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Abstract

Causes of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothe-

sized that metagenomic next-generation sequencing (mNGS), which allows for broad

genomic-level detection of infectious agents in a biological sample, can systematically

identify potential causes of non-malarial fevers. The 212 participants in this study were of

all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between

December 2020 and August 2021, respiratory swabs and plasma samples were collected

at 313 study visits where participants presented with fever and were negative for malaria

by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial

detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits

(39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recov-

ered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits),

and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza

cases occurred between May and July 2021, coinciding with when the Delta variant of

SARS-CoV-2 was circulating in this population. The primary limitation of this study is that

we were unable to estimate the contribution of bacterial microbes to non-malarial fevers,

due to the difficulty of distinguishing bacterial microbes that were pathogenic from those

that were commensal or contaminants. These results revealed the co-circulation of multi-

ple viral pathogens likely associated with fever in the cohort during this time period. This

study illustrates the utility of mNGS in elucidating the multiple potential causes of non-

malarial febrile illness. A better understanding of the pathogen landscape in different
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settings and age groups could aid in informing diagnostics, case management, and public

health surveillance systems.

Introduction

Fever is a frequent disease manifestation and a common reason for seeking health care services

in resource-limited settings. Fever has many underlying etiologies, including infection with a

broad array of pathogens such as malaria caused by the Plasmodium falciparum protozoan para-

site, as well as other parasites, viruses, and bacteria. Given the non-specific disease presentation,

determining etiologies of fever based solely on clinical examination is difficult, and therefore

diagnostic testing is needed. For malaria, a major cause of morbidity and mortality in Africa

[1], recent increases in point-of-care and laboratory diagnostic testing have led to demonstrable

improvements in malaria case management [2]. However, there are sustained knowledge gaps

on fever etiologies that do not result in a malaria diagnosis due to the lack of testing availability

for other pathogens, and the relative burden of other emerging pathogens of global importance

(e.g., arboviruses) remains largely uncharacterized. The acquisition of clinical immunity to P.

falciparum further confounds the study of fever etiologies in malaria-endemic settings. Individ-

uals acquire clinical immunity against malaria over repeated infections, leading to the ability to

tolerate malaria parasites in the blood without developing fever [3]. In individuals with parasite-

mia who have acquired high levels of clinical immunity, P. falciparum is unlikely to be the cause

of febrile illness. Taken together, the limited availability of diagnostics for pathogens beyond

malaria results in many undiagnosed illnesses [4], missed opportunities for targeted treatments

[5], unnecessary empiric use of antibiotics [6], and public health surveillance systems that pro-

vide an incomplete picture of the pathogen landscape [7].

Direct pathogen detection platforms such as metagenomic next-generation sequencing

(mNGS) can be harnessed to meet this multifaceted challenge of identifying non-malarial

fever etiologies. mNGS allows for the broad and unbiased genomic-level detection of infectious

agents in a biological sample. This powerful technology has played a key role in disparate fields

including clinical diagnostics [8], microbiome characterization [9], outbreak detection [10,11],

and transcriptomics [12]. As highlighted in a recent review piece by Ko and colleagues [13],

multiplexed pathogen testing can be particularly advantageous in resource-constrained set-

tings, as a single assay can generate information about a suite of microbes in a sample. Recent

mNGS studies in Uganda [14], Kenya [15], and Cambodia [11] have revealed new insights

into the local patterns of infectious etiologies of non-specific disease presentations including

fever and pneumonia. As recently underscored by the SARS-CoV-2 pandemic, unbiased dis-

ease surveillance can also provide insight with regard to incidence of newly emerging infec-

tions, especially in geographies where implementation of widespread, disease-specific

diagnostics is constrained by competing demands on resources [16]. In addition to identifying

the microbial composition of a sample, a key strength of the mNGS approach is the possibility

to generate partial or whole pathogen genomes for downstream epidemiologic and genomic

investigations. There are various considerations for selecting the optimal nucleic acid to evalu-

ate in metagenomic studies [17,18]. RNA libraries are required for capturing RNA viruses, and

there is a substantially higher signal than DNA from actively replicating microbes due to the

amplification of microbial RNA, especially when combined with host RNA depletion methods.

Likewise, selecting DNA for a metagenomic study is important when the RNA quality is low,

when identifying latent viruses, or when antibiotics have been administered, which would pre-

vent detection of actively replicating bacteria.
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analysis were deposited in their respective GISAID

databases (see S2 Table for accession numbers).

The R code used to produce Fig 2, Nextstrain trees

generated in this analysis, and corresponding

Snakefiles are available on GitHub at: https://

github.com/czbiohub/rapid-response-prism. The

SRA files of non-host reads associated with this

analysis are available at: https://www.ncbi.nlm.nih.

gov/bioproject/PRJNA870959. CZ ID public links to

heatmaps visualizing the mNGS detections are

available at: https://czid.org/pub/7pxmXbpFTL.

Note that while the two batches were separately

processed for the analysis, for simplicity they have

been combined in this public link. The relevant

clinical and demographic data are available in S1

File.
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Here, we performed RNA mNGS as a research tool to systematically study the potential

causes of non-malarial febrile illness within a well-characterized, multi-generational, represen-

tative cohort of individuals living in an area with high malaria burden in eastern Uganda. Given

the timing of this study, which ran from December 2020 to August 2021, we were also uniquely

situated to detect SARS-CoV-2 infections and the co-circulation of multiple respiratory viral

pathogens during this time period. Given the difficulty of discriminating bacterial microbes that

are pathogenic from those that are commensal or contaminants, for the purposes of this study

we focused on the detections of viruses and P. falciparum malaria by mNGS.

Methods

Study population and design

This pilot study was nested within the ongoing Program for Resistance, Immunology, Surveil-

lance, and Modeling of Malaria in Uganda (PRISM) Border Cohort study in the Tororo and

Busia districts of Uganda. The design and population of this cohort study have recently been

described elsewhere [19]. Briefly, all households in the parishes of Osukuru (Tororo district),

Kayoro (Tororo district), and Buteba (Busia district) were enumerated to generate a sampling

frame to recruit households into the study. In August 2020, households were randomly

selected and screened for eligibility to participate. Inclusion criteria for a household to partici-

pate included having at least two members aged 5 years or younger. All permanent members

of an enrolled household who met eligibility criteria were screened for enrollment. The cohort

was dynamic, so any permanent members that joined an enrolled household were screened for

enrollment.

