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Holographic deep learning for rapid optical screening
of anthrax spores
YoungJu Jo,1* Sangjin Park,2,3* JaeHwang Jung,1 Jonghee Yoon,1 Hosung Joo,4 Min-hyeok Kim,5

Suk-Jo Kang,5 Myung Chul Choi,6 Sang Yup Lee,2† YongKeun Park1,7†

Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for
decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps
and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for
rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic
microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images
of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures,
achieving single-spore sensitivity and subgenus specificity. The unique “representation learning” capability of
deep learning enables direct training from raw images instead of manually extracted features. The method
automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This
remarkable learning ability makes the proposed method readily applicable to classifying various single cells
in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modifica-
tion. We believe that our strategy will make holographic microscopy more accessible to medical doctors and
biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens.
INTRODUCTION
Bacillus anthracis, a gram-positive spore-forming bacterium causing the
disease anthrax, is one of the most destructive biological weapons,
which is prone to be abused for bioterrorism (1). It is thus crucial to
rapidly detect and identify anthrax spores for biodefense (2). Various
biological, chemical, and optical fingerprinting methods have been
studied to accelerate diagnosis of B. anthracis (3–5). Conventional
culture-based methods take days and are often inaccurate. Polymerase
chain reaction–based methods provide species-level specificity but still
take hours and require heavy instrumentation with skilled personnel to
operate the system (4). Photoluminescence and surface-enhanced
Raman scattering methods take only minutes but require labeling
with exogenous agents and cannot discriminate B. anthracis from other
Bacillus species that are ubiquitous in nature (5). Most of thesemethods
are limited by detection sensitivities that requireminimum sample sizes
of at least thousands of bacterial cells; thus, their applications in practical
settings such as aerosolized spores require sample amplification pro-
cesses that significantly limit the detection speed.

Recent developments of optical methods based on holographic mi-
croscopy combined with machine learning, which enables rapid and
label-free identification of single cells, can be an important step to
address the anthrax issue (6–18). These techniques were pioneered by
Javidi’s group (6–14) and developed further by several groups (15–18).
Holographic microscopy (19), or quantitative phase imaging (QPI)
in a broader sense, measures optical field images (that is, nanometer-
scale distortions of wavefronts passing through a sample) using laser-
based interferometry. In addition to the amplitude images available
from conventional intensity-based microscopy techniques, holo-
graphic microscopy quantitatively measures the optical phase delay
maps dictated by the refractive index (RI) distribution of a sample
(19). Because the endogenous RI distribution in a cell is strongly re-
lated to the structural and biochemical characteristics (20) of the target
classes (for example, species or cell types), the measured field images
of single cells and the corresponding class labels are passed to data-
driven machine learning algorithms for systematic discovery of class-
specific fingerprints encoded in the images. These approaches can be
combined with flow cytometry and/or bioaerosol collection systems
to achieve ultrafast identification of unlabeled cells and pathogens
(16, 17). However, none of thesemethods achieved subgenus specificity
required for discriminating B. anthracis from other Bacillus species
ubiquitous in nature.

Here, we present a next-generation holographic screening method
by adopting “deep learning,” a state-of-the-art machine learning tech-
nique based on deep multilayered neural networks (21, 22), to holo-
graphic microscopy. We designed a deep convolutional neural
network (CNN), HoloConvNet, specialized in the classification of ho-
lographic images of living cells. After training with quantitative phase
images of individualBacillus spores, the network identified new anthrax
sporeswith single-spore sensitivity and subgenus specificity. Its remark-
able learning ability enables direct training from raw images by auto-
matically recognizing key biological traits encoded in the images,
including the dry mass of individual bacteria, and presents outstanding
accuracy that outperforms previous approaches in all accuracy mea-
sures. As demonstrated below, this method is readily applicable to clas-
sification of various single cells, in addition to B. anthracis, without any
modification.
RESULTS
The overall framework of our method is shown in Fig. 1. We used
QPI unit (QPIU), a cost-effective palm-sized module that converts
a conventional microscope into a holographic microscope (23), for
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phase imaging of individual Bacillus spores in an isolated biosafety
level 3 (BSL-3) laboratory at the Agency for Defense Development,
Korea. It is attached to the output port of an existing bright-field
microscope to form a common-path interferometry for optical field
imaging (Fig. 1, A to C). After imaging B. anthracis and four dif-
ferent Bacillus species with various levels of phylogenetic related-
ness (see Materials and Methods), we trained our deep neural
network named HoloConvNet as a species classifier using the phase
images of individual spores and the corresponding species labels
(training set). The learnable parameters of the deep neural network
were iteratively adjusted by the error backpropagation algorithm
(Fig. 1D) (21, 22). The performance of the trained HoloConvNet
was tested by taking new images (test set), which were never seen
before by the network, as the input to the network (Fig. 1E). The
machine-predicted species labels were compared with the true
classes to estimate identification accuracy.

