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Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two
progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and
pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and
vice versa. Recent genetic discoveries conclusively link the two diseases, and several
common molecular players have been identified (TDP-43, FUS, C9ORF72). The definitive
etiologies of ALS and FTD are currently unknown and both disorders lack a cure. Glia,
specifically astrocytes and microglia are heavily implicated in the onset and progression
of neurodegeneration witnessed in ALS and FTD. In this review, we summarize the
current understanding of the role of microglia and astrocytes involved in ALS and
FTD, highlighting their recent implications in neuroinflammation, alterations in waste
clearance involving phagocytosis and the newly described glymphatic system, and
vascular abnormalities. Elucidating the precise mechanisms of how astrocytes and
microglia are involved in ALS and FTD will be crucial in characterizing these two disorders
and may represent more effective interventions for disease progression and treatment
options in the future.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing multisystem
neurodegenerative syndrome, characterized by the degeneration of the motor neurons (MNs) in the
motor cortex, brainstem and spinal cord (Hardiman et al., 2011). Symptoms present first as focal
upper and/or lower MN dysfunction of a skeletal muscle group which progressively deteriorates,
ultimately spreading to other muscle groups (Ravits, 2014). Disease progression is rapid,

Abbreviations: ALS, Amyotrophic lateral sclerosis; Aβ, Amyloid beta; AQP4, Aquaporin 4; CNS, Central Nervous
System; CSF, Cerebrospinal Fluid; FTD, Frontotemporal dementia; FUS, Fused in Sarcoma; GRN, Progranulin; iPSC,
Inducible Pluripotent Stem Cell; MRI, Magnetic Resonance Imaging; MN, Motor Neuron; NF, κB, Nuclear Factor-
kappa B; OPTN, Optineurin; PET, Positron Emission Tomography; PFN1, Profilin 1; RNAi, RNA interference; SOD1,
Superoxide Dismutase 1; SPECT, Single Positron Emission Computed Tomography; SQTSM1, Sequestosome 1; Tau,
Microtubule Associated Protein Tau; TBK1, Tank Binding Kinase 1; TREM2, Triggering Receptor Expressed on
Myeloid cells 2; TDP, 43-TAR DNA-binding 43; VCP, Valosin-Containing Protein.
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with 50% of patients dying due to respiratory complications
within 3 years of symptom onset (Kiernan et al., 2011). Over
the last 25 years, it has become increasingly apparent that
ALS shares significant overlap with another progressive and
fatal neurodegenerative syndrome Frontotemporal dementia
(FTD). Up to 50% of patients with ALS develop FTD
symptoms and approximately 15% of FTD patients display MN
dysfunction typical of ALS (Ng et al., 2015). Besides this clinical
connection, ALS and FTD also share significant genetic and
pathological overlap (Bennion Callister and Pickering-Brown,
2014), represented in Figure 1. However, the causal mechanism/s
of both syndromes are currently unknown and treatment is
largely symptomatic (Hardiman et al., 2011; Piguet et al., 2011).

Five years ago, large hexanucleotide repeat expansions
(∼100–1600 G4C2 repeats) of intronic regions of the C9ORF72
gene were discovered in sporadic and familial forms of
ALS and FTD (Renton et al., 2014). These studies provided
seminal evidence for a direct molecular link between these two
conditions. The repeat expansions are now recognized as the
most common known mutation in both familial and sporadic
ALS and FTD. Expansions have been identified in up to 40% and
25% of familial cases and ∼6% and 7% of sporadic or seemingly
non-inherited forms of ALS and FTD respectively (Robberecht
and Philips, 2013; Renton et al., 2014). Multiple other genes
have also been linked to ALS and FTD. Mutations in the genes
TARDBP and fused in sarcoma (FUS), which respectively encode
for the proteins TDP-43 and FUS, are associated with ∼9%
of familial, 2% of sporadic cases of ALS and rarely in FTD
(Renton et al., 2014). The MAPT gene encodes microtubule
associated protein tau (tau) and mutations have been identified
in ∼2–11% of familial FTD cases (Sieben et al., 2012). SOD1
is another gene that is strongly associated with ALS with
mutations found in 12–20% of familial and 1–2% of sporadic
cases (Al-Chalabi et al., 2012). With the exception of MAPT
these genes are not segregated to neurons and are expressed by
glia and various other cell types, which suggests a multicellular
pathogenesis.