The approximately 500 participants from the 80 households enrolled in the cohort were

encouraged to come to a dedicated study clinic open 7 days a week for all of their medical care

free of charge and were reimbursed for their transport costs, minimizing barriers to accessing

care. Routine study visits were conducted every 4 weeks, and included a standardized evalua-

tion and blood collection by finger prick or heel stick (if< 6 months of age) or by venipunc-

ture (if 6 months of age and older). At each study visit where participants reported a fever or

history of fever in the last 24 hours, testing for asexual malaria parasites was performed by

microscopic examination of a thick blood smear. Participants were diagnosed with malaria if

positive and managed according to national guidelines [20]; the incidence of malaria in the

cohort was approximately 1 to 3 episodes per person per year in children, and lower in adults

[19]. In addition, a sample was collected for subsequent testing via ultrasensitive qPCR for

Plasmodium falciparum malaria [21].

Participants were eligible for this pilot mNGS study if they had a fever (determined as either

having a fever at the time of visit with objective temperature > 38˚C, or having self-reported

fever in the past 24 hours) or a rash, accompanied by a negative malaria blood smear result.

Participants of all ages were included. Individuals meeting these criteria, but who were positive

for malaria by qPCR, were included. Our expectation was that submicroscopic parasitemia

would be prevalent in this setting and unlikely to be the source of the febrile illness. For each

participant visit that met these criteria, we obtained a combined oropharyngeal/mid-turbinate

swab and 200 µL of plasma, each collected directly into separate cryovials containing DNA/

RNA Shield transport and storage media, and frozen at -80˚C. For a minority of visits, only

one of the sample types was collected.

Ethics statement

The study protocol was reviewed and approved by the Makerere University School of Medi-

cine Research and Ethics Committee, the Uganda National Council of Science and
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Technology, the University of California, San Francisco, Human Research Protection Pro-

gram, the London School of Hygiene & Tropical Medicine Ethics Committee, and the Stanford

University Research Compliance Office. Written informed consent was obtained for adults (18

years of age or older) and the parent/guardian of each participant under 18 years of age prior

to enrolment into the study. Informed assent was obtained for children 8–17 years of age.

mNGS sample processing and sequencing

For each collected sample, nucleic acid was extracted using the quick-DNA/RNA Pathogen

MagBead kit (Zymo Research). Extracted nucleic acid was treated with DNAse to isolate RNA

alone and run on a TapeStation for quality control to examine RNA integrity. Water controls

were used to characterize background contamination, as well as 25 pg of a positive control

spike-in (RNA standard dilution series from External RNA Controls Consortium (ERCC)).

Plate maps were designed to detect and minimize cross-contamination between wells by inter-

spersing samples and water controls. Samples were run in two experimental batches (see S1

Table). FastSelect -rRNA HMR (Qiagen) was used for human RNA ribosomal depletion,

which is known to knockdown ~98% of human ribosomal RNA targeting the cytoplasmic

(5S,5.8S,18S,28S) and mitochondrial (12S,16S) rRNAs, and specifically targets human, mouse,

rat, and other mammalian species [22]. RNA was reverse-transcribed to attain cDNA, which

was used to construct and barcode sequencing libraries using the NEBNext Ultra II Library

Prep Kit (New England Biolabs). The RNA sequencing libraries underwent 150-nt paired-end

Illumina sequencing. The target reads were at least 5 million reads per sample to attain enough

coverage depth per respective sample.

mNGS bioinformatic analysis using CZ ID

We used the CZ ID bioinformatics pipeline v6.8 (http://czid.org), an established, open-source

sequencing analysis platform for raw mNGS data which enables the detection and taxonomic

identification of microbes [23]. Briefly, the pipeline filters out reads mapping to the human

host (using STAR [24]) and removes low-quality (using Price Seq [25]), low-complexity

(LZW), and duplicate reads as well as adapter sequences (using Trimmomatic [26]). The final

composition of reads in each sample was determined by querying the remaining reads on

NCBI’s nucleotide (NT) and non-redundant protein (NR) databases using the GSNAP-L [27]
and RAPSearch2 [28] programs, respectively.

For each sample, significant microbial detections were determined from the unique reads

per million (rPM) that mapped to specific microbial taxa, genera, and species. To do so, we

applied the following four threshold filters to determine the presence of a microbe in a sample:

nucleotide (NT) Z-score� 1 (calculated from the mass-normalized background model created

on CZ ID using the water controls), NT rPM� 10 (aiming for a minimum of at least 10 reads

of a mapping to a certain microbe per 1 million reads), non-redundant protein (NR) rPM� 5,

and average NT alignment� 50 base pairs. We chose to apply both the NT and NR sequence

filter to minimize potential false positive detections from mis-alignment or mis-annotation in

the NCBI database. Furthermore, the benchmarking results of CZ ID’s precision/recall on

known data sets yielded high AUPR values, indicating the detection of known organisms at

higher abundance than any false positives due to mis-alignments or mis-annotations (https://

chanzuckerberg.zendesk.com/hc/en-us/articles/4418861817748-CZ-ID-Pipeline-Update-

Making-our-Pipeline-More-Scalable). We conservatively excluded the bacterial reads in sam-

ples with low input (< 25 pg) because of the potential amplification of background contami-

nants from reagents and/or the environment (see S1 Fig). For two swab samples with ERCC
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spike-in counts of 0, Z-scores were not calculable since the normalization method relies on

ERCC counts, so only the other three threshold filters were applied.

