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ABSTRACT: Genome-wide association studies, which typically report regression coefficients summarizing the associations of
many genetic variants with various traits, are potentially a powerful source of data for Mendelian randomization investigations.
We demonstrate how such coefficients from multiple variants can be combined in a Mendelian randomization analysis to
estimate the causal effect of a risk factor on an outcome. The bias and efficiency of estimates based on summarized data are
compared to those based on individual-level data in simulation studies. We investigate the impact of gene–gene interactions,
linkage disequilibrium, and ‘weak instruments’ on these estimates. Both an inverse-variance weighted average of variant-
specific associations and a likelihood-based approach for summarized data give similar estimates and precision to the two-stage
least squares method for individual-level data, even when there are gene–gene interactions. However, these summarized data
methods overstate precision when variants are in linkage disequilibrium. If the P-value in a linear regression of the risk factor
for each variant is less than 1 × 10−5, then weak instrument bias will be small. We use these methods to estimate the causal
association of low-density lipoprotein cholesterol (LDL-C) on coronary artery disease using published data on five genetic
variants. A 30% reduction in LDL-C is estimated to reduce coronary artery disease risk by 67% (95% CI: 54% to 76%).
We conclude that Mendelian randomization investigations using summarized data from uncorrelated variants are similarly
efficient to those using individual-level data, although the necessary assumptions cannot be so fully assessed.
Genet Epidemiol 37:658–665, 2013. Published 2013 Wiley Periodicals, Inc.∗
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Introduction

Mendelian randomization is a technique for using genetic
variants to estimate the causal effect of a modifiable risk
factor from observational data [Davey Smith and Ebrahim,
2003]. It has recently been used to strengthen the evidence for
causal roles in coronary heart disease of interleukin-6 [Swerd-
low et al., 2012] and lipoprotein(a) [Kamstrup et al., 2009]. A
limitation of Mendelian randomization is that genetic vari-
ants often only explain a small fraction of the variation in the
risk factor of interest [Davey Smith and Ebrahim, 2004], so
that assessing some causal associations requires sample sizes
running into tens of thousands to obtain adequate power
[Schatzkin et al., 2009]. This problem can be partially re-
dressed by the use of multiple genetic variants [Palmer et al.,
2011]. If each variant explains additional variation in the risk
factor, then a combined causal estimate using all of the vari-
ants will have greater precision than the estimate from any of
the individual variants [Pierce et al., 2011].

One potential source of such data is genome-wide associa-
tion (GWA) studies, which examine the associations of many
genetic variants with a trait. Many large GWA study consortia
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have been assembled, with sample sizes in some cases running
into hundreds of thousands [Ehret et al., 2011]. Individual-
level data on study participants are not always available due
to issues of practicality and confidentiality of data-sharing on
such a large scale. Presentations of results from GWA studies
often report the summary associations of all variants that
have reached a certain P-value threshold, and recently the
release of association estimates in published GWA studies for
all measured variants has been advocated [Editorial, 2012].
We investigate methods for using these summarized genetic
associations with a risk factor and an outcome to estimate
the causal effect of the risk factor on the outcome.

For the causal effect to be consistently estimated, each vari-
ant used in a Mendelian randomization analysis must satisfy
three assumptions [Didelez and Sheehan, 2007]:

i. it is associated with the risk factor,
ii. it is not associated with any confounder of the risk factor–

outcome association,
iii. it is conditionally independent of the outcome given the

risk factor and confounders.

A variant satisfying these assumptions is known as an in-
strumental variable (IV) [Greenland, 2000]. With a single
genetic variant used as an IV and a continuous outcome, as-
suming all associations are linear, the causal effect of the risk
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factor on the outcome can be estimated as the ratio of the
change in the outcome per additional variant allele divided
by the change in the risk factor per additional variant allele
[Thomas and Conti, 2004]. With individual-level data, each
of these changes can be estimated using linear regression.
For a binary outcome, such as disease, a log-linear or other
appropriate regression model can be used in the regression
of the outcome on the variant [Didelez et al., 2010]. If sum-
marized (aggregated) data are available in the form of these
regression coefficients, the ratio estimate of the causal effect
can be calculated without recourse to individual-level data
[Harbord et al., 2013]. However, with multiple variants, it is
not clear how to integrate these genetic association estimates
together into a single estimate of the causal effect.