The presence of ubiquitinated, cytoplasmic inclusions in
neurons and some glia is a pathological hallmark shared by the
two disorders (Ng et al., 2015). Figure 1B shows the distribution
of inclusion pathology seen in both ALS and FTD. In ∼95% of
ALS and 50% of FTD cases, these inclusions are predominately
comprised of TDP-43. FUS protein inclusions are found in
∼1% and 10% of ALS and FTD cases respectively (Mackenzie
et al., 2010). Tau inclusion pathology is more characteristic
of FTD (∼40% of cases) and is only found rarely in cases of
ALS (Dickson et al., 2011; Ng et al., 2015). At the other end
of the spectrum, SOD-1 inclusion pathology is seen in ∼2%
of ALS cases and is incredibly rare in FTD with only one
case reported (Bennion Callister and Pickering-Brown, 2014).
Taken together, the pathogenic and genetic features represent
a clear commonality between ALS and FTD, which are now
believed to exist on a phenotypic continuum (Ling et al.,
2013).

In addition to protein inclusions, another feature of ALS and
FTD neuropathology is reactive gliosis, which is characterized
by astrocytic hypertrophy and microglial proliferation

(Al-Chalabi et al., 2012; Ng et al., 2015). Reactive gliosis is
an indicator of neuroinflammation (Streit et al., 2004) and
occurs in areas of neuronal loss and inclusion pathology
in ALS and FTD (Brettschneider et al., 2012). Studies over
the past 15 years have strongly indicated that ALS and
FTD propagate via multiple cell types, with reactive gliosis
being heavily implicated (Ilieva et al., 2009). Astrocytes and
microglia in particular have been shown to be associated with
disease progression and spreading (Philips and Robberecht,
2011).

Various pathways have been implicated to contribute to
ALS and FTD neurodegeneration, including inflammation,
RNA toxicity and altered splicing/expression (DNA/RNA
homeostasis), and cytoskeletal, vascular and protein dysfunction
(Lagier-Tourenne and Cleveland, 2009; Garbuzova-Davis
et al., 2012; Ravits et al., 2013). Both microglia and astrocytes
can be compromised through a variety of these signaling
pathways that result in deregulated glia–motor neuron
communication. However, the precise contribution of
glial cells and their exact involvement in ALS and FTD
pathology is currently under intense investigation. Here we
aim to summarize the established and novel implications of
astrocyte and microglia in ALS and FTD, identifying key
aspects of the neuroinflammatory involvement, microglia
phagocytosis, defective waste clearance and circulatory
dysfunction.

THE PATHOGENIC ROLE OF
NEUROINFLAMMATORY GLIA IN ALS

Inflammatory glia have been repeatedly reported in animal
models of FTD (see Roberson, 2012). Yet, current models of
tau pathology describe clinically a very heterogeneous group,
including FTD and Parkinsonism, and our focus in this review
will therefore be on the neuropathological characterization
of inflammatory glia in ALS. Significant insight into the
pathogenic role of glia in disease progression has been
revealed through allografted chimeric and conditional knock
out studies using ALS mutant SOD-1 rodent models (see
Robberecht and Philips, 2013). These studies have convincingly
shown that both astrocytes and microglia/myeloid progenitors
significantly influence the progression of neurodegeneration
in these models. More recent studies have added weight
to the existing evidence that astrocytes contribute to ALS
progression by utilizing mice xenografted with human glial
progenitors generated from induced pluripotent stem cells
(iPSCs). Grafted glial progenitors from patient iPSCs with
familial SOD1 mutations differentiated into astrocytes and
induced MN degeneration and motor deficits in WT mice.
Progenitors from healthy individuals without ALS linked
mutations did not contribute to an ALS phenotype (Chen et al.,
2015). In another study, iPSC derived glial progenitors from
healthy individuals (lacking ALS mutations) formed astrocytes
that increased the survival of MNs when transplanted at
disease onset in a mutant SOD-1 mouse model (Kondo et al.,
2014). Such in vivo studies provide important insight into
the pathogenic role of ALS patient glia and demonstrate a
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FIGURE 1 | Genetic and pathological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). (A) Familial and sporadic
genetic mutations were linked to the clinical phenotypes on the ALS (blue) and FTD (red) spectrum. Genes are plotted according to their hypothesized mechanism in
relation to disease (top to bottom). (B) Pathological protein inclusions are a hallmark of ALS and FTD, reflecting the significant overlap on the disease spectrum. FUS
(Red) and TDP-43 (Blue) inclusions are found in both ALS and FTD. Predominate SOD1 (Pink) and Tau (Green) is more indicative of ALS and FTD respectively.
FTD-UPS (Yellow) is found in ∼1% of cases and represent cases of familial CHMP2B mutations.

