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Cancer-associated fibroblasts induce antigen-
specific deletion of CD8+ T Cells to protect tumour
cells
Matthew A. Lakins1, Ehsan Ghorani1, Hafsa Munir1, Carla P. Martins1 & Jacqueline D. Shields1

Tumours have developed strategies to interfere with most steps required for anti-tumour

immune responses. Although many populations contribute to anti-tumour responses,

tumour-infiltrating cytotoxic T cells dominate, hence, many suppressive strategies act to

inhibit these. Tumour-associated T cells are frequently restricted to stromal zones rather than

tumour islands, raising the possibility that the tumour microenvironment, where crosstalk

between malignant and “normal” stromal cells exists, may be critical for T cell suppression.

We provide evidence of direct interactions between stroma and T cells driving suppression,

showing that cancer-associated fibroblasts (CAFs) sample, process and cross-present anti-

gen, killing CD8+ T cells in an antigen-specific, antigen-dependent manner via PD-L2 and

FASL. Inhibitory ligand expression is observed in CAFs from human tumours, and neu-

tralisation of PD-L2 or FASL reactivates T cell cytotoxic capacity in vitro and in vivo. Thus,

CAFs support T cell suppression within the tumour microenvironment by a mechanism

dependent on immune checkpoint activation.
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Our immune system is our primary defence mechanism
destroying both exogenous and endogenous threats, but
tumours have developed strategies to interfere with

almost every step necessary for a successful anti-tumour immune
response, including mutation of antigen presentation pathways,
deregulation of antigen presenting cells, generation of physical
barriers and recruitment of suppressive immune subsets, such as
Tregs and myeloid derived suppressor cells. Although many
immune populations contribute to anti-tumour responses it is the
tumour-infiltrating cytotoxic T cells that dominate, their presence
correlating with enhanced prognosis1–3, and thus many sup-
pressive mechanisms identified act to inhibit T-cell function.
With reports of effects on recruitment and behaviour of multiple
immune populations, the supporting tumour stroma is emerging
as a key source of tumour-promoting inflammation. Moreover,
observations that tumour-associated T cells are preferentially
found with stromal rich areas of the tumour rather than pene-
trating into tumour islands4,5, introduces the prospect that
components of the tumour microenvironment4,6–11 may be cri-
tical for T cell suppression. Cancer-associated fibroblasts (CAFs),
the most abundant stromal population and associated with poor
patient prognosis, are emerging as suppressive intermediates
within the tumour microenvironment (TME) through secretion
of immunomodulatory factors that polarise responsive immune
populations, such as macrophages4,6,8,9,12. While CD8+ T-cell
infiltration and cytotoxicity are the most important determinants
of anti-tumour immunity1–3, it is still unclear as to whether
soluble CAF-derived signals are sufficient or able to drive changes
in T-cell functional status. Since T cells are often restricted to
stromal zones4,5,13–15, we sought to determine the mechanisms by
which CAFs may mediate dysfunction of CD8+ T cells they
encounter.

Results
CAFs sample and proteolytically process exogenous antigen. At
sites of physiological immune regulation, such as the thymus or
lymph node, antigen-specific cell–cell interactions are required to
modulate T-cell activity. Antigen-presenting cells (APCs) achieve
this through cross-presentation of exogenously sampled and
captured antigens upon major histocompatibility complex
(MHC)-I, thus we first assessed whether CAFs possess similar
capabilities. CAFs isolated from murine lung tumours (Supple-
mentary Fig. 1a–c) were able to generate a physical, size-selective
barrier in 2-chamber permeability assays, significantly delaying
the transit of large MW material which occurred by both para-
cellular and transcellular routes, via an active transport process
(Fig. 1a–c). Following the observation that large MW dextran was
engulfed by CAFs (Fig. 1d), we further established that CAFs
scavenged autologous cellular material (Supplementary Fig. 2a)
and likewise, debris from dead tumour cells (Fig. 1e, repre-
sentative snapshot from Supplementary Movie 1) that were
directed to discrete intracellular compartments (Fig. 1f, g,
representative snapshot from Supplementary Movie 2). To
establish the fate of ingested material in a quantitative manner,
we utilised the antigen ovalbumin (OVA). While all fibroblast
lines and tumour cells derived from lung adenocarcinoma and
melanoma engulfed antigen to varying degrees as measured by
FITC-OVA (Fig. 1h), DQ-OVA fluorescence confirmed that
lymph node fibroblasts (FRCs, which can present antigen and
modulate T cells16) and CAFs were most efficient at proteolytic
processing of intracellular OVA (Fig. 1i and Supplementary
Fig. 2b). This was proteasome-independent, instead utilising the
endosomal pathway. We noted that CAFs exhibited delayed
antigen processing kinetics compared to FRCs and normal
fibroblasts (Fig. 1i, j and Supplementary Fig. 3a). The initial