Methods

We assume that summarized data are available for multiple
genetic variants that are single nucleotide polymorphisms
(SNPs) and satisfy the IV assumptions for the risk factor
of interest X and the outcome Y . Genetic variant k, k =

1, . . . , K is associated with an observed Xk mean change in
the risk factor per additional variant allele with standard error
σXk and an observed Yk mean change in the outcome per allele
with standard error σY k (if the outcome is binary, Yk could
represent the per allele change in the log-odds or the log-
probability of an outcome). Two methods are presented for
the estimation of a causal effect using summarized data. The
first, which has been previously used in applied investigations,
combines the ratio estimates from the individual variants
employing inverse-variance weights [Ehret et al., 2011]. The
second is a novel likelihood-based method, with independent
likelihood contributions from each of the variants.

Inverse-Variance Weighted Combination of Ratio Estimates

The ratio estimate of the causal effect of X on Y using
genetic variant k is Yk/Xk . The standard error of the ra-
tio estimate can be approximated using the delta method;
the leading term is σY k/Xk [Thomas et al., 2007]. By using
this expression for the standard error, an inverse-variance
weighted (IVW) estimate of the causal effect combines the ra-
tio estimates using each variant in a fixed-effect meta-analysis
model:

β̂ I V W =

∑
k XkYkσ

–2
Y k∑

k X2
kσ

–2
Y k

(1)

The approximate standard error of the estimate is:

s e(β̂ I V W ) =

√
1∑

k X2
kσ

–2
Y k

(2)

Further terms from the delta method could be used to im-
prove the estimate of the standard error of the ratio estimates.
However, if the estimate of the genetic association with the
risk factor is considerably more precise than the estimate
of the association with the outcome, as is often the case in
practice, then the leading term will dominate.

Likelihood-Based Method

Alternatively, a model can be constructed by assuming a
linear relationship between the risk factor and outcome and
a bivariate normal distribution for the genetic association
estimates:(

Xk

Yk

)
∼ N2

((
ξk

β ξk

)
,

(
σ 2

Xk ρ σXk σY k

ρ σXk σY k σ 2
Y k

))
,

for k = 1, . . . , K (3)

The causal effect of X on Y , β, which is assumed to be
the same for all genetic variants k, can be estimated by di-
rect maximization of the likelihood or by Bayesian methods
[Thompson et al., 2005]. The correlation parameter ρ, repre-
senting the correlation between genetic association estimates
Xk and Yk obtained from a single source can be specified
as the observational correlation between the risk factor and
the outcome. If the estimates Xk and Yk are derived from
independent sources, this correlation will be zero. If Yk is the
per allele change in the log-odds or the log-probability of an
outcome, then β represents a log odds ratio or a log relative
risk parameter, respectively.

Independence of Information on Causal Effect From
Multiple Variants

By combining the estimates of association from multiple
variants into a single estimate of the causal effect, an assump-
tion is made that the variants provide independent informa-
tion. There are several reasons why this may not be the case.
First, the causal estimates are derived from the same data,
and so will not be entirely independent. However, correla-
tion between the estimates should be low unless the sample
size is particularly small. Secondly, there may be statistical in-
teractions between variants in their associations with the risk
factor (gene–gene interactions). Thirdly, the distribution of
genetic variants may be correlated (linkage disequilibrium).

We perform simulation studies to assess the impact of the
assumption that multiple genetic variants provide indepen-
dent information on the causal estimate, in particular in the
presence of gene–gene interactions and linkage disequilib-
rium. We compare the causal effect estimate (and its pre-
cision) obtained from summarized data to that obtained if
individual-level data on the variants, risk factor and outcome
were available on the whole study population.