potential mechanism of how glia can influence the progression
of neurodegeneration (i.e., modifying the molecular phenotype
and function).

Notably, astrocytes retrieved from post-mortem central
nervous system (CNS) of familial (SOD1 and unidentified)
and sporadic cases were also neurotoxic to co-cultured MNs
(Haidet-Phillips et al., 2011; Re et al., 2014). While the necrotic
environment of post-mortem tissue has to be considered, another
study reported that astrocytes generated from sporadic and
familial (C9ORF72 and SOD1) ALS iPSCs were also toxic to co-
cultured MNs (Meyer et al., 2014). These findings correlate with
studies that report the neurotoxicity of glia derived from SOD-
1 transgenic mice (Di Giorgio et al., 2007; Nagai et al., 2007).
Collectively, this glia-induced neurotoxicity suggests a common
mechanism in both sporadic and familial ALS.

Different experimental approaches further suggest that
astrocytes are neurotoxic to MNs in the context of ALS.

A recently reported ubiquitous RNAi knockdown of TDP-
43 in mice led to severe neurodegeneration and an ALS
phenotype. The study revealed a greater knockdown of TDP-
43 in astrocytes compared to MNs, significant astrogliosis
and marked upregulation of lipocalin-2 expression in reactive
astrocytes (Yang et al., 2014). Lipocalin-2 is a feature of
inflammatory astrocytes (Zamanian et al., 2012) and can enhance
reactive astrogliosis via autocrine signaling (Lee et al., 2009).
Specific knockout of TDP-43 in cortical and MNs in mice
produced a less severe phenotype, which further highlights the
contribution of multiple cell types in ALS and FTD (Wu et al.,
2012b; Iguchi et al., 2013).

Interestingly, overexpression of ALS associated mutant
TDP-43 driven by an astrocytic promoter was sufficient to
cause MN degeneration in rats and was also associated with
marked up-regulation of lipocalin-2 in reactive astrocytes
(Tong et al., 2013). Overexpression of mutant TDP-43 in rat
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neurons also induced gliosis and lipocalin-2 upregulation in
surrounding reactive astrocytes. The analysis of post-mortem
frontal cortex of FTD patients likewise revealed an increase in
lipocalin-2, and that recombinant lipocalin-2 was exclusively
toxic to cultured neurons (Bi et al., 2013). Huang et al.
(2014) reported that inducible overexpression of mutant TDP-
43 can increase lipocalin-2 expression in cultured astrocytes
and while pathological mutations can lead to alterations
in RNA homeostasis similar to those seen in knockdown
studies. Further studies are clearly needed to understand
the mechanism of pathological TDP-43 and the ambiguous
role of lipocalin-2 in ALS and FTD pathogenesis and its
potential as a therapeutic target or biomarker for assessing
neuroinflammation.

Recent advances in patient neuroimaging have allowed
direct visualization of neuroinflammation such as gliosis.
Positron Emission Tomography (PET) and Single Positron
Emission Computed Tomography (SPECT) or Magnetic
Resonance Imaging (MRI) in patients targeting activated
microglial receptors or astrocytic metabolites have shown
gliosis throughout various symptomatic stages of ALS and
FTD while absent in non-disease controls (Cagnin et al.,
2004; Chiò et al., 2014). This, along with data from animal
models, strongly indicates that gliosis is unlikely to represent a
specific event only seen in post-mortem tissue at the end stage
of ALS and FTD. More recently, modalities that specifically
evaluate astrocyte metabolism (e.g., radiopharmaceutical acetate
derivatives; Marik et al., 2009; Ouyang et al., 2014) could
be used to monitor astrogliosis in patients more accurately.
New imaging ligands such as the modern translocator protein
ligands allow for tracking microglia activation with higher
specificity and reduced radiation dosage (Corcia et al., 2012).
Collectively, these rapidly improving technologies are revealing
important information regarding the involvement of astrocytes
and microglia in various stages of degeneration in ALS and FTD
patients.

