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Silicosis is a devastating disease caused by inhalation of silica dust that leads to inflammatory cascade and then scarring of the lung
tissue. Increasing evidences indicate that soluble receptor for advanced glycation end products (sRAGE) is involved in
inflammatory diseases. However, no data on the possible relationship between sRAGE and inflammation of silicosis are
available. In this study, serum from subjects with silicosis (n = 59) or from healthy controls (HC, n = 14) was analyzed for the
secretion of sRAGE, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), transforming growth factor-β1
(TGF-β1), and oxidized low-density lipoprotein (ox-LDL). The associations between sRAGE and cytokines and ox-LDL and lung
function were assessed by Pearson’s correlation analyses. Mean levels of serum sRAGE were lower in silicosis than those in
controls (p < 0:05). The subjects who had a longer term of occupational exposure had higher levels of sRAGE (p < 0:05). The
secretion of TNF-α, IL-1β, IL-6, TGF-β1, and ox-LDL was significantly higher in the silicosis group than that in the HC group
(p < 0:05). Furthermore, the levels of sRAGE were negatively correlated with TNF-α, IL-6, IL-1β, and ox-LDL. There is no
correlation between sRAGE and TGF-β1 and lung function. The optimal point of sRAGE for differentiating silicosis from healthy
controls was 14250.02 pg/ml by ROC curve analysis. A decrease in serum sRAGE and its association with inflammatory response
might suggest a role for sRAGE in the pathogenesis of silicosis.

1. Introduction

Silicosis is one of the most important occupational diseases
worldwide [1], while no clinically available therapy is able
to revert the progression of the disease effectively [2]. Silicosis
is characterized by inflammatory cascade followed by pro-
gressive pulmonary fibrosis [3, 4], which leads to respiratory
failure due to reduction in gas exchange area and impairment
of lung function [5, 6]. Initially, after silica is inhaled, alveolar
macrophages (AMs) are activated to release inflammatory
cytokines and fibrotic cytokines, such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6),
and transforming growth factor-β1 (TGF-β1) [7–10], which
play crucial roles in inflammatory response and fibrosis of
silicosis. Oxidized low-density lipoprotein (ox-LDL) is consid-
ered as a marker of inflammation [11] and oxidative stress

[12, 13] in several inflammatory diseases. Furthermore, our
previous study found that the levels of ox-LDL are increased
in alveolar macrophages of patients with silicosis [14], suggest-
ing a possible role of ox-LDL in inflammation of silicosis.

Receptor for advanced glycation end products (RAGE), a
pattern-recognition receptor, has been reported to amplify or
sustain immune and inflammatory responses [15–17] and
drive fibrotic process [18]. Soluble receptor for advanced
glycation end products (sRAGE) is the extracellular form of
RAGE and is produced either by proteolytic cleavage of
RAGE or through alternative RNA splicing [19–21]. sRAGE
prevents the interaction between RAGE and ligands by acting
as a decoy receptor [22]. Studies have found that sRAGE have
a protective effect against inflammation through inhibiting
RAGE signaling [23, 24]. And sRAGE has been recognized
as a biomarker or therapeutic target in inflammatory diseases
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[22, 25–27] and fibrotic diseases [28], while its role in silicosis
remains obscure. Based on the above questions, we explored
the relationship between sRAGE and silicosis in this study.