Simulation Study With Independently Distributed Variants

We initially assume that the genetic variants used as IVs are
independently distributed. Individual data were generated for
5,000 participants, indexed by i , according to the following
model:

xi = 0.15g1i + 0.2g2i + 0.25g3i + α12g1i g2i + α13g1i g3i

+ α23g2i g3i + ui + εXi

yi = 0.2xi – ui + εY i (4)

ui ∼ N (0, 1), εXi ∼ N (0, 1), εY i ∼ N (0, 1) independently
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where the α.. parameters represent gene–gene interactions.
The causal effect of X on Y is β = 0.2, and U represents
negative (unmeasured) confounding between X and Y . The
IVs G 1, G 2, G 3 take values 0, 1, 2 representing the number of
minor alleles in three independently distributed SNPs, each
with a minor allele frequency of 1

3 . Nine sets of values were
taken for the gene–gene interactions: α12 = α13 = α23 = 0 (no
gene–gene interactions), and α12 = ±0.08, α13 = ±0.1, α23 =

±0.12 (gene–gene interactions present).

Simulation Study With Correlated Variants

We repeated the simulation in the absence of gene–gene
interactions, but using correlated genetic variants. In order to
simulate data on the variants, two random draws ψ1i and ψ2i

were made from a zero-mean K -dimensional multivariate
normal distribution for each individual i . For each draw, if the
kth component was positive, a variant allele was recorded for
the kth variant. The draws represent the two haplotypes for
each individual [Lunn et al., 2006]. In this way, the variance-
covariance matrix in the multivariate normal distribution
determines the correlation between variants G ik , which take
values 0, 1, 2. Data for three genetic variants were simulated
using the following model:

ψ1i , ψ2i ∼ N3

⎛
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⎝ 0

0
0
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⎠ ,
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⎝ 1 θ θ

θ 1 θ
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G ik = 1ψ1ik >0 + 1ψ2ik >0, for k = 1, 2, 3 (5)

where 1. is an indicator function. We took five values of the
correlation parameter θ = 0, 0.1, 0.2, 0.4, 0.6 corresponding
to a mean squared correlation between variants (r 2) of 0 (no
linkage disequilibrium), 0.06, 0.13, 0.26 and 0.41.

Weak Instruments

A weak instrument is a variable that satisfies the IV assump-
tions, but does not explain a large proportion of variation in
the risk factor, so that the statistical association between the
risk factor and the IV in the dataset is ‘weak’ [Burgess et al.,
2011b]. IV estimates using weak instruments are biased in
the direction of the observational estimate, and the distribu-
tion of the IV estimate is poorly approximated by a normal
distribution [Burgess and Thompson, 2011]. The magnitude
of bias depends on the expected value of the F statistic in the
regression of the risk factor on the IVs, with lower F statis-
tics corresponding to greater bias. Bias with a single IV in
moderately large datasets is typically negligible, but bias may
be considerable when there are multiple IVs [Angrist and
Pischke, 2009]. For this reason, we are especially interested
in how the summarized data methods perform with weak
instruments.

Implementation

Estimates of the causal effect using all the genetic vari-
ants are calculated using individual-level data with the two-

stage least squares (2SLS) method [Baum et al., 2003], and
using summarized data with the IVW (equations (1) and
(2)) and likelihood-based (equation (3)) methods. The first-
stage model in the 2SLS was taken as additive in the variants
throughout, and as such the genetic model was misspecified
when there were gene–gene interactions. Summarized asso-
ciations were obtained by ordinary least squares (OLS) linear
regression of the risk factor and outcome on each variant
in separate regression models. The likelihood-based analyses
were performed in R (http://www.r-project.org) using the
optim command to directly maximize the likelihood.

An estimate of the correlation between the genetic asso-
ciations with risk factor and outcome of ρ = –0.1 was used
based on the approximate observational correlation between
the risk factor and outcome. Estimates were not especially
sensitive to moderate (±0.2) changes in this correlation. (A
sensitivity analysis for this parameter is shown later for an
applied example.)