THE ROLE OF GLIAL PHAGOCYTOSIS IN
ALS AND FTD

Astrocytes have been found to highly express an array of
phagocytic receptors and actively contribute to this process
by phagocytosing synapses and axonal mitochondria in the
developing and adult CNS (Chung et al., 2013; Davis et al.,
2014). Nonetheless, microglial cells have been shown to be the
main culprit for phagocytosis and synaptic pruning that is crucial
to CNS function by removing potentially toxic debris and the
reorganization of the CNS connectome (Neumann et al., 2009;
Xavier et al., 2014). The altered phagocytic activity of microglia
has been implicated in multiple neurodegenerative disorders.
This link has been highlighted through three discoveries of
genetic mutations in phagocytosis-related genes in ALS and
FTD patients (Figure 2A). TREM2 is exclusively expressed
by microglia in the CNS (Colonna, 2003; Thrash et al.,
2009) and missense variants have been recognized as a risk
factor for ALS, FTD, Alzheimer’s and Parkinson’s disease
(Rayaprolu et al., 2013; Cady et al., 2014; Harms et al., 2014).

Furthermore, recessive mutations in TREM2 are also associated
to an orphan neurodegenerative condition known as Nasu-
Hakola Syndrome with patients presenting with lytic bone
cysts, atypical FTD and psychiatric dysfunction (Kaneko et al.,
2010). Interestingly homozygous and compound heterozygous
mutations are linked to a familial FTD-like disorder without
bone involvement (Kaneko et al., 2010; Guerreiro et al.,
2013; Borroni et al., 2014). These mutations in TREM2
are proposed to confer loss of TREM2 protein function,
which causes decreased microglial phagocytosis and altered
inflammatory responses (Kleinberger et al., 2014; Wang et al.,
2015). Additionally, dysfunctional microglial phagocytosis is
directly linked to FTD via mutations in GRN (progranulin)
and may confer elevated risk of developing Alzheimer’s
disease and ALS (Petkau and Leavitt, 2014). Progranulin is
expressed by neurons and microglia and following secretion
can act as a neuroinflammatory modulator (Petkau et al.,
2010), and facilitate microglial recognition of apoptotic cells
and potentially toxic elements such as amyloid beta (Aβ;
Pickford et al., 2011; Minami et al., 2014). Also, loss of
function mutations in PFN1 (profilin 1) have been identified
in familial ALS (Wu et al., 2012a) and profilin has been
shown to be essential in regulating actin dynamics necessary
for phagocytosis, phagosome formation and is upregulated
in microglia following insult (Pearson et al., 2003; Dong
et al., 2004; Kim et al., 2012). Research into how these
PFN1 mutations influence microglia function will be crucial
to understanding the pathogenicity of those mutations. While
progranulin and profilin 1mutations are likely to impactmultiple
cell types (especially neurons), cell specific transcriptome
analysis of the mouse cortex indicates that all three genes are
highly transcribed in microglia (Zhang et al., 2014). Taken
together, these studies highlight a potential link between
reduced microglial phagocytic capacity and the development of
neurodegeneration, ALS and particularly FTD and is represented
in Figure 2A.