processing delay recorded in CAFs was highly reminiscent of
professional APCs, where retention of antigen within early
endosomes enhances cross-presentation to cognate antigen-
specific T cells17–19.

CAFs cross-present exogenous antigen. Indeed, in CAFs,
delayed endosome-mediated processing translated to enhanced
cross-presentation of OVA257–264 peptides complexed with
MHC-I compared to either normal fibroblasts or FRCs
(detected with monoclonal antibody 25-D1.16, Fig. 2a and
Supplementary Fig. 3b). Cross presentation could be inhibited
with by chloroquine or ammonium chloride, which blocked
endosomal processing pathways (Fig. 2b). Using OVA-
expressing and GFP-tagged tumour cells as a source of mate-
rial we further confirmed the capacity of CAFs to sample,
process and cross-present tumour-derived antigen consistent
with intracellular events observed for soluble antigen (Fig. 2c
and Supplementary Fig. 3c).

CAF-conditioned T cells exhibit reduced cytotoxic capacity.
We next determined whether CAF-driven antigen cross-
presentation was able to negatively regulate T cells, translating
to a tumour cell survival advantage. We performed triple culture
assays incorporating CAFs, T cells and tumour cells where
tumour cell fate could be recorded, and in which we could
simultaneously monitor T cell and CAF functional status and
activity. Normal fibroblasts, irrespective of whether they were
pre-exposed to OVA or not, did not confer protection to OVA-
expressing target tumour cells as fibroblast-conditioned OT-I
T cells still efficiently killed their targets (Fig. 2d, e). In contrast,
tumour cell survival was significantly enhanced when OT-I T cells
were conditioned in the presence of CAFs prior to culture with
tumour cells (Fig. 2d, f). This CAF-driven suppression of OT-I T
cell cytotoxicity was antigen-specific and antigen-dependent since
the enhancement in tumour cell viability was only observed when
CAFs were previously OVA-exposed (Fig. 2d-f). Moreover, when
OTI T cells were removed from the influence of CAFs, enhanced
tumour cell survival was maintained, supporting the hypothesis
that direct CAF-T-cell interactions drive non-reversible func-
tional modifications rather than reliance on a long term, CAF-
derived, soluble stimulus (Supplementary Fig. 4a). Equivalent
preservation of tumour cell viability was also measured when
tumour cells themselves, instead of OVA, were used as the source
of antigenic material used by CAFs to condition T cells (Sup-
plementary Fig. 4b). The protective effects measured were antigen
rather than tumour dependent as similar protection was also
observed in OVA-expressing target lung cancer cells (Fig. 2g and
Supplementary Fig. 4b).

