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Supplementary Figures 

 

Supplementary Figure 1. The impact of different choices of immunity model on the 

relationship between prevalence, incidence and EIR. 
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Supplementary Figure 2. Incidence-prevalence relationship (a) and proportion of 
cases in under-fives (b) with varying degrees of seasonality; incidence-prevalence 
relationship if immunity to clinical disease increases with every exposure (c); and 
seasonal curves of mosquito numbers (d). The colours of the lines in parts a-c 
correspond to the curves in part d. 
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Supplementary Figure 3. Lower and upper 95% credible intervals (left and right 
respectively) for the proportion (%) of clinical cases in each age group, using the 
Malaria Atlas Project posterior distribution of prevalence. 
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Supplementary Figure 4. Lower and upper 95% credible intervals (left and right 
respectively) for the proportion (%) of clinical cases in each age group, using the 
posterior mean Malaria Atlas Project prevalence. 
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Supplementary Figure 5. Observed and fitted proportions of mosquitoes infected, 

with references for each study: (a) Bondi village54; (b) Menang village54; (c)55; (d)56 
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Supplementary Figure 6. Prevalence, incidence and EIR according to proportion 

treated. 
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Supplementary Tables 

Supplementary Table 1. Model parameter estimates and prior distributions. 

Parameter description Symbol Prior median 
and 95% interval 

Posterior median 
and 95% credible 
interval; or fixed 
value 

References 

Age and heterogeneity 

Age-dependent biting parameter   Fixed 0.85 57,58 

Age-dependent biting parameter 
0a  Fixed 8 years 

Variance of log of heterogeneity 
in biting rates 

2  Fixed 1.67 59 

Human infection durations (all in days) 

Latent period 
Ed  Fixed 12 60 

Patent infection  
Id  Fixed 200 60,61 

Clinical disease (treated) 
Td  Fixed 5 62 

Clinical disease (untreated) 
Dd  Fixed 5 63 

Sub-patent infection 
Ud  67 (30, 100)  110 (87, 131)  

Prophylaxis following treatment 
Pd  Fixed 25 64 

Infectiousness to mosquitoes 

With no immunity, or with 
untreated disease 

Dc  0.24 (0.06, 0.52) 0.068 (0.039, 0.122) 65 

After treatment 
Tc  Fixed 0.32 Dc  

66 

In sub-patent infection 
Uc  0.004 (0.0004, 

0.016) 
0.0062 (0.00056, 
0.018) 

 

Relates infectiousness to 
probability of detection 

I  3.6 (0.16, 15) 1.82 (0.603, 8.54)  

Immunity reducing probability of detection 

Probability with maximum 
immunity 

1d  0.25 (0.13, 0.39) 0.161 (0.089, 0.240) 40 

Inverse of decay rate 
IDd  Fixed 10 years  

Scale parameter 
0DI  21 (1.3, 89) 1.58 (0.22, 6.18)  

Shape parameter 
D  2.01 (0.88, 3.06) 0.477 (0.280, 0.826)  

Duration in which immunity is not 
boosted 

Du  5.85 (0.85, 19.5) 9.45 (3.57, 19.2) 
days 
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Scale parameter relating age to 
immunity 

Da  9.9 (3.3, 17.3)  21.9 (19.2, 25.3) 
years 

 

Parameter relating age to 
immunity 

0Df  0.5 (0.025, 
0.975) 

0.0071 (0.00035, 
0.0259) 

 

Shape parameter relating age to 
immunity 

D  1.9 (0.36, 4.3) 4.81 (3.79, 6.26)  

PCR prevalence parameters 
A  0.5 (0.025, 

0.975) 
0.757 (0.545, 0.940)  

 
U  0.84 (0.12, 2.8) 0.186 (0.026, 0.668)  

Immunity reducing probability of infection 

Probability with no immunity 
0b  0.5 (0.05, 0.95) 0.590 (0.389, 0.845)  

Maximum relative reduction  
1b  Fixed 0.5  22 

Inverse of decay rate 
Bd  Fixed 10 years  

Scale parameter 
0BI  43 (3.5, 132) 43.9 (20.1, 120)  

Shape parameter 
B  2.01 (0.88, 3.06) 2.16 (1.22, 2.93)  

Duration in which immunity is not 
boosted 

Bu  5.85 (0.85, 19.5) 7.20 (2.63, 15.0) 
days 

 