The following five Bacillus species were used in this study. (i) B.
anthracis Sterne is an attenuated strain of B. anthracis (24). The Sterne
strain has the pXO1 plasmid encoding anthrax toxins. However, it lacks
the pXO2 plasmid that encodes the polysaccharide capsule, whose role
is to defend against phagocytosis by the immune cells in the vegetative
state. Because we were interested in the sporulated state of B. anthracis,
it was appropriate to choose the Sterne strain as a representative strain
instead of fully virulent strains (for example, the Ames strain) for safety
reasons. Although B. anthracis was the key target species in the present
study, we selected other Bacillus species with various levels of related-
ness to this species to assess the subgenus specificity of the proposed
method (25). (ii) B. thuringiensis and (iii) B. cereus are the closest
neighbors of B. anthracis (26). These three species form the so-called
B. cereus group. Despite their genetic similarity, their pathogenic prop-
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erties differ by species: the causative agent of anthrax, the source of pow-
erful biological insecticides, and the cause of several food-borne
illnesses, respectively. (iv) B. atrophaeus and (v) B. subtilis are the com-
mon simulants ofB. anthracis (27). These two species are closely related
to each other; however, they have some distance from the species
mentioned above (28). These species have been the most prominent
surrogate organisms for B. anthracis in biodefense programs. We also
note that B. subtilis is one of the best-studied model microbes, which is
considered the gram-positive counterpart of Escherichia coli. The
detailed data on Bacillus spores are presented in table S1.

The quantitative nature of holographic microscopy captures sub-
cellular phase delay distribution that could be exploited by machine
learning algorithms to extract fingerprint information (15, 20). On
the other hand, conventional techniques (for example, phase contrast
microscopy) provide rough morphological information only (fig. S1).
Simple morphological parameters such as spore size (fig. S2), which
is consistent with previous reports (29, 30), are not enough for species
discrimination due to high genetic similarities and large cell-to-cell
variations (15, 23).

The endogenous RI distribution of Bacillus spores, which dictates
the sample-induced phase delay imaged by QPIU, is strongly related
to specific characteristics of each species (15, 20). However, because this
relation is often indirect, it should be approximated using supervised
learning. The precision of this function approximation obviously dom-
inates the performance of the trained classifiers. Deep neural networks
are universal approximators for virtually any arbitrarily nonlinear
functions (22), whereas conventional machine learning techniques
mostly rely on linear or only slightly nonlinear decision boundaries (15).

The network architecture of HoloConvNet is illustrated in Fig. 2
(and table S2). A phase image of a single spore is processed by multiple
Fig. 1. Holographic deep learning framework for screening of anthrax spores. (A) Schematic diagram of QPIU for holographic imaging of individual Bacillus spores.
(B) Interferogram formed by spatial modulation. It encodes quantitative phase images of individual spores, as shown in (C). (D) The measured phase images from
multiple Bacillus species are used to train a deep neural network using the error backpropagation algorithm. (E) The trained network accurately predicts the
corresponding species when independently measured phase images are shown.
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layers of convolution, nonlinearity, and pooling operations and then fi-
nally receives scored class labels through fully connected layers. The
network makes its prediction by selecting the final-layer neuron with
the strongest activation. The key functional block of this process is a
convolutional layer followed by nonlinearity

yi′ ¼
X
j

wijxj þ bi

yi ¼ maxðyi′; 0Þ

8<
: ð1Þ

where x and y are input andoutput vectors, respectively, andw and b are
synaptic weights and biases, respectively. Equation 1 emulates integra-
tion of synaptic inputs by a biological neuron (21, 22) that fires only
when the net input exceeds a certain threshold [more precisely, a pop-
ulation of neurons with an output firing rate modeled by a rectified
linear unit (ReLU)].Note that the entire processing by the network from
images to class labels is a nonlinear mapping that corresponds to the
approximating function explained above.