2. Materials and Methods

2.1. Study Subjects. 59 patients with silicosis (12 stage I of
silicosis (SI), 17 stage II of silicosis (SII), and 30 stage III of
silicosis (SIII), respectively) who underwent massive whole
lung lavage at Beidaihe Chinese coal workers nursing home
and 14 healthy subjects who worked in an iron mine of
Henan province were enrolled in this study. The diagnosis
of silicosis was done by clinical and radiological findings on
high-quality X-ray according to the diagnostic criteria of
pneumoconiosis (GBZ 70-2009, China). The criteria describe
silicosis as stages 0, I, II, and III. In this study, patients at
stage 0 were not included. Patients were excluded if they
met any of the following criteria: (1) other inflammatory
diseases; (2) other fibrotic diseases; (3) other pulmonary
diseases, such as COPD, active tuberculosis, pneumonia,
and pulmonary heart disease; (4) autoimmune disorders;
and others. The parameters of lung function were measured
by the Puritan Bennett™ 840 Ventilator. All participants pro-
vided written informed consent. All procedures performed
were in accordance with the 1964 Helsinki declaration and
its later amendments or comparable ethical standards, and
ethical approval was obtained from the Clinical Trial and
Ethics Committee of North China University of Science
and Technology.

2.2. Measurement for sRAGE, TNF-α, IL-1β, IL-6, TGF-β1,
and ox-LDL. Peripheral blood was collected. Serum was
separated by centrifugation for 10-15min at 3000 rpm
and stored at −80°C for analysis. The secretion of sRAGE,
TNF-α, IL-1β, IL-6, TGF-β1, and ox-LDL in serum was
detected by ELISA assay (sRAGE, IL-6, IL-1β, and TGF-β1
ELISA kit, BOSTE, Wuhan, Hubei; TNF-α ELISA kit,
eBioscience, San Diego, CA; ox-LDL ELISA kit, Nanjing

Xinfan Biology, Nanjing, China). All measurements were car-
ried out strictly according to the manufacturer’s instructions.

3. Statistical Analysis

Results are presented as mean ± standard deviation (SD) for
normally or median (25th, 75th percentile) for nonnormally
distributed data. Differences between groups were statisti-
cally analyzed using Student’s t-test or one-way ANOVA
tests for normally distributed data, the Mann-Whitney U test
for nonnormally distributed data, and the Chi-square test for
categorical variables. Correlations of sRAGE with cytokines,
ox-LDL, and lung function were performed using Pearson’s
correlation test. Receiver operating characteristic (ROC)
curve analysis was applied to test the association of sRAGE
levels at baseline with disease outcome. The threshold of sig-
nificance was set at 5%. Data were analyzed using SPSS 17.0
for Windows.

4. Results

4.1. Clinical Characteristics of Subjects. Table 1 shows the
characteristics of subjects involved in this study. Sex ratio,
age, smoking pack-year, years of occupational exposure to
silica dust, and BMI did not differ between groups. FEV1%
pre, FVC% pre, and FEV1/FVC in silicosis were significantly
lower than healthy controls suggesting a significant decline in
lung function of patients with silicosis.

4.2. Serum Levels of sRAGE, TNF-α, IL-1β, IL-6, TGF-β1, and
ox-LDL. Since circulating sRAGEmay be a biomarker during
chronic inflammation, we tested sRAGE levels by ELISA in
serum from patients with silicosis in this study. As shown
in Figure 1(a), the levels of sRAGE in the silicosis group
were significantly lower than those in the control group.
More specifically, mean serum levels of sRAGE in SI
(14799:00 ± 757:43pg/ml) and SII (15117:00 ± 10039:00
pg/ml) were lower than those in HC (24411:12 ± 11408:58
pg/ml). The secretion of sRAGE in the SIII group was lower

Table 1: Clinical characteristics of study subjects.