In each scenario, results from 10,000 simulated datasets
for the comparison of the individual-level and summarized
data methods are given. We present the mean and median
estimates across simulations, the standard deviation (SD) of
estimates, the mean standard error (SE), the coverage of the
95% confidence interval for the causal effect (the proportion
of simulated datasets for which the 95% confidence interval
included the true value ofβ = 0.2), and the empirical power at
a 5% significance level (the proportion of simulated datasets
for which the 95% confidence interval excluded the null value
of β = 0). The Monte Carlo standard error (representing the
variation in estimates due to the finite number of simulations)
was approximately 0.001 for the mean estimate (0.004 for the
final scenario with gene–gene interactions) and 0.2% for the
coverage. In each set of simulations, the mean value of the F
statistic in the regression of the risk factor on the IVs is given.

Results

Independently Distributed Variants

Results from the scenario with gene–gene interactions are
given in Table 1. The individual-level 2SLS and summarized
IVW analyses gave similar mean and median estimates, which
did not differ in the third decimal place. They showed slight
bias in the direction of the observational estimate, consistent
with that predicted by weak instrument bias. The likelihood-
based analyses showed less bias with mean estimates around
or slightly above the true value of 0.2 and median estimates
slightly below the true value. Departures from the true value
were most marked in the final scenario, where the mean F
statistic for the genetic variants is below the conventional
threshold of 10, below which IVs are considered to be ‘weak’.

The coverage was around 95% for the 2SLS and likelihood-
based methods, although coverage was slightly underesti-
mated by the 2SLS method in the weak instrument scenario,
and was marginally underestimated (average of 94.3%) by the
likelihood-based method throughout. Coverage for the IVW
method was consistently underestimated at around 93%,
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Table 1. Results from simulation study with independently
distributed variants

α12 α13 α23 Mean F Method Mean Median SD Mean SE Coverage Power

0 0 0 47.3 2SLS 0.196 0.192 0.085 0.085 94.8 65.2
IVW 0.196 0.192 0.085 0.078 92.6 70.1
Likelihood 0.200 0.197 0.087 0.082 94.2 69.1

+0.08 +0.1 +0.12 126.9 2SLS 0.199 0.197 0.052 0.051 95.0 98.3
IVW 0.199 0.197 0.052 0.047 92.6 98.6
Likelihood 0.200 0.199 0.052 0.050 94.0 98.6

–0.08 +0.1 +0.12 88.1 2SLS 0.198 0.197 0.061 0.062 95.1 78.1
IVW 0.198 0.197 0.061 0.057 93.0 81.6
Likelihood 0.201 0.199 0.062 0.060 94.2 80.9

+0.08 –0.1 +0.12 74.4 2SLS 0.198 0.196 0.068 0.067 95.0 86.6
IVW 0.198 0.196 0.068 0.062 92.9 88.9
Likelihood 0.201 0.199 0.068 0.065 94.2 88.6

+0.08 +0.1 –0.12 59.6 2SLS 0.197 0.194 0.075 0.075 94.8 92.4
IVW 0.197 0.194 0.075 0.069 92.8 93.6
Likelihood 0.201 0.198 0.076 0.073 94.2 93.4

–0.08 –0.1 +0.12 45.8 2SLS 0.197 0.193 0.085 0.086 95.3 28.9
IVW 0.197 0.193 0.085 0.079 93.3 37.9
Likelihood 0.202 0.197 0.087 0.084 94.6 35.9

–0.08 +0.1 –0.12 33.1 2SLS 0.196 0.191 0.102 0.102 94.9 46.7
IVW 0.196 0.191 0.102 0.093 92.7 53.8
Likelihood 0.203 0.197 0.105 0.100 94.4 52.2

+0.08 –0.1 –0.12 23.0 2SLS 0.190 0.183 0.123 0.124 94.7 64.3
IVW 0.190 0.183 0.123 0.113 92.8 69.7
Likelihood 0.201 0.192 0.129 0.121 94.2 68.7

–0.08 –0.1 –0.12 6.6 2SLS 0.172 0.148 0.249 0.244 93.4 2.8
IVW 0.172 0.148 0.249 0.217 92.1 10.9
Likelihood 0.221 0.180 0.357 0.285 94.6 5.7