Training a deep neural network is essentially a large-scale nonlinear
optimization of the synaptic weights (and biases) that govern the
network behavior. The large number of the learnable parameters
makes training process extremely difficult. However, CNNs such as
HoloConvNet have markedly smaller number of parameters (21, 31)
by using localized and shared receptive field structures inspired by
physiological visual processing. Thus, the network can be trained
using the error backpropagation algorithm that minimizes the mismatch
between the machine-predicted and true labels (see Materials and
Methods). HoloConvNet efficiently converges to a hierarchical repre-
sentation of the images that gradually transforms the data space in
which the classes are easily separable. This property is called the “repre-
sentation learning” capability of deep learning (21) and enables direct
training from raw images.

The performance of HoloConvNet is shown in Fig. 3 (and fig. S3
with different visualization). A well-trained neural network reflects
the general relations between the input and output data so that it accu-
rately predicts the class labels of new images (generalization property).
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First, the multiclass identification performance of the network for the
fiveBacillus species (B. anthracis,B. thuringiensis,B. cereus,B. atrophaeus,
and B. subtilis), trained with five class labels representing individual
species, is shown in Fig. 3A. HoloConvNet identifies B. anthracis
spores from the other four species with high sensitivity and specificity
(table S3), despite relatively less accurate classification between the other
species that is irrelevant for the screening of anthrax spores.

Because diagnosing anthrax spores from other species is our prime
objective, the network was next trainedwith binary class labels (anthrax
versus non-anthrax). With this method, the performance could be
enhanced (Fig. 3B and table S4) by letting the optimization process
focus on the characteristics distinguishing B. anthracis from others
(B. thuringiensis, B. cereus, B. atrophaeus, and B. subtilis). When
the problemwas relaxed by excluding the two B. cereus group species
(B. thuringiensis and B. subtilis), HoloConvNet achieved a remarkable
accuracy of 96.3% (Fig. 3C and table S5). These results suggest the
potential of deep learning–based holographic screening of anthrax
spores in realistic settings.

In Fig. 3D, the performance of our method (“Holography + Deep”)
was comparedwith the performance of several previous techniques: ho-
lographic microscopy with conventional machine learning (“Hologra-
phy + Conventional”) (15), conventional microscopy with deep
learning (“Conventional + Deep”) (training HoloConvNet with binary
morphology images; seeMaterials andMethods), and conventionalmi-
croscopy with conventional machine learning (“Conventional +
Conventional”) (linear discriminant analysis with the morphological
parameters in fig. S2). More extensive comparisons to various con-
ventional classifiers, such as support vector machines, are presented
in tables S6 and S7. HoloConvNet outperformed the previous methods
in all performance measures with a substantial margin.

Representation learning by HoloConvNet, the fundamental im-
provement developed in this study, was further examined (Figs. 3, E
to G, and 4). The network transforms the images into a representation
in which the data points are linearly separable because a single layer of
neurons is a linear classifier (22). We applied t-distributed stochastic
neighbor embedding (t-SNE), a high-dimensional data visualization
Fig. 2. Architecture of HoloConvNet.When a phase image of an individual spore is taken as the input, the network first processes the images through three rounds of
convolution, ReLU nonlinearity, and max pooling layers. Then, two fully connected (and ReLU) layers follow: (i) the last hidden layer under dropout regularization and (ii) the
output layer with the class scores. These scores are used to calculate the loss function and to make species predictions in the training and test stages, respectively. Only
10 two-dimensional activation maps per layer are presented with layer-wise scaling for visualization (see table S2 for detailed architecture).
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technique (32), to the activation of individual neurons in the last hidden
layer (Fig. 3, E to G). The good separation observed indicates the great
ability of HoloConvNet to learn the optimal representation of phase
images without any predesigned features required by conventional ma-
chine learning techniques. The different degrees of separation in the
three cases explain the different identification performance. Addition-
ally, the relative distances between the species clusters shown in Fig. 3E
are consistent with the phylogenetic relationship explained above; it
should be noted here that the relationship was independently discovered
by HoloConvNet through training.

