
Review Article

Monro-Kellie 2.0: The dynamic
vascular and venous pathophysiological
components of intracranial pressure

Mark H Wilson

Abstract

For 200 years, the ‘closed box’ analogy of intracranial pressure (ICP) has underpinned neurosurgery and neuro-critical

care. Cushing conceptualised the Monro-Kellie doctrine stating that a change in blood, brain or CSF volume resulted in

reciprocal changes in one or both of the other two. When not possible, attempts to increase a volume further increase

ICP. On this doctrine’s ‘‘truth or relative untruth’’ depends many of the critical procedures in the surgery of the central

nervous system. However, each volume component may not deserve the equal weighting this static concept implies. The

slow production of CSF (0.35 ml/min) is dwarfed by the dynamic blood in and outflow (�700 ml/min). Neuro-critical care

practice focusing on arterial and ICP regulation has been questioned. Failure of venous efferent flow to precisely match

arterial afferent flow will yield immediate and dramatic changes in intracranial blood volume and pressure. Interpreting

ICP without interrogating its core drivers may be misleading. Multiple clinical conditions and the cerebral effects of

altitude and microgravity relate to imbalances in this dynamic rather than ICP per se. This article reviews the Monro-

Kellie doctrine, categorises venous outflow limitation conditions, relates physiological mechanisms to clinical conditions

and suggests specific management options.
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Search strategy and selection criteria

Relevant articles were identified by searches of PubMed
(1969 to May 2015), and also from the references they
quoted. The search terms ‘intracranial pressure’, ‘intra-
cranial hypertension’, ‘neurotrauma’ and ‘traumatic
brain injury’ were used with others relevant to each
section (e.g. ‘cervical collar’, ‘venous drainage’).

Introduction

History

Skulls from as far back as 6000 BC show evidence of
trephination (thought to be performed to relieve per-
ceived ‘pressure’ headaches).1 However, it was in 1783
that a ‘science’ of intracranial pressure (ICP) was first
proposed. Edinburgh physician Alexander Monro2

(Figure 1(a)), described the skull as a rigid structure
containing incompressible brain and stated that the

volume of blood must remain constant unless: ‘water
or other matter is effused or secreted from the blood-
vessels’ in which case ‘a quantity of blood, equal in
bulk to the effused matter will be pressed out of the
cranium’.

In 1824, Monro’s former student George Kellie3

confirmed that in human and animal autopsies, cerebral
(in particular, venous) blood volume was similar no
matter what the cause of death (hanging or exsan-
guination for example). Local pathologist John
Abercrombie4 studied exsanguinated animals and
showed that unless the skull and dura were breached,
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the brain did not exsanguinate in the same way as other
organs – the protection the skull offers the brain when
ICP is negative to atmospheric pressure often being
forgotten. In none of their accounts, however, did any
of this Edinburgh group mention cerebral spinal
fluid (CSF).

In the 16th century, the peers of Vesalius, a Flemish
anatomist, rejected his observation that fluid (rather
than gas or spirit) filled the cerebral ventricles. It was
the French physiologist François Magendie5 who firmly
established the concept of CSF, demonstrating that
fluid communicated between the subarachnoid space
and fourth ventricle through the foramen that now
bears his name.5

Four years later, the English physician George
Burrows6 incorporated the role of CSF into Monro’s
doctrine, although some were critical, stating that
Burrows overplayed CSFs importance and ‘magnified
it’s influence’ and role within ICP.7,8 However, the view
that CSF shared blood’s importance in ICP regulation
was accepted when Harvey Cushing9 vividly presented
the summarised doctrine we know today – that with an
intact skull, the sum of the volume of brain, blood and
CSF is constant: an increase in one causing a decrease
in one or both of the remaining two. Even today, this
classic explanation forms the basis of neurosurgery and
neurotrauma teaching worldwide (Figure 1(b) and (c)).
But a precise understanding of what alters ICP is vital
as Weed10 stated – on this doctrine’s ‘truth or relative
untruth, depend many of the critical procedures in the
surgery of the central nervous system’. Interestingly,
neuro-critical care practices focusing on arterial and
ICP regulation have recently been questioned.11,12

Normal ICP is �5–15mmHg, but is greatly influenced
by orthostatic position (for example, it can be negative

when standing up) and is generally very similar to cere-
bral venous pressures (if no distal obstruction).