Clinical characteristics HC (n = 14) Silicosis (n = 59) p value

Male/female 13/1 58/1 0.349a

Age (yrs) 42:94 ± 10:42 47:34 ± 6:32 0.097b

Smoking pack-years (yrs) 20.0 (10.0, 20.0) 20.0 (9.4, 21.25) 0.981c

Years of occupational exposure to silica dust (yrs) 15:13 ± 7:66 —

BMI 23:67 ± 3:40 19:41 ± 7:85 0.288b

FVC (L) 3:32 ± 0:42 3:18 ± 0:81 0.676b

FVC% pre 87:3 ± 8:16 70:18 ± 15:34 0.033b

FEV1 (L) 2:78 ± 0:37 2:27 ± 0:84 0.145b

FEV1% pre 81:88 ± 8:48 59:11 ± 20:50 0.033b

FEV1/FVC (%) 80:22 ± 1:10 69:30 ± 15:88 0.0001b

BMI: body mass index; FEV1: forced expiratory volume in 1 s; FVC: forced volume capacity; FVC% pre: FVC% predicted; FEV1% pre: FEV1% predicted. Values
are mean ± SD for normally distributed data or median (75th, 25th percentile) for nonnormally distributed data. aThe differences were calculated by the
Chi-square test. bThe differences were calculated by Student’s t-tests. cThe differences were calculated by the Mann-Whitney U test.
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than that in the HC group, but there was no statistical differ-
ence between two groups (Figure 1(b)). Moreover, the con-
centration of sRAGE in patients with silicosis who had
worked for a few years (≤10 years) was lower than those
who had worked for a longer period (>10 years), suggesting
that the duration of silica stimulation contributes to the levels
of sRAGE (Figure 2).

Next, we measured the levels of cytokines TNF-α, IL-1β,
IL-6, and TGF-β1 and inflammation marker ox-LDL in
serum. As shown in Table 2, the secretion of TNF-α, IL-6,

TGF-β1, and ox-LDL was increased in patients with silicosis
in comparison to controls, except for IL-1β. Further inves-
tigation found that the secretion of IL-1β was increased in
the SI group compared with that in the HC group
(2:05 ± 1:28pg/ml vs. 6:38 ± 7:86pg/ml) (Figure 3(b)). The
levels of TNF-α in the SII (49:47 ± 13:49pg/ml) and SIII
groups (45:62 ± 16:58pg/ml) were higher than those in the
HC group (31:85 ± 16:72pg/ml) (Figure 3(a)). The concen-
tration of IL-6 in the SII (8:91 ± 4:26pg/ml) and SIII
(6:96 ± 2:96pg/ml) groups was higher than that in the HC
group (4:67 ± 1:79pg/ml). And the levels of IL-6 in the SII
group were increased compared with that in the SI group
(Figure 3(c)). Patients in the SII and SIII groups showed
significantly increased levels of TGF-β1 as compared to
healthy controls (83145:44 ± 73720:2pg/ml, 75596:33 ±
74498:49pg/ml vs. 27018:27 ± 13759:52pg/ml, respectively)
(Figure 3(d)).

4.3. Correlations between sRAGE and Cytokines and ox-LDL
and Lung Function. Serum levels of sRAGE in those subjects
correlated inversely with the levels of TNF-α (r = −0:241,
p = 0:049), IL-1β (r = −0:288, p = 0:028), IL-6 (r = −0:413,
p = 0:001), and ox-LDL (r = −0:283, p = 0:035) (Table 3).
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Figure 1: Serum levels of sRAGE in subjects. The secretion of sRAGE in serum was detected by ELISA. HC: healthy controls; SI: stage I of
silicosis; SII: stage II of silicosis; SIII: stage III of silicosis. ∗p < 0:05.
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Figure 2: Serum levels of sRAGE in patients with silicosis. The secretion of sRAGE in serum was detected by ELISA. ∗p < 0:05.

Table 2: The secretion of cytokines and ox-LDL (pg/ml).

HC (n = 14) Silicosis (n = 59) p valuea

TNF-α 31:85 ± 16:72 46:46 ± 15:34 0.004

IL-1β 2:052 ± 1:28 3:65 ± 3:84 0.181

IL-6 4:67 ± 1:79 7:39 ± 3:48 0.002

TGF-β1 27018:27 ± 13759:52 73475:64 ± 73416:33 0.042

ox-LDL 10:56 ± 10:98 19:98 ± 11:98 0.026
aThe differences were calculated by Student’s t-test.
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However, no correlation between sRAGE and TGF-β1, and
also lung function parameters, such as FEV1, FVC, FVC%
pre, FEV1% pre, and FEV1/FVC, were found (Table 3).