The outstanding performance of the proposedmethod raises a ques-
tion: What are the key biological traits that are measured and exploited
for the identification of anthrax spores?We speculated that cellular dry
mass (33), the mass of nonaqueous cellular components, is one of the
most important traits. This hypothesis is based on the domain knowl-
edge that there exists an additional outermost structure, called the exo-
sporium, in the B. cereus group spores but not in the remaining two
species (34). It was reasoned that structural distinction might result in
an interspecies difference of dry mass that is inherently measured by
holographic imaging with femtogram-level sensitivity (see Materials
and Methods). A strong positive correlation was found between dry
mass and activation of the “anthrax neuron” at the output layer (Fig. 4,
A toC).This observationmakes sense if themeandrymass ofB. anthracis
is the heaviest among the five species, which turns out to be true (Fig. 4D).
As expected, B. anthracis is slightly heavier than the other two B. cereus
group species, and the remaining two species lacking exosporium have
considerably lighter dry mass. The subtle difference within the B. cereus
group might be due to species-dependent compositions and nanostruc-
tures of exosporium (35), although their contribution to dry mass should
be confirmed by additional investigations. It was noted that the same
Jo et al., Sci. Adv. 2017;3 : e1700606 4 August 2017
order relation of drymasswas observed in all independentmeasurements
(fig. S4), and the overall range of measured dry mass is consistent with
previous studies (23, 36).

To confirm the causality between drymass and species prediction by
HoloConvNet, we used a computational disabling strategy. Detrimental
effects on the performance were observed by computationally normal-
izing the phase images to remove the dry mass information. As shown
in Fig. 4E, the network trained and testedwith normalized phase images
shows a significantly impaired performance, supporting the key role of
dry mass. However, it does not mean that dry mass is the sole informa-
tion extracted by the network; the performance of a single-feature linear
discriminant classifier based solely on dry mass was also significantly
worse. This suggests that other traits such as spatial distribution of sub-
cellular components in the spores play roles in screening. From these
observations, it can be concluded that the interspecies difference of dry
mass is recognized and exploited through representation learning by
HoloConvNet. Here, it should be emphasized that we never taught the
network on how to calculate dry mass from phase images. On the other
hand, a conventional machine learning algorithm cannot make use of
dry mass unless it is manually selected by a researcher.