Alignment pipelines for generating consensus viral genomes

SARS-CoV-2. Consensus viral genomes were obtained using CZ ID’s consensus genome

pipeline v3.4.7. Non-host reads from each of the 11 samples in which SARS-CoV-2 was

detected by CZ ID were aligned to the SARS-CoV-2 Wuhan-Hu-1 reference genome

(MN908947.3) using minimap2 [29]. Aligned reads were trimmed using trim galore [30] and

adapters, low-quality reads (Phred quality score < 20), and short sequences (< 20 base pairs)

were removed. Trimmed reads were then again aligned to MN908947.3 using minimap2,

primers were trimmed using iVar v1.3.1 [31,32], and consensus genomes were generated

using iVar consensus. Bases were called if they had a depth of� 10 reads. Bases that were not

called were identified as N, and SNPs were called using samtools v1.9 and bcftools v1.9. In total,

9 SARS-CoV-2 consensus genomes were obtained with� 90% coverage breadth.

Influenza A virus. FASTQ files of the reads mapping to Influenza A from the 14 samples

in which Influenza A was detected by CZ ID were downloaded. As all of the Influenza A reads

were of the H3N2 subtype, reads were mapped to the Influenza A H3N2 reference genome

from NCBI (GenBank Accession: 1559708) [33] using Geneious Prime 2022.1.1. The software

was used to map reads and to obtain consensus genomes. Geneious was used rather than the

CZ ID consensus genome pipeline (as we did for SARS-CoV-2 and RSV) because the Influenza

A virus genome has multiple segments, thus requiring separate alignments to each segment for

every sample. Nucleotide base calling required at least 90% similarity across the reads per

respective position, and bases were called if they had a depth of� 10 reads. In total, 9 Influenza

A consensus HA genes were obtained with� 80% coverage breadth.

Respiratory syncytial virus (RSV). Similarly as for SARS-CoV-2, CZ ID’s consensus

genome pipeline v3.4.7 was used to obtain consensus viral genomes from the 12 samples in

which RSV was detected by CZ ID (11 samples were of the RSV-A subtype and 1 sample was

of the RSV-B subtype). The very low read count of the latter, the sole plasma sample and with

only 19 NT reads, precluded generation of a consensus genome. Non-host reads from each

sample were aligned to their closest RSV-A reference genome based on genetic similarity and

coverage depth. These reference genomes varied between samples; the ones used were NCBI

Accession: MN306017.1, KY967363.1, KY654513.1 and KC731482.1. As before, aligned reads

were trimmed using trim galore and adapters, low-quality reads (Phred quality score < 20),

and short sequences (< 20 base pairs) were removed. Bases were called if they had a depth

of� 5 reads, the default setting on the CZ ID pipeline. Bases that were not called were identi-

fied as N, and SNPs were called using samtools and bcftools. In total, 9 RSV consensus genomes

were obtained with� 90% coverage breadth.

Reconstructing viral phylogenies

The Nextstrain platform [34] was used to perform phylogenetic inference of the SARS-CoV-2,

Influenza A, and RSV genomes obtained from this analysis. To ensure proper contextualiza-

tion of the sequences generated as part of this study, we sourced publicly available sequence

data from relevant GISAID databases, as described below.

To analyze SARS-CoV-2 sequences, we downloaded all SARS-CoV-2 genome sequences

available from the GISAID EpiCoV database [35]. Within our Nextstrain build, we specified

that all sequences sampled from Uganda available on GISAID should be included in the phylo-

genetic analysis. Together with the SARS-CoV-2 genomes that we sequenced as part of this

study, these Ugandan genomes formed our focal set. Contextual sequences from other
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countries were included in the analysis based on their genetic similarity to sequences in the

focal set, with more genetically similar contextual sequences prioritized for inclusion in the

analysis dataset. To retain the historical diversity of SARS-CoV-2 in our analysis, and to ensure

accuracy of the molecular clock, an equitable number of contextual sequences were sampled

per month across the entire duration of the pandemic. The final dataset used for phylogenetic

analysis included 2,686 SARS-CoV-2 genomes sampled from December 2019 to November

2021, of which 687 were sampled from Uganda (including the 9 generated in this study).

To analyze Influenza A sequences, we downloaded all 9,193 Influenza A virus H3N2 HA

sequences available on the GISAID EpiFlu database [36] from January 2020 to March 2022.

Within our Nextstrain build, we specified that all sequences sampled from Africa available

from EpiFlu should be included in the phylogenetic analysis, along with the Influenza A

viruses sequenced as part of this study. Contextual sequences from other countries were

included in the analysis; sub-sampling of contextual sequences by country, year and month

was used to ensure global representation and accuracy of the molecular clock. The final dataset

used for phylogenetic analysis consisted of 3,825 Influenza A HA sequences (including the 9

generated in this study).

To analyze RSV sequences, we downloaded all 677 RSV genomes available on the GISAID

EpiRSV database [35] from January 2020 to February 2022. Within our Nextstrain build, we

specified that all sequences sampled from Africa available from EpiRSV should be included in

the phylogenetic analysis, along with the RSV viruses sequenced as part of this study. Contex-

tual sequences from other countries were included in the analysis; sub-sampling of contextual

sequences by country, year and month was used to ensure accuracy of the molecular clock.

The final dataset used for phylogenetic analysis consisted of 469 RSV genomes (including the 9

generated in this study).

We used Nextstrain Augur to perform a multiple sequence alignment of input sequences

using MAFFT [37] and to strip the multiple sequence alignment to the reference genome,

which removes sequence insertions that introduce gaps in the reference sequence. IQ-TREE
[38] was used to generate a maximum likelihood genetic divergence tree. We generated tem-

porally resolved trees using TreeTime [39]. Nextstrain phylogenetic trees were exported as

JSON files by the pipeline, which we then visualized and explored in the web browser using

Nextstrain Auspice. Figures were generated from SVG files of these visualized trees. All analy-

sis was conducted using the R statistical software versions 4.0.2 and 4.1.3.

Data availability statement

The SARS-CoV-2, Influenza A, and RSV genomes generated in this analysis were deposited in

their respective GISAID databases (see S2 Table for accession numbers). The R code used to

produce Fig 2, Nextstrain trees generated in this analysis, and corresponding Snakefiles are

available on GitHub at: https://github.com/czbiohub/rapid-response-prism. The SRA files of

non-host reads associated with this analysis are available at: https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA870959. CZ ID public links to heatmaps visualizing the mNGS detections

are available at: https://czid.org/pub/7pxmXbpFTL. Note that while the two batches were sepa-

rately processed for the analysis, for simplicity they have been combined in this public link.