The dynamic components of ICP

The equal weighting to blood and CSF that the static
Monro-Kellie doctrine implies, however, misses the
dynamic reality. The slow and (relatively) steady pro-
duction of CSF (&0�35ml/min) is dwarfed by substan-
tial, continuous blood inflow and outflow: at rest, the
brain receives approximately 14% of the cardiac output
(&700ml/min).13 This is a sizeable volume considering
that the average male intracranial volume (including
brain and CSF) is only twice this (1473ml).14 At any
moment in time, the intracranial blood volume is
�100–130ml (�15% arterial, �40% venous and
�45% in the microcirculation). CSF volume is
�75ml (the volume of blood entering in approximately
5 s). Hence, while CSF removal or displacement can
reduce ICP, its accumulation is rarely the cause of
raised ICP in an acute pathology such as trauma.
This is in contrast to CSF obstructive/non-absorption
pathology which can result in hydrocephalus and a
more gradual rise in ICP.

Arterial influence on ICP. Many have focused on the role
of cerebral arterial flow in neuro-critical care. In the
early 1970s, Miller and Langfit15,16 drew attention to
the concept of estimated cerebral perfusion pressure
(CPP) and its calculation from mean arterial pressure
(MAP) and ICP (CPP¼MAP – ICP). If this equation
was entirely true, ICP would equal MAP-CPP implying
no venous involvement. By demonstrating a correlation
coefficient of 0.98 between ICP and cortical vein pres-
sure in baboons, Johnston and Rowan17 suggested that

Figure 1. (a) Alexander Monro secundus (1733–1817). Eminent Scottish physician. (b) Adaptation of current explanation of

Monro-Kellie doctrine within advanced trauma life support (ATLS) and most critical care teaching demonstrating that additional mass

results in a large volume of CSF then venous blood displacement. (c) Demonstrates that once the period of compliance that this

displacement affords runs out, there is an exponential rise in pressure. This description fails to explain the importance of volume flow.

From ATLS Course Manual 9th edition.
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the equation was true. However, their studies failed to
investigate raised ICP secondary to outflow obstruc-
tion. It is well recognised that gentle pressure to the
neck over the jugular veins causes an ICP rise. The
CPP equation has resulted in diverse guidelines that
advocate MAP and CPP targets in the management
of brain injury. The European Brain Injury
Consortium recommend a MAP of >90mmHg.18 The
Association of Anaesthetists of Great Britain and
Ireland recommend >80 mmHg19 and The Brain
Trauma Foundation advise avoidance of systolic pres-
sures below 90mmHg.20 A number of pre-hospital
organisations have interpreted this as keeping systolic
at ‘normal’ levels (100 or 120mmHg21). Such targets
lack a strong evidence base,11,22 perhaps in part because
a single ideal CPP is unlikely to exist for all the different
forms of brain injury and because increasing CPP also
tends to increase ICP. Meanwhile, cerebral blood flow
resulting from any given MAP will differ between indi-
viduals (amongst whom the range of ‘autoregulation’ of
flow may vary), and with differences in the vasodilator
PaCO2.

23 The ‘static’ view of the factors regulating
ICP, and the focus on arterial inflow alone, has
meant that the important influence of cerebral veins
has been almost entirely neglected.

Venous influence on ICP. The internal jugular veins are fed
from three main intra-cerebral venous drainage systems
(Figure 2(a)):24

1. Cortical veins drain (via bridging veins) into the
sagittal sinus which leads posteriorly to the torcula
(confluence of sinuses) and then (in most people) to
the right transverse sinus.

2. Deeper (anterior) venous drainage occurs into
the cavernous sinuses which in turn drain via super-
ior and inferior petrosal sinuses into the jugular
bulbs.

3. Central (thalamic) areas drain via a series of small
veins into the internal cerebral veins superiorly and
the basal veins of Rosenthal inferiorly. These unite
(behind the splenium of the corpus callosum) to
form the Great Vein of Galen which then drains
via the straight sinus into the torcula and then
(in most people) to the left transverse sinus.