Finally, the generality of our method expected from the outstanding
learning abilities was investigated. As a proof-of-concept example,
HoloConvNet was trained for diagnosing the pathogen Listeria mono-
cytogenes, the causative agent of listeriosis that is often fatal to neonates
and the elderly (37), from five different Listeria species (see table S8 for
data specification). The diagnostic accuracy was surprisingly high,
showing higher than 85% (fig. S5). The architecture and learning rules
were identical to those used for the diagnosis of Bacillus species. It is also
noted that L. monocytogenes is not the species with the heaviest dry mass
in this case (fig. S6).Accordingly, the other classifiers basedonly ormostly
Fig. 3. Performance of HoloConvNet. (A to C) The test images are used to measure the performance of (A) multiclass classification of the five Bacillus species
(B. anthracis, B. thuringiensis, B. cereus, B. atrophaeus, and B. subtilis), (B) binary classification of B. anthracis and the other four species (B. thuringiensis, B. cereus,
B. atrophaeus, and B. subtilis), and (C) binary classification of B. anthracis and the two nonmember species of the B. cereus group (B. atrophaeus and B. subtilis). (D) The
performance of the proposed method is compared to previous techniques (see the main text). Holographic microscopy and deep learning significantly improve the
performance in all cases. (E to G) t-SNE visualization of the CNN codes at the last hidden layer, corresponding to the classification schemes of (A) to (C), which
shows the representation learning capability of HoloConvNet. The error bars in (A) to (D) indicate the SD calculated from 10 classification models with different random
initializations.
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on dry mass show markedly lower performance compared to the
equivalent comparison in the Bacillus problem (fig. S5, B and C). The
superior performance of HoloConvNet suggests that, for the Listeria
problem, the deep neural network discovers and exploits key biological
traits other than dry mass. These results suggest that the holographic
deep learning framework reported here has immediate and wide appli-
cability, in contrast to problem-specific conventional machine learning
approaches.
DISCUSSION
We proposed and experimentally demonstrated a novel method for
screening of anthrax spores by combining holographic microscopy
and deep learning for the first time. The new strategy enables rapid
label-free identification of individual anthrax spores with subgenus
specificity, extending our previous intergenus bacterial fingerprinting
method based on conventional machine learning (15). In addition to
the superior performance due to the extreme flexibility of deep neural
networks, the transition from classical machine learning to deep
learning fundamentally transforms holographic single-cell identifica-
tion techniques by acquiring the representation learning capability.
HoloConvNet automatically recognizes and then uses key biological
Jo et al., Sci. Adv. 2017;3 : e1700606 4 August 2017
characteristics that are species-dependent (for example, dry mass in
the anthrax problem) from raw images. Additionally, the present
method can be readily extended to other single-cell classificationprob-
lems, such as the diagnosis of L. monocytogenes demonstrated in this
study, without any modification. Thus, our method eliminates the
need tomanually design and optimize features based on trial and error
for individual problems.

The next steps beyond this proof-of-concept study to achieve prac-
tical ultrafast screening of anthrax spores are straightforward. Above all,
the proposedmethod should be combined with flow cytometry (16, 17)
and bioaerosol collection (38) systems to fully exploit the single-spore
and label-free nature of themethod. Then, a large amount of holograph-
ic imaging data from the resultant high-throughput device would be
used to train HoloConvNet for more species and strains under various
environmental conditions to assure stable field performance. The
performance could be further improved by adopting multimodal QPI
[for example, spectral (39), polarimetric (40), or tomographic (41)
images as the stacked input to the network] to increase the amount
of raw information investigated by the network.

Despite the fast and label-free nature of holographic microscopy,
the limited chemical specificity has left this tool overshadowed by flu-
orescence microscopy. Specific domain knowledge (for example,
Fig. 4. Representation learning by HoloConvNet: Dry mass as a key biological trait. The interspecies difference in cellular dry mass is automatically recognized
and used for screening of anthrax spores. (A to C) The activation of the “anthrax neuron” at the output layer shows a strong correlation with dry mass. a.u., arbitrary
units. (D) Dry mass of individual Bacillus spores calculated from the quantitative phase images. (E) Computationally disabling the dry mass information significantly
impairs the performance of HoloConvNet. Dry mass alone is not enough for full performance as well. Data in (D) are presented as box-and-whisker plots displaying
median and interquartile ranges. The error bars in (E) indicate the SD calculated from 10 classification models with different random initializations.
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homogeneity of hemoglobin concentration in red blood cells and high
RI of lipid droplets in eukaryotic cells) has been required for effective
use of the technique. Themethod proposed in this paper solves this dif-
ficulty by using the powerful learning abilities of deep neural networks.
As we demonstrated in this study, intelligent holographic microscopy
can now actively recognize and exploit the class-specific fingerprints,
encoded in the raw images of various biological samples, without any
previous knowledge.We believe that our strategywillmake holographic
microscopy more accessible to medical doctors and biomedical scien-
tists for easy, rapid, and accurate diagnosis of pathogens and facilitate
exciting new applications.
MATERIALS AND METHODS
Experimental design
Preparation of Bacillus spores
B. anthracis Sterne (pXO1+ and pXO2−) was obtained from the Centers
for Disease Control and Prevention, Korea (KCDC). B. thuringiensis
BGSC4AJ1wasobtained fromtheBacillusGenetic StockCenter (BGSC).
B. cereus ATCC 4342 was obtained from the American Type Culture
Collection (ATCC). B. atrophaeus KCCM 11314 was obtained from
the Korean Culture Center for Microorganisms (KCCM). B. subtilis
168 was obtained from the Korean Collection for Type Cultures
(KCTC).