Phagocytosis is incomplete without the intracellular
breakdown of engulfed material. Autophagy is an essential
component of this internal degradation inside phagocytes
as autophagosome-lysosome fusion is crucial to break down
this debris. Alterations to this pathway are directly implicated
in ALS, ALS-FTD, FTD and/or Multisystem Proteinopathy
pathogenesis through mutations to OPTN, SQST1, VCP and
the recently discovered TBK1 (Renton et al., 2014; Freischmidt
et al., 2015). These genes are vital to autophagosome formation,
maturation and therefore crucial in LC3-assisted phagocytosis
and intracellular waste clearance (Tresse et al., 2010; Seto
et al., 2013). Interestingly these genes are also involved in
inflammation as they can regulate Nuclear Factor-kappaB
(NF-κB) signaling (Pomerantz and Baltimore, 1999; Asai
et al., 2002; Zhu et al., 2007; Duran et al., 2008; Tresse et al.,
2010; Seto et al., 2013). NF-κB is one of the major regulators
of neuroinflammatory activation of glia (Zamanian et al.,
2012) and its induction is seen in post-mortem ALS tissue,
mutant SOD-1 and TDP-43 models (Migheli et al., 1997;
Swarup et al., 2011a,b; Frakes et al., 2014). Any defects to
these genes would potentially impact upon the function
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FIGURE 2 | Phagocytic dysfunction and the glymphatic pathway and its (potential) involvement in ALS and FTD. (A) Three genes (TREM2, GRN and
PFN1) which link microglial phagocytic dysfunction to ALS and FTD and their effect on microglial phenotype. All three are predicted loss of function mutations which
decrease the phagocytic capacity of microglia. Depending on the type of mutation/s to these genes different neurodegenerative conditions can arise, while variants
cause increase risk of developing neurodegenerative conditions or worsen prognosis. Neuronal Ceroid Lipofuscinosis is a type of neurodegenerative lysosomal
disorder which has been reported in patients PRGN null patients (Petkau and Leavitt, 2014). AD, Alzheimer’s disease; PD, Parkinson’s disease; MS, multiple
sclerosis. (B) In the normal CNS, CSF circulates in a perivascular compartment driven by arterial pulse pressure. Astrocytic endfeet cover the perivascular space and
facilitate movement of CSF into the parenchyma largely via AQP4. This fluid flow through the interstitial space allows the removal of debris from the extracellular
space before draining into venous perivascular compartments. Microglia also remove potentially toxic waste via phagocytosis and dysfunctional microglial
phagocytosis is linked to ALS and FTD pathogenesis (see A). In the CNS of ALS and FTD patients, glymphatic function and microglial phagocytosis may be
compromised and contribute to neurodegeneration. Reactive astrocytes conceivably lose AQP4 polarization and express it elsewhere. This may lead to turbulent
flow through the interstitium. Cerebral vascular function is reduced in patients which could potentially lead to decreased pressure for glymphatic function.
A, astrocytes; M, microglia; N, neuron; CSF, cerebrospinal fluid.
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of innate immune cells (Deretic et al., 2013), particularly
those segregated in the CNS like microglia and astrocytes.
Determining how these genes are expressed, regulated and
function in astrocytes and microglia will provide important
insights into the neurodegenerative mechanisms underlying ALS
and FTD.

THE EMERGING ROLE OF THE
GLYMPHATIC SYSTEM AND VASCULAR
FUNCTION IN ALS AND FTD

While phagocytosis of apoptotic neurons and cellular debris
is a major pathway for removal of toxic substances within
the CNS, the glymphatic system has recently emerged as a
different clearance pathway with important immune functions
(Iliff et al., 2012). The glymphatic system mediates circulation
of cerebrospinal fluid (CSF) and exchange of interstitial
fluid to remove extracellular waste (such as Aβ and tau
proteins) and distribute compounds such as glucose, lipids,
and neuromodulators to the CNS (Thrane et al., 2013; Xie
et al., 2013; Iliff et al., 2014). The glymphatics run parallel
to the CNS vasculature in a paravascular space enclosed by
astrocytic endfeet (Figure 2B). Accordingly, the glymphatic
system (reviewed in Jessen et al., 2015) relies heavily upon the
vasculature in order to function as pressure differentials between
arteries and veins propel the CSF through the CNS parenchyma
(Iliff et al., 2013). The bulk of glymphatic flow through the CNS
is facilitated by aquaporin-4 (AQP4), a water transporter specific
to astrocytes in the CNS and polarized to their endfeet (Iliff et al.,
2012; Papadopoulos and Verkman, 2013). Interestingly, elevated
AQP4 with loss of astrocytic endfeet depolarization has been
reported in transgenic mutant SOD-1 rat models and reactive
astrocytes have been shown to up-regulate AQP4 elsewhere in
the astrocytic arbor apart from the endfeet (Bataveljíc et al.,
2012; Papadopoulos and Verkman, 2013). Glymphatic flow
significantly increased during non-rapid eye movement sleep
and was largely controlled by norepinephrine (which modulates
arousal) acting upon astrocytic α-adrenoceptors (Xie et al.,
2013; Paukert et al., 2014). Increased levels of norepinephrine
have been observed in the CSF, plasma and spinal cord tissue
of ALS patients (Brooks et al., 1980; Bertel et al., 1991) and
norepinephrine CSF levels were positively correlated with the
severity of dementia in FTD (Engelborghs et al., 2008). It has
been hypothesized that increased CSF levels of norepinephrine
could lead to decreased glymphatic function, while any aberrant
expression of AQP4 could potentially create turbulent convective
flux through the CNS interstitium, ultimately leading to
decreased removal of neurotoxic metabolites (Kress et al., 2014;
Jessen et al., 2015).MRI imaging techniques allow live-imaging of
the glymphatic system (Iliff et al., 2013; Yang et al., 2013) and are
a novel approach to detect flow abnormalities in the glymphatic
system in ALS and FTD patients. Recent studies have identified
lymphatic vessels present in the dura mater, which drains CNS
interstitial fluid via the glymphatic system and CSF from the
subarachnoid space (Aspelund et al., 2015; Louveau et al., 2015).
As T cells are implicated in the progression of ALS patients
and animal models (Philips and Robberecht, 2011) this would