4.4. The Cut-Off Point of sRAGE Determined by ROC
Analysis. Using ROC analysis, we found that 14250.02 pg/ml
was the best serum sRAGE cut-off level (sensitivity 49.1%
and specificity 85.7%, respectively) to distinguish between
healthy controls and silicosis patients (AUC = 0:713)
(Figure 4).

5. Discussion

In the present study, we found the levels of sRAGE in
patients with silicosis were lower than those in healthy con-
trols. And the levels of TNF-α, IL-6, IL-1β, TGF-β1, and
ox-LDL were increased in silica-exposed subjects. Correla-
tional analysis showed that the levels of sRAGE were nega-
tively correlated with TNF-α, IL-6, IL-1β, and ox-LDL.
However, there was no correlation between sRAGE and
TGF-β1, and also lung function. Thesefindings suggested that
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Figure 3: Serum levels of TNF-α, IL-1β, IL-6, and TGF-β1. The secretion of (a) TNF-α, (b) IL-1β, (c) IL-6, and (d) TGF-β1 in serum was
detected by ELISA analysis. SI: stage I of silicosis; SII: stage II of silicosis; SIII: stage III of silicosis. ∗p < 0:05.

Table 3: The correlations between sRAGE and cytokines and
ox-LDL and lung function.

sRAGE
r p valuea

TNF-α -0.241 0.049

IL-1β -0.288 0.028

IL-6 -0.413 0.001

TGF-β1 -0.096 0.452

ox-LDL -0.283 0.035

FVC 0.056 0.673

FEV1 0.099 0.456

FVC% pre 0.154 0.262

FEV1% pre 0.042 0.759

FEV1/FVC -0.051 0.710
aThe correlation between sRAGE and parameters was calculated by
Pearson’s correlation test.
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Figure 4: Receiver operating characteristic (ROC) curve for sRAGE
(AUC = 0:713) to discriminate between silicosis patients and
healthy controls.
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sRAGE may be involved in the pathogenesis of inflammation
of silicosis.

sRAGE acts as a decoy of RAGE signaling, thereby inhi-
biting the interaction between RAGE and proinflammatory
ligands (such as HMGB1 and AGEs), which have been pro-
posed to play critical roles in multiple inflammatory diseases
[23, 29, 30]. Low sRAGE levels have been reported in studies
of individuals with inflammatory lung diseases, such as
COPD [25, 31], asthma [32], and cystic fibrosis [33]. Consis-
tent with these findings, we found that serum levels of
sRAGE were decreased in patients with silicosis. Further
investigation observed that sRAGE levels were reduced in
SI and SII, while there was no significant decline in patients
with SIII. It is important to note, however, in our another
work, we found that the levels of sRAGE in BALF of patients
with SIII, but not SI and SII, were lower than those in healthy
controls. The different subjects involved in the control group
might be an important factor contributing to the inconsistent
results obtained from BALF and serum. In specific, the con-
trol subjects in this study were healthy individuals, while
the control subjects in our previous study were observation
individuals who had a history of silica exposure, but X-ray
results did not meet the standard of stage I silicosis. More-
over, we found the levels of sRAGE in patients with silicosis
who had worked for a few years (≤10 years) were lower than
those who had worked for a longer period (>10 years). We
speculated that the longer silica exposure time might produce
more inflammatory mediators in the lung. Subsequently,
more anti-inflammatory mediators, such as sRAGE, would
be secreted to maintain inflammatory-anti-inflammatory
dynamic circumstance. Therefore, the longer occupational
exposure duration might induce the higher levels of sRAGE
in silicosis.