Instrumental variable estimates of causal effect +0.2 from simulated data with and
without gene–gene interactions using individual-level data (two-stage least squares
method, 2SLS) and summarized data (inverse-variance weighted, IVW, and
likelihood-based methods) with mean F statistic, mean and median estimates across
10,000 simulations, SD of estimates, mean SE of estimates, coverage (%) of 95%
confidence interval, and power (%) at a 5% significance level

indicating that the method gave estimates that were slightly
too precise (the mean SE was less than the SD of the esti-
mates). Estimates from the likelihood-based and 2SLS meth-
ods had similar efficiency, with the 2SLS analyses giving
slightly less variable estimates (lower SD), but the likelihood-
based analyses giving slightly more precise estimates (lower
mean standard error). The IVW method had the greatest
empirical power, although this was offset by the coverage lev-
els not achieving nominal levels. Power from the likelihood-
based method was marginally lower, and from the 2SLS lower
still.

Overall, despite gene–gene interactions leading to misspec-
ification of the genetic model in the 2SLS method and effect
modification in the genetic associations in the summarized
data methods, the assumption of independence of the infor-
mation provided by uncorrelated variants did not seem to
give misleading results.

Correlated Variants

Results from the scenarios with variants in linkage disequi-
librium are given in Table 2. Estimates from the individual-
level and summarized data methods were close to unbiased.
The coverage of estimates from the 2SLS method was close to
the nominal 95% level; however, the standard errors from the
summarized data methods were too small and coverage was
well below 95% when variants were correlated, even when

Table 2. Results from simulation study with correlated variants

r 2 Mean F Method Mean Median SD Mean SE Coverage

0.00 42.6 2SLS 0.195 0.191 0.090 0.090 94.8
IVW 0.195 0.191 0.090 0.082 92.8
Likelihood 0.200 0.196 0.092 0.087 94.1

0.06 47.8 2SLS 0.196 0.193 0.086 0.085 94.5
IVW 0.197 0.194 0.086 0.073 90.3
Likelihood 0.201 0.198 0.087 0.077 92.0

0.13 52.6 2SLS 0.197 0.194 0.080 0.081 95.0
IVW 0.199 0.196 0.080 0.066 89.5
Likelihood 0.202 0.199 0.081 0.070 91.2

0.26 63.3 2SLS 0.197 0.193 0.074 0.073 94.6
IVW 0.199 0.196 0.074 0.055 85.1
Likelihood 0.201 0.198 0.074 0.058 87.1

0.41 74.8 2SLS 0.198 0.196 0.067 0.067 95.0
IVW 0.201 0.199 0.068 0.046 82.1
Likelihood 0.202 0.200 0.068 0.048 84.2

Instrumental variable estimates of causal effect +0.2 from simulated data with
correlated variants (correlation measured by r 2, the average squared correlation
between variants) using individual-level data (two-stage least squares method, 2SLS)
and summarized data (inverse-variance weighted, IVW, and likelihood-based
methods) with mean F statistic, mean and median estimates across simulations, SD of
estimates, mean SE of estimates, coverage (%) of 95% confidence interval

the correlation was not large. Power was not reported in this
case as it is misleading when the coverage is not close to the
nominal levels. This shows that variants used in a summa-
rized analysis must be uncorrelated in order to obtain valid
statistical inferences.

Weak Instruments

We repeated the simulation in the absence of gene–gene
interactions and linkage disequilibrium, but using 20 genetic
variants with smaller effects on the risk factor to investigate
the performance of the methods with weak instruments. Our
simulations (see Supporting Information) suggest that the
IVW and likelihood-based methods have similar behavior
with weak instruments to the 2SLS method. In particular,
this means that when the expected value of the F statistic is
greater than 10, the bias of the causal estimate is less than 10%
of the bias of the confounded observational estimate from an
OLS regression analysis [Staiger and Stock, 1997].