The relevant clinical and demographic data are available in S1 File.

Inclusivity in global research

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in S1 Checklist.
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Results

Clinical, demographic, and geographic characteristics of participants

Samples were collected for this study between December 2020 and August 2021. Of the 624

total febrile study visits in the cohort during the time period of this study, 357 had a negative

test result for malaria parasites by blood smear. We were able to evaluate a large majority of

these non-malarial febrile illnesses in this representative cohort. In addition, samples were

obtained from 3 afebrile participants who had a rash, which was the other eligibility criteria for

this study (S2 Fig). The characteristics of the study participants in this mNGS study are pro-

vided in Table 1 and Fig 1. Overall, samples from 212 individuals from 80 households were

included in this study, of whom 50% were< 5 years of age, 20% were between 5 and 15 years

Table 1. Demographic and clinical characteristics of the study participants.

Individuals (N = 212)

Age at cohort study enrollment < 5 years: 105 (49.5%)

5–15 years: 44 (20.8%)

16 years or older: 63 (29.7%)

Sex Female: 128 (60.4%)

Male: 84 (39.6%)

District Tororo: 159 (75.0%)

Busia: 53 (25.0%)

Number of visits with mNGS sample collection 1: 149 (70.3%)

2: 36 (17.0%)

3: 20 (9.4%)

4: 3 (1.4%)

5: 4 (1.9%)

Number of unique households 80

Study visits with sample collection (N = 313)

Date range December 14, 2020—August 22, 2021

Malaria blood smear result Positive: 1 (0.3%)

Negative: 309 (98.7%)

Not done*: 3 (1.0%)

Plasmodium falciparum malaria qPCR result Positive: 74 (23.6%)

Negative: 238 (76.0%)

Not done: 1 (0.3%)

Objective temperature at study visit < 37.5˚C: 215 (68.7%)

37.5–38.0˚C: 47 (15.0%)

� 38.0˚C: 51 (16.3%)

Symptom reported: fever Yes: 310 (99.0%)

No: 3 (1.0%)*
Symptom reported: cough Yes: 187 (59.7%)

No: 126 (40.3%)

Symptom reported: headache Yes: 76 (24.3%)

No: 213 (68.1%)

Cannot assess: 24 (7.7%)

Symptom reported: fatigue Yes: 36 (11.5%)

No: 267 (85.3%)

Cannot assess: 10 (3.2%)

mNGS specimens collected at study visit and included in final analysis** Swab & plasma: 273 (87.2%)

Swab only: 21 (6.7%)

Plasma only: 19 (6.1%)

The top 4 most prevalent reported symptoms are listed. A “cannot assess” designation could have been given for

symptom reporting in young children. *These participants had a rash and no fever. **Three additional swabs and

two additional plasma specimens were collected but did not pass QC.

https://doi.org/10.1371/journal.pgph.0001675.t001
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of age, and 30% were 16 years of age or older. 70% of individuals had sample collection at one

visit, and the rest had sample collection at multiple visits (up to 5).

Sample collection was performed at a total of 313 study visits. Even though participants had

to be parasite negative by blood smear to be eligible for this mNGS study and have a sample

collected, at a quarter of visits (74/313), participants were subsequently found to be positive for

Plasmodium falciparum by ultrasensitive qPCR. The most frequently reported symptoms, in

Fig 1. Maps of the study area. Map of the 136 districts in Uganda, highlighting the two districts included in the PRISM Border Cohort study (Tororo District

in red, Busia District in green). The black area represents the 3 parishes from which households were enrolled. The outlines in white reflect district borders.

The base layer shapefile was obtained from the Operational Data Portal (https://data.unhcr.org/en/documents/details/83043), and is licensed under a Creative

Commons Attribution 3.0 International License (CC BY 3.0). Inset: Map of the PRISM Border Cohort study area. Each point represents 1 household enrolled

in the study that had mNGS sample collection performed (80 households in total). Osukuru and Kayoro are 2 of the 88 parishes in Tororo District; Buteba is

one of the 63 parishes in Busia District. The outlines in white reflect village borders. The base layer shapefile was obtained from the Uganda Bureau of

Statistics and downloaded through humdata.org, and is licensed under a Creative Commons Attribution for Intergovernmental Organisations (CC BY IGO).

https://doi.org/10.1371/journal.pgph.0001675.g001
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addition to fever, were cough, headache, and fatigue. 294 swab samples and 292 plasma sam-

ples collected for this study passed CZ ID’s QC filters and were included in this analysis (3

swab samples and 2 plasma specimens were collected but did not pass QC), and most were

paired from the same visit.

Microbes detected by mNGS at visits with malaria blood smear-negative

fever episodes

We applied stringent threshold filters for detecting microbes in order to minimize the effects

of noise introduced by low sample input and background contaminants. Bacterial, viral, and

eukaryotic microbes were detected at 92%, 47%, and 63% of the 313 visits, respectively

(Table 2). We further examined 18 detected viruses that are known to be pathogenic to

humans and have previously been causally linked to febrile disease, focusing on acute respira-

tory and gastrointestinal (GI) viral infections (S3 Table). Overall, 119 of the 313 visits (38%)

had at least 1 respiratory viral pathogen detected, 5 visits had a GI viral pathogen detected, and

4 visits had more than 1 viral pathogen detected. The proportion of study visits with at least 1

viral pathogen detected decreased by age: 49% in participants < 5 years of age, 30% in partici-

pants 5–15 years of age, and 28% in participants 16 years of age or older. As the likelihood of

viral pathogen detection depends on the sample type(s) tested, results at the 273 visits with

paired sample collection are presented in Table 2.

Of the 273 visits with plasma-swab pairs tested by mNGS, 62 were previously characterized

as positive for Plasmodium falciparum malaria by qPCR in the cohort study, of which 22 were

also positive by mNGS. Plasmodium falciparum malaria was detected by mNGS in an addi-

tional 35 visits, including 1 visit in which a qPCR result was not available (Tables 3 and S4).