Cerebral venous drainage is significantly asym-
metric in circa 50% of subjects.25 Transverse sinus
drainage is predominantly right sided in approximately
40% of subjects and left sided in about 18%.26,27

This can usually be demonstrated by a predominately
larger sinus on CT or MR venography. Obstruction to
a dominant sinus has considerably more effect than
obstruction to a non-dominant one. Only a small
minority of people have significant drainage through
the cervical venous plexi28 which are of much greater
significance in supine mammals such as swine that have
not evolved to the gravitational effects of becoming
bipeds.29

Unlike the strong muscular arterial walls, those of
the venous sinuses (being triangular dural reflections
(Figure 2(b)) are susceptible to dilatation and compres-
sion. In the sitting position, the sagittal sinus has a
negative pressure that can result in (potentially fatal)
air embolism if opened. When supine, bleeding from
the sinuses can be torrential. Likewise, when upright,
human internal jugular veins tend to collapse under
negative pressure, but engorge on lying.30

Figure 2. (a) Schematic representation of the commonest pattern of cerebral venous drainage. Adapted from Wilson et al.24

(b) Cross-sectional representation of the sagittal sinus. The dural reflections create a triangular lumen with no muscular wall in marked

contrast to the arterial circulation. This makes venous structures more vulnerable to compression.

1340 Journal of Cerebral Blood Flow & Metabolism 36(8)



A role for veins influencing ICP. Concentration on arterial
inflow, and failure to consider the role of venous drain-
age in ICP regulation, means that much important
subtlety is missed: reflection suggests that failure for
venous efferent flow to precisely match arterial afferent
flow (even when the failure results from intracranial
venous compromise) will yield immediate and dra-
matic changes in intracranial volume and pressure.
Interpreting the value of regulating ICP, without inter-
rogating its core drivers, may be misleading.

In this regard, much historical work has been for-
gotten. Leonard Hill8 demonstrated that venous and
CSF pressures were aligned and suggested that, given
the lack of valves in the cranio-vertebral venous system,
vena caval pressure reflected CSF pressure, and retinal
venous distension could reflect intracranial venous
pressure. With great insight, he suggested that ICP
would be more affected by changes in vascular pressure
‘from the venous side to a far greater degree than from
the arterial side, because it is on the arterial side that
the resistance lies’. Similarly Bedford et al.31 and
Ferris32 demonstrated the greater importance of the
venous system within the Monro-Kellie doctrine.
Specifically, increasing central venous pressure (CVP)
results in increasing ICP when compliance is lost,33 and
this in turn results in the formation of brain oedema
and swelling.34 Queckenstedt’s35 manoeuvre obstruct-
ing venous outflow (which he described in 1916) clearly
demonstrates the relationship between increased distal
venous pressure and ICP. The velocity of blood in the
straight sinus and other venous structures, as measured
using transcranial Doppler, has been shown to correlate
linearly with ICP.36

Since most neurosurgery today is performed under
general anaesthesia, we are less aware of which intra-
cranial structures are painful. Ray and Wolff37 reported
multiple observations on up to 30 patient subjects.37

They demonstrated that pressure on the sinuses (par-
ticularly tension at the margins) caused significant
headache pain as indicated in Figure 3. Again, the
pain of venous structures has largely been forgotten.

Causes of raised cerebral venous pressure

Individual susceptibility to intracranial hypertension
may thus be influenced by the anatomical balance of
cerebral venous drainage and its compliance. As cere-
bral blood flow rises, so too must venous drainage.
Venous distension will occur up to a limit, after
which intravenous pressure (and that upstream, and
thus ICP) will rise steeply (in a similar manner to
when the limits of compliance are reached in the classic
Monro-Kellie doctrine of Figure 1). Anatomical imbal-
ance in venous drainage (i.e. an inability to drain
venous blood adequately for a given cerebral blood

inflow without raising venous pressures) will predispose
to such venous and intracranial hypertension despite
what may appear to be an ‘atrophic’, anatomically
compliant system on plain CT. Clinically, this may pre-
sent with the headache of venous distension when alert
or refractory intracranial hypertension if undergoing
ICP monitoring. Intracranial venous hypertension can
be caused by increased venous resistance/pressures
within the cranium or outside it. Within the cranium
this can be focal (from outside the sinus, within the
sinus wall or within the sinus lumen) or it can be diffuse
compression. Further, venous hypertension can origin-
ate in the neck, thorax or abdomen. See Table 1 for a
suggested classification with clinical examples.