Example: Causal Effect of Low-Density
Lipoprotein Cholesterol on Coronary Artery
Disease

Low-density lipoprotein cholesterol (LDL-C) is a known
causal risk factor for coronary artery disease (CAD). Genetic
variants associated with LDL-C have been found in many
different regions of the human genome. We take a published
study reporting genetic associations of variants with LDL-C,
high-density lipoprotein cholesterol (HDL-C), and triglyc-
erides (TG), and with CAD risk from a meta-analysis of GWA
studies [Waterworth et al., 2010]. We consider five genetic
variants associated with LDL-C (P < 1 × 10–5), but not as-
sociated with HDL-C nor TG (P > 0.01) to mitigate against
potential pleiotropy. These variants are on chromosome 1
(PCSK9 and SORT1 gene regions), chromosome 2 (APOB),
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Figure 1. Per allele associations of five genetic variants with low-density lipoprotein cholesterol (LDL-C) and risk of coronary artery disease
(CAD) taken from Waterworth et al. [Waterworth et al., 2010], with causal estimate (and 95% confidence interval) of effect of LDL-C on CAD risk
(likelihood-based method assuming zero correlation).

chromosome 5 (HMGCR), and chromosome 19 (LDLR); de-
tails of the variants are given in the Supporting Information.
The variants are not in linkage disequilibrium. A P-value of
1 × 10–5 corresponds to an F statistic of around 20, so weak
instrument bias is negligible. The estimated associations with
95% confidence intervals are shown graphically in Figure 1,
together with an estimate of the causal effect of LDL-C on
CAD risk using the likelihood-based method for summarized
data assuming no correlation between the estimates of genetic
association with the risk factor and the outcome. Odds ra-
tio estimates for a 30% reduction in LDL-C levels using the
IVW method and the likelihood-based method for a range of
different correlation values are displayed in Table 3.

We see that the estimates from both summarized data
methods are similar, and that changing the correlation pa-

Table 3. Causal odds ratios of CAD per 30% reduction in LDL-C

Method Correlation (ρ) Estimate 95% confidence interval

IVW – 0.33 0.25, 0.45
Likelihood-based 0 0.33 0.24, 0.46

Likelihood-based – 0.4 0.33 0.23, 0.48
Likelihood-based – 0.2 0.33 0.24, 0.47
Likelihood-based – 0.1 0.33 0.24, 0.46
Likelihood-based 0.1 0.33 0.25, 0.45
Likelihood-based 0.2 0.33 0.25, 0.45
Likelihood-based 0.4 0.34 0.26, 0.44

Instrumental variable estimates of causal effect of low-density lipoprotein cholesterol
(LDL-C) on risk of coronary artery disease (CAD) using inverse-variance weighted
(IVW) method and likelihood-based method for different values of the correlation
parameter (ρ)

rameter in the likelihood-based method has little impact. The
graph indicates that variants with a greater magnitude of asso-
ciation with LDL-C also have a greater association with CAD
risk. The overall estimate of causal association passes close
to the estimate from each of the variants, giving plausibil-
ity to the instrumental variable assumptions, and suggesting
that changes in LDL-C from different biological mechanisms
may have similar effects on CAD risk [Burgess et al., 2012].
The confidence interval from the IVW method was slightly
narrower than that from the likelihood-based method with
ρ = 0, consistent with the slightly reduced coverage seen in
the simulation studies.

Discussion

In this paper, we have considered methods for Mendelian
randomization using summarized data on multiple genetic
variants. The target for estimation is a non-genetic parameter,
the causal effect of the risk factor on the outcome. Each vari-
ant provides additional information on this parameter, and so
the most precise estimate can be obtained using all available
variants that are valid instrumental variables [Burgess et al.,
2011aa]. GWA studies are promising resources for powerful
Mendelian randomization investigations; however obtaining
individual-level data on large numbers of participants is of-
ten problematic for reasons of logistics and confidentiality.
Our methods for obtaining causal estimates from summa-
rized data commonly presented in published reports facil-
itate causal assessment of risk factors in existing consortia
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without additional data collection or sharing. Simulation re-
sults suggest that causal estimates obtained from summarized
data using a likelihood-based model with independently dis-
tributed ‘non-weak’ variants are almost as precise as those
obtained from individual-level data, with bias close to zero
and coverage close to nominal levels. The empirical power
of estimates from the likelihood-based method was greater
than that from the 2SLS method. An alternative approach, us-
ing an inverse-variance weighted method, gives similar point
estimates to an individual-level data analysis and slightly im-
proved power over the likelihood-based method, but slightly
too narrow confidence intervals.