Overall, 73% of Plasmodium falciparum malaria results were in agreement between qPCR and

mNGS. In addition, we found a positive relationship between parasite density values obtained

from qPCR and NT rPMs mapping to Plasmodium falciparum by mNGS among the 40 plasma

Table 2. mNGS detection of microbes and viral pathogens at study visits.

Microbes detected at visit At all study visits

N = 313 visits

At visits with paired swab and plasma

N = 273 visits

No microbes 10 2

Bacteria only 44 40

Virus only 3 1

Eukaryota only 8 1

Bacteria + virus 59 46

Bacteria + eukaryota 104 102

Virus + eukaryota 4 1

Bacteria + virus + eukaryota 81 80

Viral pathogens detected at visit At all study visits

N = 313 visits

At visits with paired swab and plasma

N = 273 visits

No respiratory viral pathogens 194 171

1 respiratory viral pathogen 116 99

2 respiratory viral pathogens 2 2

3 respiratory viral pathogens 1 1

No GI viral pathogen 308 268

1 GI viral pathogen 5* 5*

Refer to S3 Table for the list of viral pathogens considered. *A co-detection with a respiratory viral pathogen was

detected at 1 visit.

https://doi.org/10.1371/journal.pgph.0001675.t002
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samples with non-zero values on both assays (S3 Fig). All samples with greater than 13.4 para-

sites per µL by qPCR were positive for Plasmodium falciparum by mNGS. 19 of the 34 visits

that were qPCR negative and mNGS positive had at least 1 positive blood smear or qPCR result

within the 3 months before or after the visit, indicating participants may have harbored para-

sites below the limit of detection by qPCR.

Interestingly, reads mapping to Plasmodium ovale were detected in five plasma samples. Of

these five samples, three had the majority of Plasmodium reads mapping specifically to the P.

ovale species. While P. ovale infection is not systematically tested for in this cohort (as P. falcip-
arum is the dominant human malaria pathogen in Uganda), P. ovale has previously been

detected in other investigations in this setting [40].

Microbial landscapes across samples

From the total of 586 samples, 735 unique microbial species were detected (468 bacteria, 238

eukaryota, 42 viruses, and 3 archaea) (Fig 2). The most commonly detected microbial species

in plasma samples after filtering were Malassezia restricta (60 samples, 21%) and Plasmodium
falciparum (57 samples, 20%). 79 plasma samples had zero microbes detected at the species

level after applying threshold filters (S4 Fig; the bacterial genera detected in plasma samples

are tabulated in S5 Table). The most commonly detected microbial species in swab samples

after filtering were Dolosigranulum pigrum (152 samples, 52%) and Moraxella catarrhalis (141

samples, 48%). 2 swab samples had zero microbes detected at the species level after applying

threshold filters (S5 Fig; the bacterial genera detected in swab samples are tabulated in S6

Table). Of the 42 viral species detected across all samples, 26 were human viruses (including

the 18 known pathogenic human viruses described above).

For the remainder of this analysis, we focused on the viruses identified in these samples for

which we had the highest confidence that detection was likely to be associated with illness. The

rationale for not further characterizing the bacterial reads here is two-fold. The significantly

lower sample inputs in plasma samples (i.e., multiple orders of magnitude below swab sam-

ples) makes it difficult to distinguish a true bacterial detection from a false positive or contami-

nant. Consistent with many of the detected bacteria being commensals, the most common

species were expected skin or mucosa flora in healthy individuals. However, some of these

may have been associated with illness. In plasma samples, the mNGS pipeline identified three

cases of Mycobacterium and one case of Rickettsia (all with genus-level confidence only), as

well as two cases of Pseudomonas aeruginosa and one case of Streptococcus mitis.

Table 3. Frequency table of detection of P. falciparum malaria by mNGS and qPCR at the 273 study visits with

paired mNGS sample collection, and co-detection with viral pathogens.

N = 273 visits with paired mNGS

sample collection

Malaria qPCR (-)

N = 210 visits

Malaria qPCR (+)

N = 62 visits

No malaria qPCR

available

N = 1 visit

Malaria mNGS (-) in plasma

N = 216 visits

176 visits

71 visits had at least 1

viral pathogen

40 visits

12 visits had at least 1

viral pathogen

0 visits

Malaria mNGS (+) in plasma

N = 57 visits

34 visits

15 visits had at least 1

viral pathogen

22 visits

8 visits had at least 1

viral pathogen

1 visit

0 visits had at least 1

viral pathogen

mNGS results for malaria are from the plasma specimen only. The co-detection of respiratory/gastrointestinal viral

pathogens (see S3 Table) in either the plasma or swab specimen are tabulated in the bullet points. The list and

frequency of viruses detected are tabulated in S8 Table.

https://doi.org/10.1371/journal.pgph.0001675.t003
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Fig 2E summarizes the frequency, normalized NT read count, and breadth of genome

recovered for each human viral microbe detected at the species level, in both sample types. The

three most commonly detected virus species in plasma samples were Pegivirus C (19 detec-

tions), Pegivirus A (14 detections), and Enterovirus A (5 detections). Viral co-detection was

observed in 15 plasma samples (11 co-detections of Pegivirus A and C; 2 co-detections of

Fig 2. Overall microbial composition in plasma and swab samples by kingdom, and species-level detection of viral microbes. (A,C) Pre-filtering and (B,D)

post-filtering microbial composition in plasma and swabs by species-level total nucleotide read counts across all samples, stratified by archaea, bacteria,

eukaryota, viruses, and uncategorized. Uncategorized reads include vectors, uncultured microorganisms, uncultured prokaryotes, unidentified soil organisms,

otherwise unidentified organisms, and taxa with neither family nor genus classification. Filters applied: NT Z-score� 1, NT rPM� 10, NR rPM� 5, and

average NT alignment� 50 base pairs. The bacterial reads in all samples with low sample input (i.e.,< 25 pg) were also excluded. (E) Species-level human viral

microbes detected (y-axis) with their NT rPM (x-axis). The point color denotes the coverage breadth of the particular sample and shape denotes sample type.