Silicosis is a complicated disease, which can present as
acute silicosis, accelerated silicosis, and chronic silicosis
[34]. As far as we know, the diagnosis of silicosis is based
on a history of silica exposure and the radiography abnor-
malities. Although the association between the reduction of
lung function and silicosis was replicated in several studies
[35], lung function loss in the absence of silicosis would occur
until between 30 and 40 years of silica exposure. Neverthe-
less, the lung function test is an important method to esti-
mate pulmonary function impairment or figure out the type
of respiratory function abnormalities (obstructive? or restric-
tive? or mixed?) in silicosis [34]. In the present study, we
measured the lung function of individuals to investigate the
possible relationship between lung function loss and silicosis.
We focus on FEV1 and FVC, which were usually used to eval-
uate lung function loss in silicosis [35–38]. We found that
FVC% pre, FEV1% pre, and FEV1/FVC (%) were decreased
in the silicosis group. It is in agreement with similar observa-
tion in other works, where lung function significantly
declined in patients with silicosis [39, 40].

Recent studies demonstrated that serum sRAGE were
positively correlated with FEV1 and FEV1/FVC in COPD
subjects [41] and correlated with FVC and DLCO in patients
with IPF [42]. However, in the current study, there was no
correlation between sRAGE and lung function in silicosis.
Similar to our results, Lyu et al. also found no correlation

between sRAGE and lung function in patients with asthma
[43]. The possible reason may be as follows: silicosis is mainly
characterized by inflammation at the early stage and followed
by fibrosis at the later stage. Patients may have no pulmonary
function abnormalities in the early stage. The decline in lung
function mainly happened at the fibrotic stage in silicosis.
Our findings observed that sRAGE were negatively corre-
lated with TNF-α, IL-6, IL-1β, and ox-LDL (indicators of
inflammation), but not TGF-β1 (indicator of fibrosis), sug-
gesting that sRAGE might be an anti-inflammatory and not
an antifibrotic marker in silicosis. Therefore, the critical role
of sRAGE in inflammation of silicosis may lead to no corre-
lation between sRAGE and lung function.

It is well established that ox-LDL is involved in multiple
inflammatory diseases, such as cardiovascular disease [44]
and obesity [45], mainly by activating both innate and adap-
tive immunity. Our previous study showed that ox-LDL were
increased in AMs of silicosis [14], implying a critical role of
ox-LDL in inflammation of silicosis. In the present study,
we observed that serum levels of ox-LDL were significantly
enhanced in patients with silicosis. Moreover, the levels of
ox-LDL were negatively correlated with levels of sRAGE
in silicosis. Similar to our findings, Kotani et al. reported
that circulating sRAGE was inversely correlated to ox-LDL
in serum of asymptomatic subjects [46]. Those studies
mentioned above suggested a close relationship between
sRAGE and ox-LDL. It has been found that RAGE medi-
ates the ox-LDL-induced activation of MAPK signaling in
osteoblastic differentiation process [47] and production of
ROS as well as cell–cell adhesion in endothelial cells
[48], indicating that RAGE might be considered as a target
receptor for ox-LDL [49]. Accordingly, we speculated
that decreased sRAGE might lead to the activation of
ox-LDL/RAGE signaling, subsequently increasing the
levels of ox-LDL in silicosis.

Our study had two limitations. First, the sample size
was small in groups, especially in the healthy control group.
Second, we did not demonstrate the detailed molecular
mechanisms of sRAGE in silicosis. Hence, enlarged sample
size and mechanism study are necessary in the future. Nev-
ertheless, our findings observed an association between
sRAGE and silicosis, which should help us to understand
the possible mechanisms responsible for inflammation of
silicosis.

6. Conclusions

Our study showed that serum sRAGE levels were decreased
in silicosis. The secretion of sRAGE was correlated with
inflammation in silicosis. Clinically, serum sRAGE may be
a promising intervention target in silicosis, while the role of
sRAGE needs to be further clarified.
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