Comparison of Summarized Data Methods

The IVW and likelihood-based methods make different
assumptions about the distribution of variables. The IVW
method uses an asymptotic estimate of the standard error of
the causal (ratio) estimate from each variant; this is known
to underestimate the true variation in the estimate, especially
when the IV is weak [Burgess and Thompson, 2012]. No al-
lowance is made in the method for uncertainty in the genetic
association with the risk factor, although this could be incor-
porated by including additional terms from the delta method.
The likelihood-based method assumes a bivariate normal dis-
tribution for the genetic associations with the risk factor and
outcome. In both summarized data methods, the variances of
the association estimates are assumed to be known; this may
be why coverage is consistently slightly underestimated. The
likelihood-based method is more computationally complex,
but allows for correlation between the genetic association es-
timates with the risk factor and outcome, which is ignored
in the IVW method. The likelihood-based method also has
a natural extension to a meta-analysis framework using a
hierarchical model (Section 5.6), which may better account
for heterogeneity between studies than using meta-analysed
genetic association estimates directly.

Weak Instruments

With weak instruments, estimates using both of the sum-
marized data methods demonstrated bias similar to that of the
2SLS method. If the distributions of genetic variants are un-
correlated, then each variant explains independent variation
in the risk factor. For variants of equal strength, the expected F
statistic in the univariate linear regression of the risk factor on
one of the variants is approximately the same as the expected
F statistic in the multiple regression on all of the variants. An
F statistic of 10 corresponds to a P-value of around 0.001; an F
statistic of 20 to a P-value of around 1 × 10–5; and an F statistic
of 30 to a P-value of around 5 × 10–8, a threshold often used
for assessing GWA significance. In the example presented, as
the variants were independently distributed and each had a
P-value of below 1 × 10–5, the F statistic for all of the variants
is at least 20; in fact, as some variants had P-values well below
1 × 10–5, the F statistic would be greater. With a sample size
of 10,000, an F statistic of 10 corresponds to a coefficient of
determination (R2) for each variant of around 0.1%. When

sample sizes and the strength of genetic variants are limited,
it may be necessary to restrict the number of variants used
in a Mendelian randomization analysis in order to mitigate
against bias from weak instruments.

Close to unbiased estimates with weak instruments can be
obtained from individual-level data using the limited infor-
mation maximum likelihood (LIML) method [Angrist and
Pischke, 2009] (see Supporting Information).

Assessment of the IV Assumptions

A limitation of the use of Mendelian randomization is that
the instrumental variable assumptions cannot be assessed
without supplementary data. Although the IV assumptions
can never be fully tested empirically, they can be assessed to
some extent, for example by testing the association of the
genetic variants with measured covariates to assess poten-
tial pleiotropy. This can be undertaken using individual-level
data. It is also possible with summarized data, as with HDL-C
and TG in the example, although genetic associations with
a full range of covariates would not necessarily be measured
or routinely reported by a GWA study. These associations
could be checked in the literature; however, the assumption
is necessary that the literature-based estimates are valid for
the population under investigation. Other assessments, such
as addressing population stratification by the evaluation of
genetic principal components, or testing for the attenuation
of genetic associations with the outcome on adjustment for
the risk factor [Glymour et al., 2012], require individual-level
data.

In addition, many of the parametric assumptions required
by IV methods for effect estimation, such as linearity of ge-
netic associations or of the risk factor–outcome association
[Didelez and Sheehan, 2007], cannot be assessed in summa-
rized data.

Risk Factor and Outcome Associations in Separate Samples

Not all GWA studies measure data on a large number of
phenotypic variables, and so genetic associations with the
risk factor and the outcome may not be available in the same
sample. Estimates of the association of the genetic variants
with the risk factor and the outcome may be obtained from
independent sources. This is known as a two-sample IV anal-
ysis [Pierce and Burgess, 2013]. A key assumption in this
case is that the genetic associations with the risk factor and
outcome are of the same magnitude in both sources.