On the y-axis label, the first value in parenthesis represents the number of unique samples with that viral microbe detected. The second value in parenthesis

represents the number of unique participant visits where that viral microbe was detected.

https://doi.org/10.1371/journal.pgph.0001675.g002
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Human mastadenovirus C and Pegivirus C; 1 co-detection of Enterovirus A and Human beta-

herpesvirus 5; 1 co-detection of Hepatitis GB virus B and Pegivirus A and C). The three most

commonly detected virus species in swab samples were Rhinovirus C (25 detections), Influ-

enza A virus (14 detections), and Human respirovirus 1 (12 detections). Viral co-detection was

observed in four swab samples (Rhinovirus A and B; SARS-CoV-2 and Human respirovirus 1;

Human respirovirus 3 and Rhinovirus C; Rhinovirus C and Rotavirus A). Across the viral spe-

cies detected, we observed increasing coverage breadth with greater normalized NT read

counts.

As expected, concordance between viral microbes detected in plasma vs. swab samples was

low (S6 Fig). Of the 120 sample pairs in which at least one human virus was detected, we

found that 81 pairs had viral microbes in only the swab sample and 19 pairs had viral microbes

in only the plasma sample. Among the remaining 20 pairs in which viral microbes were

detected in both, the compositions for 8 pairs were identical between the sample types and 12

pairs were discordant. While as expected, respiratory viruses were primarily detected in respi-

ratory swab samples, there were a few instances where respiratory and gastrointestinal viruses

were also (or only) detected in plasma samples.

Epidemiology of acute viral pathogens in the cohort study

Collapsing over specimen types, the most prevalent acute respiratory viral pathogens identified

in this cohort were rhinovirus (40 detections), Influenza A (14 detections, all of the H3N2 sub-

type), parainfluenza (19 detections), RSV (12 detections), and SARS-CoV-2 (11 detections)

(Fig 3B–3C). We first analyzed the temporal distribution of the acute respiratory and GI viral

pathogens that were detected by mNGS. Most (9 of 11) of the SARS-CoV-2 cases were detected

between May to July 2021, which coincided with when the Delta variant of SARS-CoV-2 was

circulating in this population. Interestingly, we found that many other respiratory viruses,

notably Influenza A, were also co-circulating in the cohort during this time, consistent with

national-level case reports of SARS-CoV-2 and Influenza A (Fig 3A). The frequency and com-

position of respiratory viral pathogens detected varied considerably by age (Fig 3D). For exam-

ple, the majority of rhinovirus, Influenza A, parainfluenza, and RSV detections were in

children < 5 years of age. In contrast, the majority of SARS-CoV-2 detections were in individ-

uals 16 years of age or older. While the estimated prevalence of most pathogens among study

participants decreased by age, notable exceptions to this trend included SARS-CoV-2, seasonal

coronavirus, and adenovirus (S7 Fig).

Clinical presentations varied by pathogen group and age (Fig 4). While there was consider-

able heterogeneity within and between pathogen groups, and small sample sizes prevented for-

mal testing for multivariate associations, a few patterns emerged: Influenza A infection was

associated with high objective temperatures (9 of 14 visits with� 38.0˚C), cough was reported

across the pathogen groups, and the prevalence of headache was highest among participants

with SARS-CoV-2 (8 of 11 participants). We also found evidence of clustering of infections at

the household level. In 11 of the 80 households, multiple individuals were infected with the

same respiratory pathogen during the sampling period (S7 Table). Of these, 8 of 11 households

had the same pathogen detected in multiple members within a two-week period, and 4 of 11

households had a pathogen detected in multiple members on the same day.

The prevalence of acute viral pathogen detection was comparable across malaria infection

statuses: qPCR negative (40% with at least one respiratory or gastrointestinal viral infection),

qPCR positive (32%), mNGS negative (38%), mNGS positive (40%), negative on both assays

(40%), and positive on both assays (36%) (Tables 3 and S8).
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Fig 3. Respiratory viral pathogens by detection month and age group. If a virus was detected in both sample types from

a given visit, it was counted only once. See legend for number of times each virus was detected in this study. (A) Weekly

reported case counts of COVID-19 and Influenza A virus (H3 subtypes) in Uganda between December 2, 2020 and August

26, 2021. COVID-19 case counts downloaded from the Ugandan Ministry of Health COVID-19 Response Info Hub

database [41]. Influenza case counts shown are the number of specimens positive for Influenza A virus (H3 subtype),

downloaded from the World Health Organization’s Global Influenza Surveillance and Response System (GISRS) database

[42]. (B) Number of human coronaviruses identified. (C) Number of additional respiratory viruses identified. Note the

differing y-axes in panels B and C. (D) Identified pathogens by participant age group, with the same color scale as in

previous panels. RSV: Respiratory syncytial virus.

https://doi.org/10.1371/journal.pgph.0001675.g003
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Genomic characterization of SARS-CoV-2, Influenza A virus, RSV

Of the 11 study visits where SARS-CoV-2 was detected by mNGS, 9 full genomes were recov-

ered. The 9 full genomes represented multiple variant lineages, including Delta (5), Eta (3),

and Alpha (1). The two partial genomes were assigned to the Delta variant lineage as well,

though they were not included in downstream phylogenetic analyses. We performed phyloge-

netic inference of the 9 full genomes along with other recent SARS-CoV-2 genomes obtained

from GISAID from the African region and globally (Figs 5 and S8A). A description of the

inferred phylogeny is provided in S1 Text. We found that the 9 genomes generated as part of

this study clustered amongst the viral diversity observed across other Ugandan and African

SARS-CoV-2 consensus genomes. The degree of divergence observed between our sequences

Fig 4. Participant age, objective temperature, Plasmodium falciparum malaria qPCR result, and reported symptoms at each visit where a respiratory or

gastrointestinal viral pathogen was detected. Each column corresponds to a visit. See S3 Table for mapping column names (categories) to viral species.