Immunity reducing probability of clinical disease 

Probability with no immunity 
0  0.82 (0.52, 0.97) 0.792 (0.548, 0.961) 67 

Maximum relative reduction 
1  0.39 (0.02, 0.85)  0.00074 (0.00005, 

0.0025) 
 

Inverse of decay rate 
Cd  Fixed 30 years 68 

Scale parameter 
0CI  95 (5.8, 316) 18.0 (11.9, 26.7)  

Shape parameter 
C  2.01 (0.88, 3.06) 2.37 (1.99, 2.86)  

Duration in which immunity is not 
boosted 

Cu  5.85 (0.85, 19.5) 6.06 (2.82, 11.1) 
days 

 

New-born immunity relative to 
mother’s 

MP  0.5 (0.025, 
0.975) 

0.774 (0.536, 0.981)  

Inverse of decay rate of maternal 
immunity 

Md  205 (102, 362) 67.7 (59.0, 79.4) 
days 

69 

Case detection: recorded incidence relative to daily ACD 

Weekly ACD  
Wr  Beta: 0.76 (0.48, 

0.94) 
0.723 (0.460, 0.923) 70 

PCD 
Pr  0.5 (0.025, 

0.975) 
0.342 (0.120, 0.860)  
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Supplementary Table 2. Assumed prior uncertainty for EIR estimates. 

Relationship between clinical incidence data 

and estimate of EIR 

EIR uncertainty 

category for 

Table 1 

Standard deviation 

for log-normal 

prior distribution 

Same time and place, i.e. the same village, 

town or district of a city 

1 0.3 

Same time but different place 2 0.4 

Same place but different year 3 0.5 

Different place and different year 4 0.6 

Different place and different year, with 

substantial disagreement between 

estimates 

5 0.8 

 

 

 

 

 

 

 

 

   

 

 
 
 
 
 
 
 
 
 
 
 



10 
 

Supplementary Table 3. Estimated Africa-wide burden and age-distribution of clinical 

malaria with daily ACD according to proportion treated. 

Proportion 
treated 
(%) 

Number of cases 
(millions) 

Percent of cases in under-
fives 

Estimate 95% CrI Estimate 95% CrI 

0 236 163, 324 45.5 41.5, 49.7 

20 244 167, 338 47.3 44.0, 51.1 

40 252 171, 353 48.4 45.2, 51.9 

60 261 176, 372 48.9 45.5, 52.5 

80 272 180, 395 49.1 45.1, 52.7 
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Supplementary Methods 

Transmission model 

The transmission model which we fitted to the prevalence and clinical incidence data 

was in most respects the same as a previously published model11, but is described 

here for completeness. At each point in time people can be in one of six states: 

susceptible ( S ), treated clinical disease (T ), untreated clinical disease ( D ), 

asymptomatic infection which may be detected by microscopy ( A ), sub-patent 

infection (U ) and protected by a period of prophylaxis from prior treatment ( P ). 

Latent liver stage infection is modelled as a delay in the force of infection of duration 

Ed . People move between these states as shown in Figure 6. The partial differential 

equations for the human dynamics are as follows, with t  representing time and a  

age, 
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  is the force of infection,   is the probability of clinical disease upon infection, Tf  

is the probability that clinical malaria is effectively treated, and each d  is the mean 

duration in a state . Rather than numerically solve the partial differential equations, 

we stratified the infection states by age, and also by degree of exposure to 

mosquitoes. The equilibrium states for a given EIR can then be found by iteratively 

going through the age groups from youngest to oldest. 

Heterogeneity in biting rates 

We assume that each person has a relative biting rate  following a log-normal 

distribution between people with parameters 2
/ 2  and  , so that has a mean of 

1. With a mean EIR for adults of 
0 , the EIR   and force of infection   at age a  are 

given by  
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  0 01 exp( / )a a

b

   



  

 
 (2) 

where b  is the probability of infection if bitten by an infectious mosquito, and   

and 
0a  determine how the biting rate changes with age. To model this heterogeneity 

using a compartmental model, the infection states are stratified by exposure as well 

as age. Suppose that there are n  exposure categories. Let 1,..., nx x  and 1,..., nw w  be 

the Gauss-Hermite abscissas and weights for integrating a function multiplied by a 

standard normal probability density71. We take a proportion iw  of the population to 

be in exposure category i  and set the relative biting rate in this category to be  

  2
/ 2expi ix     (3) 

Then the EIR in the category i  is  

  0 01 exp( / )i i a a       (4) 

Immunity functions 

We consider three points at which immunity may act:  

 a reduction in the probability of infection following an infectious challenge 

(pre-erythrocytic immunity, BI ); 

 a reduction in the probability of clinical disease upon infection (acquired and 

maternal clinical immunity, CAI  and CMI  respectively); 

 and blood stage immunity that both reduces the probability of detection and 

reduces infectiousness to mosquitoes (detection immunity, DI ).  