Ia: Focal external venous compression

The thin dural venous sinus walls make them prone to
both focal and diffuse compression. Acute compression
may result from a depressed skull fracture (Figure 4(a))
or, more commonly, from an expanding mass (e.g.
extradural/periosteal haematoma) that may actually
be the result of a damaged sinus (Figure 4(b)).
Compression may in turn lead to thrombosis and
both may cause intracranial hypertension.38 The loca-
tion of the fracture and sinus dominance is important in
determining the consequence of this. It is our experi-
ence that occipital skull fractures over the right trans-
verse sinus are more significant since this is the
dominant sinus in most people. Fractures over a hypo-
plastic sinus rarely have significant effect on ICP.

Glomus tumours can have similar effects, although
slow growth allows collateral circulation development
and the opening of the opposite transverse sinus and
cervical plexus.39 Epidural abscesses can also restrict
venous outflow.40 Of note, while lesion volume can
appear small (see Figure 4(b)), the impact on ICP
may be wholly unrelated and excessive (compared to
the apparent reserve space/compliance of a CT image).

Treatment depends on how significant the resulting
venous compromise is. A conservative management
with permissive intracranial hypertension may suffice,
although elevating a fracture (Figure 4(a)) or a single
burr hole can reduce the mass compressing the sinus
and subsequent intracranial hypertension.

Ib: Focal venous sinus stenosis

Focal transverse sinus stenosis (graded as shown in
Figure 4(c))41 is associated with idiopathic intracranial
hypertension (IIH characterised by headache, loss of
peripheral vision and nausea).42,43 Bilateral stenosis is
found in up to 90% of sufferers.44–46 Moreover, endo-
luminal stenting of stenotic regions can dramatically
improve symptoms.45,47–49 IIH tends to be a disease
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of young overweight women. The additional weight
may be contributory to intra-cerebral venous hyperten-
sion (through mechanisms III, IV, and V outlined
below), tipping a patient that would otherwise be
asymptomatic into the decompensated category.

Ic: Focal internal obstruction

Ecker50 described dural sinus thrombosis associated
with skull fracture and many more cases have been
reported.51–66 Nonetheless, it is considered rare – per-
haps due to lack of systematic approaches to identify its
presence. Indeed, in a series of 21 ventilated head injury
patients with a skull fracture over the sinus, Kolias
et al.67 found that sinus thrombosis was common
(affecting 8 (¼38%) patients) and associated with a
high mortality (3 of the 8 died compared to none of
the 13 without thrombosis). This group also have
impaired pressure reactivity. A recent study by our
group has demonstrated that 48% of patients with
occipital skull fractures over the transverse sinus had

thrombosis and a further 13% had external obstruction
(see above) sometimes with thrombosis (n¼ 29).69

Treatments have included conservative manage-
ment,59 acetazolamide, anticoagulation,52 ventricular-
peritoneal (VP) shunt insertion,53 endovascular
treatment58 and decompressive craniectomy (DC).56

Conservative management is reasonable in the absence
of progressive symptoms. In symptomatic cases where
there is a depressed skull fracture over the sinus, eleva-
tion (raising of the depressed bone piece) should be
considered if there is flow disruption or symptomatic
thrombosis. This can safely be achieved by drilling off
just the bone that is holding the fragment depressed and
allowing it to rise (Figure 4(a)). Ozer et al.62 reported
elevating 17 depressed skull fractures over sinuses.62

While they make no mention of sinus thrombosis,
they reported ‘massive blood loss’ in 11 of the cases
although control was regained. Two of the patients
died from associated intra-cerebral lesions. If the
thrombosis is progressing and results from an undis-
placed fracture then endovascular treatment where

Figure 3. View of a coronal section through the head, showing the falx cerebri, the tentorium cerebelli, and the associated venous

sinuses. The full legend is within the figure.37
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available may be considered. Failure to elevate
depressed skull fractures over the sagittal sinus can
result in IIH.63–65,70

Id: Diffuse compression of the venous system

Diffuse brain swelling can also cause generalised venous
compression creating an internal starling type resistor.
Recent evidence implies that in many cases of IIH, the
entire dural sinus tree appears to be compressed.71