Multiple viral pathogens co-detected at the same visit are depicted by matching color cells in the bottom row. NV (last column): Norovirus.

https://doi.org/10.1371/journal.pgph.0001675.g004
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Fig 5. Phylogeographic analysis of SARS-CoV-2 genomes generated in this mNGS study. (A) Temporally-resolved

phylogeny of SARS-CoV-2 genomes based on 2,677 SARS-CoV-2 genomes from the GISAID database closely related to

the 9 sequences determined from this study. The 9 sequences determined from this study are shown in black overlaid

circles. (B) Phylogeny narrowed in on the Delta clade (including 5 genomes from the study). Four of the Delta-lineage

viruses fell within a polytomous clade defined by a C10977T mutation. The fifth virus grouped within a different clade
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and other publicly available SARS-CoV-2 consensus genomes was in line with the relatively

low density of sampling in the region compared to other locations, implying that lineages likely

circulated for longer periods before being sampled via genomic surveillance.

Of the 14 study visits where Influenza A virus (all H3N2 subtype) was detected by mNGS, 9

partial HA gene segments were recovered. We used these 9 HA segments, along with other

recent Influenza A H3N2 HA segments obtained from GISAID from the African region and

globally, to build a phylogenetic tree (Figs 6 and S8B). A description of the inferred phylogeny

is provided in S1 Text. We found that the HA sequences generated in this study clustered

amongst the viral diversity sampled from Kenya, Zambia, the Democratic Republic of Congo,

Mozambique, and South Africa. All 9 HA sequences generated in this study were grouped

together in a single clade. The most recent common ancestor of the HA sequences generated

as part of this study was inferred to circulate in November 2020 (95% confidence interval (CI):

October 2020 to November 2020). The shape of our inferred tree was consistent with the ‘lad-

der-like phylogeny’ associated with continual immune selection that has previously been

described for the HA gene of Influenza A H3N2 [43,44].

Of the 12 study visits where RSV was detected by mNGS, 9 full genomes were recovered.

The 9 full genomes and 2 additional partial genomes were of the RSV-A subtype, with one par-

tial genome of the RSV-B subtype. We used the 9 full genomes, along with other recent RSV

genomes obtained from GISAID from the African region and globally, to build a phylogenetic

tree (Figs 7 and S8C). A description of the inferred phylogeny is provided in S1 Text. The

RSV sequences generated as part of this study fell into 3 distinct clades. The inferred date for

the most recent common ancestor of the RSV sequences generated as part of this study was

September 2012 (95% CI: August 2010 to July 2013). This diversity among the RSV samples,

illustrated through the lack of a common ancestor until almost 10 years prior to sampling, is

likely explained by the very low density of RSV sampling in the region.

Discussion

Here, we performed a comprehensive and systematic study of over 300 non-malarial febrile ill-

nesses in a representative cohort from eastern Uganda, using mNGS on plasma and respiratory

swabs collected between December 2020 to August 2021. We detected a viral pathogen in half

of the illnesses occurring in young children, decreasing with age to just over one quarter for

adults, for an average of 39% of illnesses overall. We identified the co-circulation of several

important respiratory pathogens during this time period, including SARS-CoV-2, Influenza A

(H3N2 subtype), and RSV. The composition of respiratory viral pathogens that were detected

varied considerably by age, and to a lesser extent, by time. While respiratory viruses were pri-

marily detected in respiratory swab samples as expected, there were instances in which respira-

tory and GI viruses were also (or only) detected in plasma samples, which could occur if a

localized infection becomes systemic. In addition to detecting the potential causes of a number

of illnesses, we were able to obtain consensus genomes from mNGS data for SARS-CoV-2,

Influenza A, and RSV, and to relate them to other publicly available genomes from the region

and globally.

of Delta-lineage viruses defined by a G19117T mutation. (C) Phylogeny narrowed in on the Eta clade (including 3

genomes from the study). Two viruses grouped together, sharing C4570A, C13536T, C21811T mutations, and were

separated by a C21846T mutation that was unique to hCoV-19/Uganda/IDRC-CZB-01/2021. In all panels, tip colors

indicate country of origin (legend is shared by panels). Proximity-based subsampling was used on the focal set (i.e., the

9 genomes generated from this study and all Ugandan genomes from GISAID), grouped by year and month, with a

maximum of 2,000 sequences.

https://doi.org/10.1371/journal.pgph.0001675.g005

PLOS GLOBAL PUBLIC HEALTH mNGS to characterize potential etiologies of non-malarial fever in Uganda

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0001675 May 3, 2023 16 / 26

https://doi.org/10.1371/journal.pgph.0001675.g005
https://doi.org/10.1371/journal.pgph.0001675


A number of epidemiologic and genomic trends emerge from this well-characterized data

set. The timing of this study (i.e., during the first 8 months of 2021) coincides with the imple-

mentation of social distancing measures as a result of the global SARS-CoV-2 pandemic.

Fig 6. Phylogeographic analysis of Influenza A (H3N2) genomes generated in this mNGS study. (A) Temporally-resolved phylogeny of HA genes of

Influenza A (H3N2) based on 3,816 Influenza A (H3N2) HA genes from the GISAID database and the 9 HA genes generated from this study. Points in color

represent sequences from Africa, and points in greyscale represent sequences from other parts of the world. (B) Phylogeny narrowed in on the samples

generated from this study (9 HA genes) in green. All of the HA sequences generated in this study were clustered in a clade defined by C1577T. All samples

labeled as “Uganda” are from this study. Sub-sampling was used to get 40 sequences per country per year and month, apart from genomes originating from

Africa, which were all included.

https://doi.org/10.1371/journal.pgph.0001675.g006
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Reductions in incidence, as well as shifts in timing, have been reported worldwide during the

pandemic for other respiratory viruses such as influenza and RSV [45–49]. Resurgences fol-

lowing the subsequent lifting of social distancing measures have also been documented, driven

by age-dependent patterns of immunity to different pathogens in a population [50–53]. Here,

we identified the co-circulation of multiple respiratory pathogens in this cohort, including

SARS-CoV-2, Influenza A, and RSV. Interestingly, the number of detections of Influenza A

and RSV were larger than the number of detections of SARS-CoV-2 during this study’s time

period. While respiratory viral surveillance is limited in this setting, our findings on the tem-

poral trends of Influenza A in this cohort are broadly consistent with data from the WHO

Global Influenza Surveillance and Response System [42], which detected the H3 subtype of

Influenza A circulating in Uganda during this time period. Direct comparison of data from the

SARS-CoV-2 and influenza public health surveillance systems suggest that the case counts of

these infections differ by several orders of magnitude. However, the systematic data from this

study, while limited in scope (i.e., our 11 SARS-CoV-2 and 14 Influenza A detections), suggest

that the relative numbers of cases may be much more similar. The degree of divergence

observed between the SARS-CoV-2, Influenza A virus, and RSV sequences generated as part

of this study and other publicly available sequences was in line with the relatively low density

of sampling in the region. Lineages likely circulated for longer periods before being sampled

via genomic surveillance. In particular, our ability to interpret the high diversity within our

RSV sequences was limited by the sparsity of contextual sequences available.