In our previously published model, the effect of blood-stage immunity was instead to 

reduce the duration of infection.  

The three types of acquired immunity increase with exposure or wane as follows, 

starting from zero at birth: 
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 (5) 

Here, each u  represents the time during which immunity cannot be boosted after a 

previous boost and each d  governs the duration of immunity. The immunity 

functions are stratified by age and exposure to mosquitoes. 
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The probabilities of infection, detection and clinical disease are given by Hill 

functions, as these have a sufficiently flexible shape for a quantity which is assumed 

to decrease from its value with no immunity to a minimum value with high 

immunity. 

The probability of infection is: 

 
 

1
0 1

0/

1

1 B
B B

b
b

I I
b b



 


 
 
 




 (6) 

 

0b  is the probability with no immunity, 0 1b b
 is the minimum probability, and 0BI  and 

B  are scale and shape parameters.

 
Maternal clinical immunity CMI  is assumed to be at birth a proportion MP  of the 

acquired immunity of a 20 year-old and to decay at rate 1/ Md . The probability of 

acquiring clinical disease upon infection is then 

 
 

0 1
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1

1 C
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
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
 (7) 

 

where 0  is the probability with no immunity, 0 1 
 is the minimum probability, and 

0CI  and C  are scale and shape parameters. Previously we took 0  to be 1, i.e. all 

new infections cause disease in the absence of immunity, and 1  to be 0, but here 

we fit both parameters.

 The probability that an asymptomatic infection (state A ) will be detected by 

microscopy is 

 
 

1
1

0

(1 )

1 ( / ) D

D D D

d
q d

I I f


 


 (8) 

 

1d
 is the minimum probability, and 0DI  and D  are scale and shape parameters. Df  

is a purely age-dependent function given by  01 (1 ) / 1 ( / ) D

D D Df f a a


     at age 

a , with parameters 0Df , Da  and D . Two additional parameters, A  and U , 
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determine the probabilities that states A  and U  are detected by PCR, which are 

given by Aq


 and Uq


 respectively. 

Infectiousness to mosquitoes 

The lower probability of detection is assumed to be due to a lower parasite density, 

which also reduces onward infectivity. In state D  (clinical disease) and state U  (sub-

patent infection), infectiousness is Dc
 and Uc  respectively. In state A , infectiousness 

is given by ( ) I

U D Uc c c q
   where q  is the probability of detection of parasites and 

I  is a parameter to be estimated. Following treatment, infectivity is Tc . 

Model likelihood 

The model was fitted to data in a Bayesian framework using Markov Chain Monte 

Carlo (MCMC). Suppose that within a study, there are sites indexed 1,...,j m . Let 

1,...,4k   index the age groups 0 to 2 years, 2 to 5, 5 to 15 and 15 plus. Within these 

groups, suppose that the study presented data in age groups 1,..., ki s . We assume 

that there is a study-level random effect u  and random effects 
jkv , with 

 2~ 0, Cu Normal   and ~ (1/ , )jk C Cv Gamma   . 

For a given set of parameters, including the EIR for each site, let the model-predicted 

incidence of clinical malaria in site j  and age group i  be 
ji , and the person-time 

at risk and number of events be 
jiT  and 

jiy
 
respectively. We also include a 

parameter r  for the method of case detection, with 1r   for daily ACD and less 

than 1 for weekly ACD or PCD. We then assume that  

 
( )~ ( )u

ji jk i ji jiy Poisson re v T   (9) 

The rationale for this formulation of the age-specific random effects is that if the age 

groups 1,...,4k   coincided with the age groups in the study, then the Poisson-

Gamma model would be equivalent to a negative binomial model (conditional upon 

the random effects u ). However, there was finer age stratification in some studies 

than others, and simply having a negative binomial likelihood for each age group i  
would give different statistical weight to a study depending on how finely the data 

were grouped. 