A cycle of venous hypertension, cerebral swelling, fur-
ther venous compression and therefore hypertension
occurs. This cycle can be broken with CSF drainage
although it is likely to recur again, not as CSF accumu-
lates but as venous hypertension recurs. Pickard et al.46

studied CSF and sagittal sinus pressures in nine
patients with IIH. During CSF, drainage CSF pressure
decreased below central venous pressure (CVP), while
the sagittal sinus pressure fell only to CVP and not
lower. This suggests that functional obstruction of
venous outflow through the dural sinuses is present in
many IIH cases. Raised CSF pressure partly obstructs
venous sinus outflow, thereby increasing sinus pressure
and then CSF pressure, et sequor.

It is our experience that a similar phenomenon can
occur with other causes of cerebral swelling, such as
that resulting from trauma. Figure 5 is a CT venogram
of a patient with diffuse cerebral swelling following
trauma which also demonstrates diffuse compression
of both transverse sinuses. A DC was performed for
refractory high ICP. A post-operative CT venogram
demonstrated marked increase in sinus calibre.

The diffuse parenchymal volume increase that occurs
with prolonged hypoxia (such as occurs at altitude) has
recently also been demonstrated to cause venous com-
pression which may in turn raise ICP (Sagoo et al,
2016).

Venous pressures can be inferred from brain CT
scans. The superior ophthalmic vein is normally
between 1.4 and 3.6mm (mean 2.2mm).72 Bilateral
superior ophthalmic vein enlargement (considered>
2–3mm) is associated with diffuse cerebral swelling as
reported in 11 cases.73

Extracranial causes of cerebral venous hypertension

II Cervical. Neck pressure is well recognised to have a
significant effect on ICP. Queckenstedt’s35 test is now
an outdated technique for investigating spinal stenosis.
The test comprised jugular venous compression with
concurrent lumbar puncture. Those with spinal stenosis
have a slower lumbar pressure CSF rise than those
without. The author has modified this technique. By
applying pressure over each jugular (separately) while
watching invasively monitored ICP, a crude assessment
can be made as to the dominance of venous drainage
and the degree of venous compliance.

Poor head position is often overlooked but is an
incredibly important cause of raised ICP.
Mavrocordatos et al.74 in a study of elective neurosur-
gery patients without raised ICP (n¼ 15) demonstrated
that ICP was lowest with the head in a neutral position.
Flexion and worse still flexion with rotation caused sig-
nificant increases in ICP (e.g. from mean 8.8mmHg

Table 1. Suggested classification of venous causes of intracranial hypertension.

Classification Location of resistance/pressure Clinical examples

I a Focal extramural venous

sinus compression

External compression of a significant

venous sinus at a focal point

Depressed skull fracture,

periosteal hematoma, tumor.

b Focal intermural venous

sinus stenosis

A focal narrowing within the

sinus wall

Idiopathic intracranial hypertension

c Focal intramural venous

sinus obstruction

Obstruction within a significant

venous sinus

Sagittal or transverse sinus thrombosis.

d Diffuse venous compression Throughout the venous tree Any cause of cerebral swelling e.g.

hypoxia, cerebral edema, contusions

II Extracranial venous

hypertension – cervical

Within the neck Cervical collars, hanging

III Extracranial venous

hypertension – thoracic

Within the thorax Any cause of increased intra-thoracic

pressure – Chest infection, adult

respiratory distress syndrome,

mechanical ventilation

IV Extracranial venous

hypertension – abdominal

Within the abdomen Any cause of increased abdominal

pressure - obesity, obstruction

V Orthostatic/gravity Visual impairment and raised ICP/space

obstruction syndrome
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when neutral to 16.2mmHg when rotated to the right
and flexed). This is an even greater problem in children
with larger occiputs (resulting in flexion) and floppier
necks.75

Cervical collars can increase ICP from about
4.5mmHg76–78 to as much as 14.5mmHg,77 the rise
being greater in those with baseline ICP> 15mmHg.78