We were also able to compare the detection of sub-microscopic malaria by qPCR and by

mNGS. Plasmodium falciparum was detected in 57 plasma samples by mNGS, of which only

22 were previously characterized as positive by qPCR. Among samples with a non-zero value

Fig 7. Phylogeographic analysis of RSV genomes generated in this mNGS study. Temporally-resolved phylogeny of the RSV genomes generated in this

study, based on 460 RSV genomes from the GISAID database and the 9 RSV genomes generated from this study. All samples labeled as “Uganda” are from this

study. The tree shows only sequences of the RSV-A subtype; none of the 9 RSV genomes generated in this study were of the RSV-B subtype. Tip colors indicate

country of origin: Those in color represent sequences from Africa, and those in grayscale represent sequences from other parts of the world. Sub-sampling was

used to get 40 sequences per country per year and month, apart from genomes originating from Africa, which were all included. Clade 1 is defined by 7

mutations (T2156C, C5008T, C7184T, G11704A, T1736C, C2129T, T7977C) from the closest basal virus on the tree. Clade 2 is defined by 59 mutations from

the closest basal virus on the tree. Clade 3 is defined by 102 mutations from the closest basal virus on the tree.

https://doi.org/10.1371/journal.pgph.0001675.g007
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on both assays, we found a positive trend between qPCR parasite densities and mNGS NT

rPMs, and samples with NT rPMs above a threshold value were all positive by qPCR. These

findings suggest that, even for these malaria infections that we know a priori to have low para-

site densities, the results from this unbiased, pan-pathogen mNGS approach are correlated

with results from a targeted, pathogen-specific assay. However, there were discrepancies

between the qPCR and mNGS results in both directions, which is not unexpected since qPCR

analyzed extracted DNA (in whole blood) while our mNGS strategy targeted RNA (in plasma),

and these may have different abundances in biological samples.

There are a number of important caveats associated with the design of this epidemiologic

study. First, the temporal window of sampling was limited and took place during a pandemic.

As a result, these findings may not be representative of the potential causes of non-malarial

fevers outside of the pandemic. Second, we only collected plasma and respiratory swabs, so are

likely to have missed other potential causes of fevers that require additional specimen types to

detect (i.e., stool samples for GI pathogens). Third, as we only collected samples from malaria

blood smear-negative visits, we did not have the opportunity to test at febrile, malaria blood

smear-positive visits for the presence of other pathogens causatively associated with fever.

These limitations can theoretically be overcome with broader sample collection efforts. In

addition, milder respiratory viral infections that were detected (e.g., rhinoviruses) may not be

the etiology of the febrile illness. Lastly, we were unable to estimate the contribution of bacte-

rial microbes to non-malarial fevers due to the difficulty of distinguishing bacterial microbes

that were pathogenic from those that were commensal or contaminants. To address this key

issue, we have started collecting convalescent samples from participants to establish potential

background models for commensal microbes as an effort to distinguish pathogenic bacteria

microbes. Important avenues of this future investigation include characterizing the micro-

biome and the prevalence of bacterial infections, investigating viral-bacterial interactions

[54,55], and performing surveillance for antimicrobial resistance genes [56].

We emphasize that mNGS as applied here should be considered a research tool rather than

a diagnostic, and thus would need to be validated with PCR or other clinically-approved assays

to be used as the latter. As such, another important limitation is the unknown sensitivity of

this mNGS assay to detect infection, which may vary by pathogen [57] and poses a challenge

in analyzing the absolute and relative incidence of different pathogens. A potentially important

factor affecting the sensitivity is that RNA sequencing depends on the quality and concentra-

tion of RNA, as this impacts the ability to capture all the sequences. However, positive correla-

tions between NT rPMs from mNGS (which report the relative abundance of sequencing

reads mapping to a specific microbe in a sample) and “gold standard” measurements (i.e., viral

loads for SARS-CoV-2 [12] and other respiratory viruses [58], or qPCR parasite densities for

malaria as presented in this work) suggest that thresholds can nonetheless be identified for spe-

cific pathogens. This would require dedicated studies testing with well-characterized targeted

assays to establish the sensitivity of mNGS to detect a particular pathogen of interest which,

while not trivial, would be straightforward and greatly improve the interpretability of these

data. Additional data providing evidence for causality, such as including host transcriptomics

(Rao et al. 2022), could also improve interpretability of mNGS results.

More broadly, this analysis underscores the utility and potential of multiplexed pathogen

detection as a tool for surveillance and for better understanding the overall burden of different

pathogens in a population (e.g., mNGS, the BioFire1 RP2.1 Panel [59], or other multiplexed

viral detection assays [60], as well as the potential complementary role of multiplexed pathogen

serologic surveillance [61,62]). Cost is an important factor in the consideration of scaling up

approaches such as this; there is a trade-off between sensitivity and cost, and these trade-offs

will continue to evolve as molecular and informatic techniques improve. Studies such as ours
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will lay the foundation for developing targeted approaches that can more sensitively measure

pathogen burden, which can then be correlated with disease state. In addition, the ability to

generate whole viral genomes through mNGS could be leveraged to fill in existing gaps in

pathogen genomic data from resource-limited settings for important pathogens. Continuing

to refine our understanding of the pathogen landscape of non-malarial febrile illness [4,63] in

different settings and age groups could open the way to inform control interventions and case

management guidelines, allow for the implementation and design of new rapid, low-cost diag-

nostics to inform clinical decision-making, and improve public health surveillance systems.
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sample inputs.

(PDF)
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with differences in the number of mutations on the x-axis. (B) 9 Influenza A (H3N2) HA gene
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