The overall likelihood for clinical incidence data in a study is thus 

  
4

2 2

1 1 1

| / 2, ( |1 / , ) ( | )
ksm

C C jk C C ji jk ji ji

j k i

L f u g v P y ruv T    
  

     (10) 
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where f  is a log-normal probability density, g  is a Gamma probability density and 

P  is a Poisson probability. The random effects 
jkv  can be analytically integrated out 

of this likelihood72, and we numerically integrated the random effects u  out by 

adaptive Gauss-Hermite quadrature. Using numerical integration rather than 

sampling u  in the MCMC fitting has a number of advantages: it reduces the number 

of quantities sampled; the EIRs for each site were sampled, and these are correlated 

with the random effects; and the model equilibrium only needs to be found once, 

and then in the numerical integration the same equilibrium value is used repeatedly. 

The accuracy of the integration was checked by increasing the number of quadrature 

points and ensuring that the change in the posterior parameter estimates was 

negligible. 

Let the model-predicted prevalence of infection in site j  and age group i  be 
jip , 

and the number sampled and positive be 
jin  and 

jix  respectively. Then we assume 

that there is a study-level random variable 2~ (0, )Pw Normal  , and that  

  ~ - ,(1 ) ,ji ji ji jix Beta binomial q q n   (11) 

where  ( )ji jiq invlogit logit p w  , with  ( ) / (1 )logit p log p p   and invlogit  its 

inverse function, and   is an over-dispersion parameter. We integrated the random 

effects w  out of the likelihood by adaptive Gauss-Hermite quadrature. Data were 

stratified into age groups with boundaries 0, 2, 5, 10, 15, 20, 30, 40 years if they 

were presented in finer age groups than this: unlike clinical incidence, parasite 

prevalence does not have a sharp peak at young ages, hence less information is lost 

by grouping the data. 

The infectivity parameters were fitted alongside the rest of the model. The data for 

infectivity consisted of three published studies in which mosquitoes were fed on a 

sample from the population of endemic areas, regardless of the volunteers’ infection 

status54-56. In each study, numbers of mosquitoes feeding and infected were 

recorded by age group, and there was information on parasite prevalence. A Beta-

binomial likelihood was used with over-dispersion parameter I . 

Prior distributions and posterior estimates 

The prior distribution for the log of the EIR in each of the datasets was taken as 

normally distributed with the standard deviation chosen according to whether or not 

the estimate was in the same year, and whether it was from the same village or 

town or from elsewhere in the same region (Supplementary Table S2).  
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Data on treatment rates by country were obtained from the relevant Demographic 

Health Surveys (DHS) and Malaria Indicator Surveys (MIS)41. These surveys have data 

on the proportion of fever cases in under-fives which were treated with an anti-

malarial drug, which we took to be the treatment rate. As estimates were variable 

between surveys in the same country, we chose compromise values based on 

surveys near in time (Table 1). The prior estimate for the treatment rate was taken 

as 90% in the closely monitored cohorts in Dielmo and Ndiop, Senegal, and 5% for 

data from the Garki study. The prior distribution for the proportion of clinical cases 

effectively treated was a Beta distribution with mean at 75% of the DHS-derived 

value, and sum of Beta shape parameters = 25, where the factor 75% accounts for 

imperfect efficacy of pre-ACT treatments 73.  

Prior distributions for all other parameters in the model are similar to those 

previously reported11. Supplementary Table S1 shows the prior and posterior 

estimates for all the model parameters if the parameter was estimated. Some 

parameters were fixed based on values from the literature, and some shape 

parameters were given moderately informative prior distributions in order to ensure 

identifiability. In particular, the parameter governing heterogeneity in biting ( ) 

was fixed. This parameter has a substantial impact on the basic reproduction 

number and hence on the effectiveness of interventions. When we tried fitting the 

parameter, its posterior value differed greatly from the prior value, even though it is 

clear that the data does not contain genuine information about heterogeneity in 

biting. The observed and model-predicted probability of mosquito infection by age of 

the human population are shown for each study in Supplementary Figure S5. 

Spatial Data Sources and Modelled Relationships 

The methods for estimating the Africa-wide burden of clinical malaria in 2010 based 

on the parasite prevalence in 2 to 10 year-olds are summarised in the main text. 

Here we give further details.  

To estimate the population by age across sub-Saharan Africa, we started with 

Landscan estimates of the population at 5km resolution in 200743; we then 

multiplied these by country-specific growth rates from the World Bank to obtain 

estimates of the population in 2010; and finally, used the estimates of the age 

distribution in each country from the UN to estimate the proportion of people in 

each 5km square and each five-year age group. 