This probably reflects the degree of intracranial com-
pliance: a patient who can accommodate less cerebral
venous engorgement will have a more immediate rise in
ICP. These mean pressure increases may be small, but
they can have profound effects if sustained79 or if the
patient is at the limit of their compliance. Stone et al.80

have recently demonstrated that collar application
causes an increase in internal jugular vein cross-
sectional area of 37% (95% confidence interval
[CI]¼ 20% to 53%) strongly supporting the hypothesis
that it is venous compression and resulting congestion
that underlies the collar induced ICP increase. As a

result, the benefits of cervical collars in the acute man-
agement of traumatic brain injury are questionable to
say the least.81

Other cervical causes of acute venous hypertension
include near hanging and strangulation which can
induce venous/haemorrhagic infarction.82 More
chronic causes include jugular syndromes blocking out-
flow83 and superior vena cava obstruction.84 A degree
of internal jugular stenosis may also occur in patients
with IIH.85

III: Intra-thoracic. Positive pressure ventilation in the
treatment of chest infection and Adult Respiratory
Distress syndrome (ARDS) can severely raise intra-
thoracic pressure as can the application of positive
end expiratory pressure (PEEP) with inter-individual
variation in ICP possibly reflecting differences in
venous compliance – i.e. whether venous drainage is
still adequate.86,87 Intra-thoracic pressure regulator

Figure 4. (a) Depressed skull fracture and subsequent (superior sagittal sinus) SSS thrombosis caused by a hammer blow – (i)

midsagittal reconstruction on day 2 with increasing headaches demonstrating SSS thrombosis, (ii) – midsagittal reconstruction of CTV

day 2 post op demonstrating resolution of SSS thrombosis. (b) Occipital extradural from fracture overlying the right transverse sinus.

(i) plain axial CT scan, (ii) CT Venogram. The extradural can be seen compressing and narrowing the dominant right transverse sinus.

Note the relatively hypoplastic left transverse sinus. (c) The combined conduit score (CCS) adapted from Farb et al.41 Each transverse

sinus is assessed separately and the area with the greatest stenosis graded (0–4) in relation to the superior sagittal sinus (SSS).

0¼ discontinuity/aplastic segment; 1¼ hypoplasia/severe stenosis with cross-sectional diameter less than 25% of the SSS; 2¼mod-

erate stenosis (25–50% of SSS cross-sectional area); 3¼mild stenosis (50–75% of SSS cross-sectional area), and 4¼ no significant

stenosis (75–100% of SSS cross-sectional area). Both left and right scores are summed to give a total CCS.
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use (which apply negative pressure during the expira-
tory phase of ventilation with the aim of reducing intra-
thoracic pressure, enhancing venous return, and
increasing cardiac output) may reduce ICP.88

IV: Intra-abdominal. Abdominal compartment syndrome
(raised intra-abdominal pressure causing organ dys-
function) raises ICP in brain-injured patients89 which
can be reduced by decompressive laparotomy (DL).90

Of 24 patients who underwent both DC and DL for
refractory ICP,90 15 underwent DC before DL and 9
underwent DL before DC. While both DL and DC
significantly reduced ICP, DL, not surprisingly, also
reduced intra-thoracic pressure.90 Results of DL are
comparable to DC with 17 out of 17 patients (without
abdominal compartment syndrome) benefiting from a
reduction (mean 27.5mmHg to 17.5mmHg) in other-
wise refractory ICP, although in six (all of whom sub-
sequently died) this fall was transient.91

Scalea et al.’s92 team point out that fluid therapy to
raise CPP may also cause retroperitoneal and visceral
oedema increasing intra-abdominal pressure and
interstitial pulmonary oedema (also increasing intra-
thoracic pressures). It has also been suggested that the
raised intra-abdominal pressures in preeclampsia cause
raised cerebral venous and ICPs and contribute to the
intracerebral haemorrhage that is sometimes seen.92

Figure 5. CT venograms of a male patient aged 48-year-old male with refractory intracranial hypertension. (a) Transverse sinuses

severely effaced with raised intracranial pressure. (b) Following bifrontal decompressive craniectomy the transverse sinus calibre

increases dramatically.

Figure 6. Brain herniation occurring at the time of abdominal

closure (see text)93.
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Figure 6 demonstrates brain herniation occurring as
an abdominal wound is closed. This patient who had an
acute subdural removed concurrently with a splenec-
tomy for trauma developed acute bleeding from his
right transverse sinus and brain herniation as the abdo-
men was closed, reflecting the rise in venous pressure.93

V: Hydrostatic/gravity–related cerebral venous hypertension.