CAFs induce T cell death via PD-L2 and FASL engagement. As
the capacity for antigen-specific T cells to kill their target tumour
cells was dramatically impaired when conditioned by antigen-
loaded CAFs, we looked to identify the mechanism of CAF-
mediated T cell suppression. Comparisons of OT-I T cell viability
following culture alone, with normal fibroblasts or CAFs revealed
that the CAFs caused an antigen-dependent decrease in OT-I T
cell viability (Fig. 3a-c). T cell death was mediated through the
expression and engagement of immune checkpoints FAS and PD-
1 (Fig. 3e-j). While FAS expression increased upon exposure to
stromal cells (Fig. 3h-j), stimulation of PD-1 was dependent upon
the presence of antigen (Fig. 3e-g). Reciprocal expression of
ligands FASL and PD-L2 was detected to a greater extent on
CAFs than normal fibroblasts (Fig. 3k, l). Surprisingly, PD-L2
rather than PD-L1 was the dominant PD-1 ligand (Fig. 3l, m).
Although, PD-L2 physiologically displays a more restricted
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Fig. 1 Cancer associated fibroblasts engulf and proteolytically process cellular debris and antigen. a Relative permeability of low-molecular weight dextran
(LMWD) and high-molecular weight dextran (HMWD) across monolayers of normal (NORM, white bars) or cancer-associated fibroblasts (CAF, black
bars). b, c Apparent permeability across NORM and CAF monolayers of increasing HMWD (b) and LMWD concentrations (c). d Representative confocal
micrograph including z-plane of HMWD (green) within CAFs (red, Cell Mask). Scale bar, 10 μm. e Representative confocal snapshot of CAF (red)
interacting with dead and dying tumour cells (green). Twenty-four hours after debris engulfment showing CAF (red, f), and intracellular tumour cell debris
(green, g). h Uptake of FITC-labelled OVA by fibroblasts and tumour cells. i Processing of DQ-OVA by fibroblasts and tumour cells. j Representative
micrographs of endosomal compartments (red) showing early endosomes (EEA1) and lysosomes (LAMP1) at 15 and 120min post ovalbumin pulse
(green). Areas of co-localisation (white arrows) and ovalbumin not within labelled compartments (blue arrows) are indicated in each image. Scale bar: 10
μm. Data shown as mean ± SEM. a *P < 0.05 vs. NORM fibroblasts (two-tailed unpaired Student’s t-test). h, i ****P < 0.0001 (two-way ANOVA with Tukey
post hoc analysis vs. CAFs). NS, not significant. Assays performed in duplicate from three (h) or two independent experiments (i)
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pattern of expression limited to APCs20–22, functional expression
has been reported on human colonic23, lung24 and melanoma
fibroblasts25. Moreover, flow cytometric analysis confirmed that
non-deleted T cells also upregulated the exhaustion marker LAG3
(Supplementary Fig. 4c), and when PD-L2 or FASL were blocked
specifically on CAFs using neutralising antibodies, the capacity of
OT-I T cells to kill their targets was restored (Fig. 3n). These data
imply CAFs utilise tumour antigen cross-presentation and coin-
cident upregulation of key immune checkpoint ligands to protect
tumour cells from immune destruction by driving antigen-
specific T cell death, and functional impairment of the remaining
cytotoxic T-cell compartment.

PD-L2 and FASL inhibition impair CAF-driven T cell sup-
pression. Antigen processing and presentation by CAFs were also
detected in tumours of immune competent mice (Fig. 4a–c), as
were preferential expression and localisation of PD-L2 and FASL
to the CAF compartment (Fig. 4d, e) validating in vitro data. This
corresponded with reduced numbers of OTI T cells in antigen-
bearing tumours (Supplementary Fig. 5a–g) and upregulated FAS
and PD-1 expression exclusively on remaining intratumoural,
antigen-specific T cells (Supplementary Fig. 5h–k). Significantly,
systemic neutralisation of PD-L2 or FASL activity supported
decreases in tumour volume (Fig. 4g, i) and coincident enhanced
infiltration of antigen-specific CD8+ T cells (Fig. 4h, j) in the