In each 5km square in sub-Saharan Africa we drew a sample of 10,000 prevalence 

values from the posterior distribution in that square: this distribution is from the 

model fitted by the Malaria Atlas Project (MAP)42. We then took a sample of 10,000 

parameter sets from the posterior distribution of our fitted model, and for each pair 
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of prevalence value and model parameter set we calculated the incidence that 

would be detected by different case detection methods, by five-year age groups, 

using the equilibrium model solutions. We then multiplied the incidence by the 

estimated number of people in each age group in that 5km square, to give a 

posterior distribution of the number of cases in each age group. This gives a 

posterior distribution of the proportion of cases by age at 5km resolution, or the 

numbers of cases by age group can be aggregated to give a posterior distribution of 

the Africa-wide burden and age-distribution of cases. Our model is not well-validated 

for prevalences above 80%, and needs implausibly high EIRs to reach prevalences 

above 85%. Hence when sampling from the posterior distribution of prevalence in 

each square, when the sampled value was above 80%, we set the clinical incidence 

to be the same as it would be at a prevalence of 80%. 

There is wide uncertainty in the proportion of clinical cases in each age group across 

Africa (Supplementary Figure S3), due primarily to the uncertainty in the underlying 

prevalence estimates. If instead of the full posterior distribution, we use the 

posterior mean prevalence from the MAP model, so that the only uncertainty is in 

our model estimates, the proportion of cases in each age group is much more 

precisely estimated (Supplementary Figure S4). 

Sensitivity analysis to immunity model 

The relationship between clinical incidence and prevalence is somewhat sensitive to 

the choice of immunity model (Supplementary Figure S1B). The model presented in 

the main text (blue line) assumes that immunity against clinical disease increases 

with exposure, but with a delay after each boost to immunity during which immunity 

cannot be further boosted. This delay was included for biological plausibility. In this 

model clinical incidence always increases with prevalence. We fitted an alternative 

model in which immunity to disease is boosted at every exposure, so that in 

equation Error! Reference source not found. CAI  increases as follows: 

 C
CA CA

CA

I I
I d

t a
 

 
 

 
 (12) 

Now the fitted incidence decreases at higher prevalences (red line). The model the 

main text incorporates a pre-erythrocytic/liver-stage immunity against infection and 

also models the effect of blood-stage immunity in reducing the probability of 

detection, with the choice of model based on the demonstrated partial efficacy of 

the RTS,S vaccine and on estimates of the detectability of parasite clones from 

genotyping studies22,40. Refitting with either of these removed also changes the 

incidence-prevalence curves (green and yellow lines). Incorporating immunity that 
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reduces the duration of infection to a minimum duration of patent infection of 50 

days made little difference to these relationships (not shown). 

Sensitivity analysis to treatment rate 

For model predictions and burden estimates, we assumed a treatment rate of 40% 

(the proportion of clinical cases treated with an effective drug), as the DHS and MIS 

surveys do not have data for every country, whereas we used country-specific data 

when fitting the model. A higher EIR is required to explain a given prevalence if there 

is a high treatment rate (Supplementary Figure S6a). Hence if the model is calibrated 

to match a given prevalence, there is a higher incidence if the treatment rate is 

higher (Supplementary Figure S6b). This results in the estimated Africa-wide burden 

increasing with the assumed treatment rate (Supplementary Table S3). However the 

estimated proportion of cases that occurs in under-fives is less sensitive to this 

assumption. 

Sensitivity analysis to seasonal variation 

Supplementary Figure S2 shows how the results are affected if there is seasonal 

variation in transmission, with the mosquito density varying over the year in 

proportion to the curves in Supplementary Figure S2d, with the same pattern 

repeating each year. The incidence and prevalence shown are the mean over the 

year. With the model presented in the main text, the incidence in under-fives is 

higher when there is marked seasonality than in a perennial transmission setting 

(Supplementary Figure S2a), whereas the proportion of cases in under-fives is less 

affected (Supplementary Figure S2b). In a model in which immunity to clinical 

disease increases in proportion to exposure (the model plotted with red dashed lines 

in Supplementary Figure S1), seasonality makes less of a difference to the incidence 

in under-fives (Supplementary Figure S2c), except at high prevalences when seasonal 

variation results in lower incidence for a given prevalence. 
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