Microgravity: In recent years a very significant
number of astronauts have complained of loss of per-
ipheral vision (so-called visual impairment-ICP),94 a
symptom also occurring in IIH. The lack of gravity
results in upper thoracic venous hypertension and
hence a similar pathological process may underlie this
condition.24 This phenomenon has become a consider-
able problem, jeopardising human exploration to Mars
until resolved.

Vasomotor tone: The administration of non-depolar-
ising paralytic agents in intensive care can reduce ICP,
while depolarising relaxants cause a transitory ICP
rise.95 Both effects likely result from transmission of
muscle tension through the venous system.

Hypoxia and conditions increasing CBF: Conditions
that result in increased arterial inflow may ‘bring out’/
decompensate venous hypertension in those with

little reserve. Hypobaric hypoxia increases cerebral
blood flow to maintain brain oxygenation96,97 and limi-
tations in cerebral venous drainage may underlie the
pathogenesis of high-altitude headache through cere-
bral venous engorgement.98 Recent work by Sagoo
et al.99 have demonstrated that venous outflow restric-
tion appears to have a contributory role in the patho-
genesis of cerebral oedema.

There is increasing interest regarding the possible
(and controversial) involvement of the venous system
in other neurological conditions such as multiple scler-
osis,100 normal pressure hydrocephalus,101 dementia102

and leukoaraiosis.103 Chronic cerebrospinal venous
insufficiency and decreased venous vasculature appear
to be a feature of MS, but the relationship between
causation and association is not clear.104 The recent
discovery of the co-location of lymphatic vessels with
dural sinuses may be of relevance but further investiga-
tion is needed.105

Table 2. Treatment options to minimise the venous contribu-

tion of intracranial hypertension.

Venous cause of

intracranial

hypertension Treatment

Orthostatic/

hydrostatic

Avoid hypoxia. Elevate head. Avoid

abdominal compression. If intubated,

non-depolarising paralysis.

Cervical Avoid neck vein compression (e.g. with

collars) and maintain in neutral

position or position where dominant

jugular is optimised. Avoid ‘‘double

chin’’ which compresses jugular.

Intracranial causes Looks for dominance in transverse

sinus drainage. Relieve direct sinus

compression, e.g. by depressed skull

fracture elevation, release of clot

compressing sinus. For sinus

thrombosis consider anticoagulation

or interventional radiological man-

agement. Consider decompressive

craniectomy.

Thoracic causes Relieve causes of increased intra-

thoracic pressure. Minimise risk of

infection/ARDS. Ventilate with no

excessive positive pressure.

Abdominal causes Relieve causes of intra-abdominal

hypertension. Treat constipation.

Place urinary catheter. In extreme

circumstances, consider decompres-

sive laparotomy.

Note: The order reflects the clinical order in which they are usually

managed.

Figure 7. Diagram demonstrating that relative venous outflow

restriction can occur intracranially (with compression/obstruc-

tion (e.g. with thrombus or fractures) of isolated or diffuse

venous structures) and extracranially (from cervical, thoracic and

abdominal pressures).
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Summary

While the traditional Monroe-Kellie doctrine holds,
imbalances in arterial inflow and venous outflow also
affect ICP. The venous outflow can be altered intracra-
nially and extracranially (Figure 7). Table 2 demon-
strates venous causes of intracranial hypertension and
outlines treatment options.

Conclusion

The balance between cerebral blood in and outflow is
vital in maintaining normal ICP. Restrictions in out-
flow can be as, if not more, significant than mass accu-
mulation within the cranium. There has been a
concentration of interest in CPP and ICP; however,
the considerable importance of the venous side has
often been overlooked. ICP is a function of venous out-
flow, a combination of intra-cerebral resistance and cer-
vical, thoracic and abdominal pressures. If there was no
resistance to venous outflow ICP would be zero, hence
using intravenous fluids to ‘maintain CPP’ may increase
CVP and worsen ICP (and ironically CPP). The
dynamic influence of blood flow on ICP is an essential
component of the Monro-Kellie doctrine.

There is increasing evidence that venous pathology
is central to multiple conditions that cause a rise in ICP.
A greater understanding and appreciation of the role of
the venous system in neuro-critical care is vital.
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