Correlation between genetic associations with the risk fac-
tor and outcome arising from estimation of the coefficients in
the same source is ignored by the inverse-variance weighted
method, but can be acknowledged in the likelihood-based
method. If the sources for the estimates are neither iden-
tical nor disjoint, but instead overlap, then a meta-analysis
approach would be recommended to correctly account for
the structure in the data. In the absence of study-specific
estimates, we advocate the likelihood-based method with a
sensitivity analysis for the correlation parameter.
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Linkage Disequilibrium

If two genetic variants are in complete linkage disequilib-
rium, then inclusion of both variants in an individual-level
analysis model would not lead to additional information.
However, if variants are in partial linkage equilibrium, al-
though the information provided by each variant is not inde-
pendent, each variant does provide additional information
on the causal effect. Summarized data methods using variants
in linkage disequilibrium overstate precision.

Typically, GWA studies report the association of a single
lead variant in a genetic region. If this variant is not the
causal variant, or if there are multiple causal variants in the
region, then additional information may be obtained by con-
sidering multiple variants per region. Information on such
variants could be included correctly in a summarized analy-
sis by considering conditional effects of variants on the risk
factor and outcome by adjustment for the lead variant in a
regression model [Yang et al., 2012]. We have not developed
these methods as suitable data are not routinely reported in
applied analyses.

Extension to Multiple Studies

The likelihood-based model introduced in this paper can
be naturally extended into a hierarchical (multilevel) model
in order to combine summarized associations from mul-
tiple studies. We assume that genetic variant k in study
m = 1, . . . , M is associated with an observed Xkm mean
change in the risk factor with standard error σXkm, with Ykm

and σY km similarly defined for the outcome. Although the
presentation of GWA results from multiple studies is com-
mon in published research, summarized genetic associations
that have been meta-analysed across studies are often re-
ported rather than study-specific associations. We present
this model for investigators with access to study-level sum-
marized estimates in the hope that study-specific results will
be routinely reported in the future.(

Xkm

Ykm

)
∼ N2

((
ξkm

βm ξkm

)
,

(
σ 2

Xkm ρm σXkm σY km

ρm σXkm σY km σ 2
Y km

))

ξkm ∼ N (μξk , τ 2
ξk

), for k = 1, . . . , K ; m = 1, . . . , M

βm ∼ N (μβ , τ 2
β ), for m = 1, . . . , M (6)

Random-effects distributions are assumed for the genetic
association parameters ξkm and the causal effect parameters
βm; fixed-effect models (τ 2 = 0) could also be assumed. The
overall causal effect of X on Y is μβ . Such models can be
estimated in a Bayesian framework with weakly informative
priors on the heterogeneity parameters τ 2. If a particular
study does not provide an estimate Xkm, the distribution
of the parameter ξkm can be estimated using the relevant
random-effects distribution as an implicit prior.

Winner’s Curse

The winner’s curse is the phenomenon that the associa-
tion estimate of the variant with the strongest association

from a GWA study tends to be overestimated [Göring et al.,
2001]. Typically, GWA studies report the single variant from
each gene region showing the strongest association with the
trait of interest. If several variants have similar strength, the
variant with the strongest observed association will not al-
ways truly have the strongest association with the risk factor.
Data-driven selection of the ‘lead’ variant results in bias in
the causal estimate, as the association of the lead variant is
typically over-estimated [Burgess et al., 2011b]. This is an
example of selection bias. This bias can be eliminated by
choosing the lead variant for each genetic region from an
independent data source.

Sample Code

Sample code for estimating causal effects from summarized
data for multiple variants associated with a risk factor in a
single study and in multiple studies for R and WinBUGS is
provided in the Supporting Information.

Conclusion

If individual-level data are available, these should be used
directly to perform a Mendelian randomization analysis.
However, if individual-level data are not available, then valid
statistical inference can still be obtained from summarized
data on the associations of genetic variants with the risk fac-
tor and the outcome. On the basis of the simulations in this
paper and the theoretical explanations for the differences in
results, we recommend the likelihood-based model for ap-
plied analysis of summarized data. However, analyses should
be restricted to uncorrelated genetic variants (no linkage dis-
equilibrium), and care should be taken when including large
numbers of variants to assess potential weak instrument bias
by examining the F statistic in the regression of the risk factor
on the variants.
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