All experiments involving B. anthracis were approved by the insti-
tutional biosafety committee and conducted in a BSL-3 laboratory
following the regulations in the Republic of Korea. Bacterial cells from
frozen glycerol stocks were streaked onto Luria-Bertani (LB) agar plates
and incubated at 30°C overnight. The next day, a single colony was in-
oculated into 5ml of LB broth in a 50-ml CELLSTARCELLreactor tube
(Greiner Bio-One) and incubated at 30°C with shaking (200 rpm) for
8hours. Then, 250ml of the culture brothwas transferred to 25ml ofGYS
(glucose yeast salt) sporulationmedium (42) in a 125-ml polycarbonate
Erlenmeyer flask with a vent cap (Corning) and incubated at 30°C with
shaking (200 rpm) for 48 hours. After sporulation was completed,
spores were harvested by centrifugation (5420g, 4°C) and washed four
timeswith phosphate-buffered saline (PBS) (Life Technologies). Finally,
the spores were suspended in 5 ml of PBS and stored at 4°C until use.
Note that we prepared all the species with the same procedure.

A small volume (approximately 10 ml) of the bacterial solution
was placed in an imaging chamber composed of standard cover
glasses (C024501, Matsunami Glass) and (optional) spacers with a
thickness of 20 to 30 mm. Imaging was performed at room temperature
after the spores settled down to the bottom and spread into a single
layer.

Although the optimal conditions for cultivation and sporulation
somewhat vary, all the species were prepared using the same protocol
to guarantee that the screening system recognized only the species-
dependent characteristics. Additionally, all the procedures for spore
preparation and imaging were performed multiple times to ensure
the independence of the training and test sets.
Holographic imaging
Because all anthrax experiments had to be conducted in a separate
BSL-3 facility at the Agency for Defense Development, we used a
compact and portable QPIU recently developed in our group (23),
as the holographic imaging modality. It consists of two polarizers
(LPVISE100-A, Thorlabs Inc.) and a Rochon prism (#68-824, Edmund
Optics Inc.) inside an aluminum tube mounted in front of a charge-
coupled device (CCD) camera (FL3-U3-88S2C-C, PointGrey). Inserting
Jo et al., Sci. Adv. 2017;3 : e1700606 4 August 2017
the unit into the output port of a conventional bright-field microscope
(B-382PLi-ALC, Optika) converts it into a holographicmicroscope. The
light source for illumination was a diode laser (CPS532, l = 532 nm,
4.5mW;Thorlabs Inc.), and the totalmagnificationwas×100determined
by an objective lens (M-148; numerical aperture, 1.25; oil immersion;
Optika). Acquisition time per interferogramwas less than 20ms, which
could be reduced by many orders with high-intensity light sources and
more sensitive cameras.

