2007b) Seahawk: moving beyond html in web-based
bioinformatics analysis. BMC Bioinformatics, 8, 208.

Hallard,M. et al. (2004) Bioside: faciliter l’accès des biologistes aux ressources
bioinformatiques. In JOBIM 2004 : 5èmes journèes ouvertes biologie informatique

mathèmatique, 27-30 juin, Montrèal, Canada. –. IASC - Dèpt. Intelligence
Artificielle et Systèmes Cognitifs (Institut TELECOM; TELECOM Bretagne), p. 64.

Javahery,H. et al. (2004) Beyond power: making bioinformatics tools user-centered.
Commun. ACM, 47, 58–63.

Letondal,C. and Amanatian,O. (2004) Participatory design of pipeline tools and web
services in bioinformatics. In Requirements Capture for Collaboration in e-Science
Workshop. National e-Science Center. e-Science Institute, Edinburgh.

Letondal,C. (2001) A web interface generator for molecular biology programs in Unix.
Bioinformatics, 17, 73–82.

Lushbough,C. et al. (2008) Bioextract server - an integrated workflow-enabling system
to access and analyze heterogeneous, distributed biomolecular data. IEEE/ACM
Trans. Comput. Biol. Bioinform., 99.

Navas-Delgado,I. et al. (2006) Intelligent client for integrating bioinformatics services.
Bioinformatics, 22, 106–111.

Nielsen,J. (1994) Usability Engineering. Morgan Kaufmann, San Francisco.
Oinn,T. et al. (2004) Taverna: a tool for the composition and enactment of bioinformatics

workflows. Bioinformatics, 20, 3045–3054.
Reich,M. et al. (2006) GenePattern 2.0. Nat. Genet., 38, 500.
Rice,P. et al. (2000) Emboss: the European molecular biology open software suite.

Trends Genet., 16, 276–277.
Rifaieh,R. et al. (2007) Swami: integrating biological databases and analysis tools

within user friendly environment. In Boulakia,S.C. and Tannen,V. (eds) Data
Integration in the Life Sciences (DILS), Vol. 4544 of Lecture Notes in Computer
Science. Springer, Philadelphia, PA, pp. 48–58.

Sarachu,M. and Colet,M. (2005) wemboss: a web interface for emboss. Bioinformatics,
21, 540–541.

Senger,M. et al. (2003) Soaplab - a unified sesame door to analysis tools. In
Proceedings of the UK e-Science All Hands Meeting 2–4th September, 2003.
EPSRC, Nottingham, pp. 509–513.

Shachak,A. et al. (2007) Barriers and enablers to the acceptance of bioinformatics tools:
a qualitative study. J. Med. Libr. Assoc., 95, 454–458.

Shneiderman,B. (1983) Direct manipulation: a step beyond programming languages.
IEEE Comput., 16, 57–69.

Subramaniam,S. (1998) The biology workbench - a seamless database and analysis
environment for the biologist. Proteins Struct. Funct. Genet., 32, 1–2.

Wessner,M. et al. (2008) BioWorkFlow: web services toolkit and workflow applications
evaluation to deploy a confidence network. In Jobim (Journées Ouvertes Biologie
Informatique Mathématiques), Lille France.

Wilkinson,M.D. (2004) BioMOBY - the MOBY-S Platform for Interoperable Data
Service Provision. In Grant,R.P. (ed.) Computational Genomics Theory and
Application. Horizon Bioscience, Wymondham.

Wilkinson,M. (2006) Gbrowse Moby: a web-based browser for BioMoby services.
Source Code Biol. Med., 1, 4.

3011