reflect a novel way for lymphocytes to monitor and interact with
CNS tissue via the glymphatic system and potentially influence
neuroinflammatory events in ALS and FTD.

Glymphatic function is intimately linked to vascular flow via
the parallel anatomy and requirement of pressure differentials
created by blood flow. During development and in the mature
CNS, astrocytes and microglia are crucial to complex signaling
cascades and angiogenesis necessary for cerebrovascular function
(see Abbott et al., 2006). Interestingly, two genes involved in
vascular function have been linked to ALS. Mutations in ANG
(angiogenin) have been found to segregate with both familial
and sporadic forms of ALS and Parkinson’s disease (Greenway
et al., 2006; van Es et al., 2011). Angiogenin was enriched and
secreted by MNs with paracrine effects exclusively on astrocytes
in vitro (Skorupa et al., 2012, 2013). VEGFa promoter haplotypes
causing decreased expression also infer a greater risk of ALS.
VEGFa is predominately expressed by astrocytes in the CNS
(Zhang et al., 2014) and decreased VEGFa levels significantly
reduce survival in mutant SOD-1 mice (Lambrechts et al.,
2003). While decreased expression is a greater risk for ALS and
can cause MN degeneration due to reduced ischemic tolerance
(Oosthuyse et al., 2001), increased VEGFa expression by reactive
astrocytes due to NF-κB-dependent pathways leads to greater
infiltration of peripheral immune cells and blood brain barrier
(BBB) breakdown in multiple sclerosis (MS) mouse models
(Argaw et al., 2012; Chapouly et al., 2015). This highlights a
potential dual role for VEGFa in neurodegeneration and how
inappropriate control of VEGFa expression is associated with
various forms of neurodegeneration. Further implicating the
involvement of vascular defects, compromised blood brain and
spinal cord barriers have been observed in post-mortem ALS
and FTD tissue (De Reuck et al., 2012; Garbuzova-Davis et al.,
2012). Early dysfunction of the blood spinal cord barrier has been
shown to contribute to early MN damage in transgenic ALS-
mutant SOD-1 mice (Zhong et al., 2008; Winkler et al., 2014).
Further, patient cerebral perfusion neuroimaging studies have
noticed hypoperfusion abnormalities in areas that correlate with
neurodegeneration in ALS and FTD (Martin et al., 2001; Du et al.,
2006; Zhong et al., 2008; Chiò et al., 2014; Winkler et al., 2014).
Altogether these studies implicate vascular dysfunction in the
pathogenesis of ALS and FTD.

CONCLUSION

Research over the last decades has established that astrocytes
and microglia play crucial roles in the development and/or
progression of ALS and FTD through their complex interactions.
Recent advances in iPSC technology have highlighted that
glia secrete toxic factors that can trigger neurodegeneration.
New gene discoveries have implicated that defects in glial
phagocytic and neuroinflammatory activity are associated with
neurodegeneration. There is now emerging evidence suggesting
that non-inflammatory glial properties associated with vascular
fluid flow and waste clearance have important roles in disease
pathogenesis. Collectively, an emerging body of recent literature
highlights the critical role of microglia and astrocytes in the
etiology of ALS and FTD.
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