QPIU, shown in Fig. 1A, is a spatially modulated self-reference in-
terferometry. When the light passing through the sample encounters
the unit, it becomes linearly polarized by the front polarizer. Then,
the following Rochon polarizing prism divides the beam into two du-
plicated beams with slightly different propagation directions. Finally,
the orthogonal polarization states of the divided beams become parallel
by the rear polarizer. Thus, the two beams of parallel polarization gen-
erate an interference pattern at the overlapped region on the CCD
plane. The linear polarizers before and after the prism are adjusted so
that the interferogram has a high visibility (Fig. 1B). The quantitative
phase information is retrieved (Fig. 1C) from the measured interfero-
gram using a standard field retrieval algorithm (43). The details on the
principle of QPIU can be found elsewhere (23).
Convolutional neural networks
The network architecture of HoloConvNet shown in Fig. 2 is catego-
rized as a CNN, which is the most popular deep learning framework for
image classification and still has high interest in research (21, 31).
Because the input for a deep learning algorithm is a raw image, in-
stead of extracted features, the large number of learnable parameters
(see Eq. 1 in the main text and filter dimensions shown in table S2)
makes the training process extremely difficult. Using aCNN can resolve
this issue by reducing the dimensionality through several constraints on
the synapticweights. Inspired by the classicalwork on early visual cortex
(44), the synaptic weights of a CNN are localized and shared to mimic
the receptive fields of biological vision. The resulting network exploits
local spatial correlations to be robust under natural distortions, just
as in physiological visual processing, with a significantly smaller
number of parameters to be optimized. Although dimensionality
reduction in conventional machine learning is done by manually de-
signed feature extraction using problem-dependent domain expertise
(10, 11, 15–18), biologically inspired intuition about the general proper-
ties of imagesmentioned above can have the same role in deep learning.
This point is important because it enables direct training from raw
images.
The Listeria experiments
The six major bacterial species of the genus Listeria, namely, L. mono-
cytogenes (10403S), L. grayi (ATCC 19120), L. innocua (ATCC 33090),
L. ivanovii (ATCC 19119), L. seeligeri (ATCC 35967), and L. welshimeri
(ATCC 35897), were cultured in brain-heart infusion medium without
antibiotics. After culturing overnight in a 37°C shaking incubator, the
vegetative bacterial cells werewashed and dilutedwith PBS based on the
cultured concentration estimated by optical density measurements at
600 nm. The bacterial solution was placed and imaged in imaging
chambers described above for the Bacillus experiments.

The holographic imaging of the prepared samples was done with a
Mach-Zehnder interferometer (19) with varying illumination angles to
exploit the high-resolution synthetic aperture imaging technique (45).
Optical field reconstruction and image processing protocols were iden-
tical to those of the Bacillus experiments.

The same network architecture and learning rule for training the
original HoloConvNet (for Bacillus spores) were used to train the
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network for Listeria. The only preprocessingwas to adjust the size of the
input images to match the input dimension of HoloConvNet.

Statistical analysis
Image analysis
All image analysis procedures were done with MatLab (R2014b,
MathWorks Inc.). The reconstructed phase images containing multiple
spores were segmented by phase thresholding to be separated into
images of single spores. The isolated spores were computationally
aligned at the centers of square backgrounds for further analysis. The
segmented regions were considered as the morphologies of individual
spores that could be measured with conventional microscopy tech-
niques such as phase contrast microscopy. The representative morpho-
logical parameters plotted in fig. S2 were quantified with the
regionprops function of MatLab. For implementing the conventional
classifiers, the built-in functions in the Statistics and Machine Learning
Toolbox of MatLab were used.

Calculation of the single-spore dry mass from phase images
exploited the well-known proportionality between the optical phase
delay and cellular dry mass (46). The total dry mass (m) can be
calculated from the phase delay map (Dϕðr→Þ) as follows

m ¼ l
2pa

∬
S
Dϕðr→Þd2 r→

where l is the illuminationwavelength, S is the projection area of the cell
surface, and a is the RI increment for nonaqueous molecules. Because
the RI increment is known to be 0.18 to 0.21 ml/g for typical biological
cells (46), we used a = 0.2 ml/g, and the results were consistent with
those measured by other techniques (23, 36, 47). Note that we never
explicitly taught the network about this relation.
Deep learning
HoloConvNet is a CNN designed for the classification of holo-
graphic images of single cells. We implemented HoloConvNet
using the MatConvNet (48) framework (version 1.0, beta 20) because
of its simplicity and compatibility with our experimental data primarily
processed with MatLab. The final network architecture shown in Fig. 2
and table S2 was carefully chosen after comparing several variations.
Motivated by the recent trend for “small receptive fields and deep
layers,” the sizes of the receptive fields of the convolutional layers were
chosen to be small (3 × 3), and thus, the total number of learnable
parameters was relatively manageable (approximately 0.1 million). Be-
cause the architecture is substantially deep, we used the ReLU non-
linearity as the neuron model to avoid the vanishing gradient
problem (49). Note that we only used phase images and not noisy am-
plitude images (due to the transparency and small sizes of the single
spores) as the inputs to the network.

In addition to the traditional “weight decay” regularization (22),
several recent techniques were used to reduce overfitting. We used
the “dropout” technique, a regularization method based on efficient
ensemble learning (50), for the last hidden layer with a dropout rate
of 0.5. For further regularization and accelerated training speed,
“batch normalization” was done at every interface between a con-
volutional layer and the following ReLU layer (51). Because of the
large number of learnable parameters, we used “data augmenta-
tion” that enlarged the training data set (31) by a factor of 128. This
is done by generating the new labeled images by rotating the original
images by random angles sampled from a zero-mean Gaussian
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distribution with an SD of 10° and by flipping the images with a prob-
ability of 0.5.

During the training stage, the learnable parameters were updated
toward the direction minimizing the loss function using the concept
of error backpropagation (21, 22). We used cross-entropy loss based
on softmax function, which quantifies the mismatch between the
machine-predicted and true labels, as the objective function to be mini-
mized. By calculating the partial derivatives of the loss function with
respect to the elements of the synaptic weight tensors using the chain
rule, we could update the parameters in a stochastic gradient descent
(SGD) scheme (21, 22). The learning rule was conventional SGD as-
sisted with a momentum of 0.5 (note that using recent learning rules
instead could further improve the performance), and the training batch
size was 1024. The weights were initialized from a zero-mean Gaussian
distribution with layer-wise scaling based on the input sizes (52). The
biases were initialized with the constant 0. We used an equal learning
rate for all layers, which was attenuated by a factor of 5 per five epochs
(22). The hyperparameters were selected by cross-validation; the grid
searching process with the initial learning rate and weight decay regu-
larization strength resulted in values of 0.05 and 0.0005, respectively.
We used one graphics processing unit (GPU) (GeForce GTX 680, NVI-
DIA) and CUDA Toolkit 7.5 (NVIDIA), which increased the training
speed typically by 5- to 10-fold. We note that it is possible with more
computing resources to train multiple network models with different
random initializations to compose a committee machine to further en-
hance the performance (31). Finally, the identification performance was
estimated using separate test images that were never shown during the
training stage. The error bars in Figs. 3 and 4 represent the SD calculated
from 10 classification models with different random initializations.

The typical training time for 30 epochs (which were used for species
prediction) was 25 min (multiclass identification with five Bacillus spe-
cies, GTX 680). The typical time required for species prediction was less
than 1 ms per cell (batch size of 445 cells). We found an approximately
twofold increase of computing speed for GTX 980 Ti (NVIDIA) and
expect more than a threefold increase when using the state-of-the-art
GPUs such as GTX 1080 Ti (NVIDIA).

The visualization of HoloConvNet codes was performed by the un-
supervised dimensionality reduction technique t-SNE, which embeds
high-dimensional data in a low-dimensional space while preserving
the pairwise distances of the data points, implemented in MatLab
(32). The activation strengths of individual neurons at the last hidden
layer by the test images were used as the raw variables. The parameters
for the stochastic optimization for t-SNEwere as follows: The perplexity
was 30, and the dimension for initial principal components analysiswas 30.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/8/e1700606/DC1
fig. S1. Representative images of individual Bacillus spores.
fig. S2. Morphological features of individual Bacillus spores.
fig. S3. Confusion matrices illustrating the performance of HoloConvNet.
fig. S4. Dry mass of individual Bacillus spores measured on different days.
fig. S5. Comparison of Listeria identification techniques.
fig. S6. Dry mass of individual bacteria from the Listeria species.
table S1. Detailed data on Bacillus spores.
table S2. Detailed architecture of HoloConvNet.
table S3. Performance of HoloConvNet on multiclass classification of the five Bacillus species.
table S4. Performance of HoloConvNet on binary classification of the five Bacillus species.
table S5. Performance of HoloConvNet on binary classification of the three Bacillus species.
table S6. Performance of conventional machine learning techniques in morphology-based
identification of Bacillus spores.
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table S7. Performance of conventional machine learning techniques in holographic
identification of Bacillus spores.
table S8. Detailed description of the Listeria data.
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