absence of effects in immune or stromal compartments (Sup-
plementary Fig. 6a–i). To confirm a role for CAFs in mediating
these effects in vivo, we induced B16.OVA tumours through
injection of tumour cells alone or in combination with CAFs at a
1:1 ratio (Supplementary Fig. 7a, b verifying presence of CAFs
in vivo after co-injection). Specifically, we utilised gld/gld mice,
homozygous for the faslgld mutation and lacking functional FASL
expression. Tumours in gld/gld mice were smaller and contained
significantly more antigen specific CD8+ T cells than the mixed
tumours in which CAFs were the only source of FASL or WT C57
mice (Supplementary Fig. 7c–e). The mixed tumours in gld/gld
mice were indeed comparable with tumours in wild-type C57
mice (Supplementary Fig. 7c–e) where other cell populations may
be an additional source of FASL, supporting a specific role for
CAF-mediated FASL in T cell deletion observed both in vivo and
in vitro (Fig. 3). We next compared RNA expression of inhibitory
ligands in publically available microarray data sets for CAFs from
human tumour tissues and normal counterparts, and confirmed
elevated PDCD1LG2 gene expression in human lung cancer
(Fig. 4k). This observation could be extended to CAFs of colon,
pancreatic, and breast cancers (Fig. 4k), but not in prostate
cancer. Consistent with in vitro and in vivo findings of PD-L2 as
the predominant CAF-expressed immune-inhibitory ligand, no
significant change in CD274 was apparent in the human CAF
transcriptomes examined (Supplementary Fig. 8a). Moreover,
lung and colon cancers exhibited enrichment of FASLG
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(Supplementary Fig. 8b), but a greater degree of variability was
observed between tumour types, with no increase noted in pan-
creatic or breast data sets examined. PD-L2 enrichment within
stromal regions of lung tumours was then confirmed at the
protein level by immunofluorescence (Fig. 4l). Together, these
mirrored the compartment-specific expression patterns detected
in murine models, which when functionally blocked translated
to enhanced intratumoural antigen-specific cytotoxic T-cell
function.

Discussion
As they progress, tumours develop strategies to interfere with
effective anti-tumour immune responses, ranging from the
recruitment of suppressive immune populations to the deletion

or functional impairment of tumour-reactive T cells. Recent
paradigm shifting immunotherapy platforms that release
endogenous anti-tumour immune responses from inhibition
have shown remarkable success in some cancers, but the
majority of patients do not respond or attain long-lasting
benefit26–30. A potential reason underlying the varying ther-
apeutic responses is the impact of the tumour microenviron-
ment itself upon immune repertoires and functional status.
Thus, increasing our understanding of tumour-associated
suppressive networks will be necessary to improve the efficacy
and development of immune based therapeutics. We demon-
strate a new biological function for fibroblasts in a tumour,
showing that CAFs directly contribute to the suppression of
anti-tumour T-cell responses by adopting characteristics
reminiscent of antigen presenting cells. This mechanism has
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two key features: first, fibroblasts sample, process and cross-
present antigen complexed with MHC I. Second, co-incident
antigen-specific upregulation of FAS/FASL and PD-1/PD-L2 on
T cells and CAFs respectively, drives the death and dysfunction
of tumour specific T cells resulting in enhanced tumour via-
bility. Together with human data demonstrating PD-L2 and

FASL enrichment within stromal zones of lung tumours, this
CAF-mediated mechanism reveals new insight into the cell
biology of tumour-associated fibroblasts; helping to explain
why cancer associated fibroblasts are associated with poor
patient prognosis, and illustrating a novel mechanism of T cell
depletion and dysfunction within tumours.
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Methods
Animal use. All experiments involving animals were performed in accordance with
UK Home Office regulations, PPLs 80/2574 and P88378575. For mouse models,
G*Power was used to estimate samples sizes required to achieve 80% power with
5% threshold. For syngeneic tumours, 2.5 × 105 B16.F10 cells (or variants) were
inoculated subcutaneously into the shoulders of 8–9-week-old immune competent
female C57BL/6 mice. Animals were excluded only if tumours failed to form or if
health concerns were reported. Tumour size was monitored using the ellipsoid
formula (length × width2)/2. For experiments in which in vivo antigen processing
was measured, 10 μl of 5 mg ml−1 DQ OVA was injected intratumourally. Twenty-
four hours later, mice were killed and tumours were collected for analysis. For
blocking studies, animals were assigned to control or tumour groups randomly and
B16.OVA bearing mice received neutralising antibodies against PD-L2 (clone
TY25, 200 μg per mouse) or FASL (clone MFL4, 200 μg per mouse, both BioLe-
gend) or matched concentration normal IgG controls every 2 days via intra-
peritoneal administration. Tecnhicians performing treatments were blinded to
reagents. Tumours were collected for flow cytometry analysis of immune com-
partments and antigen specific T cells using pentamers against SIINFEKL
(ProImmune). Mice deficient for FASL (B6Smn.C3-Faslgld/J, Jax Lab), referred to
as gld mice in text, and wt C57BL/6 mice were injected with either 2.5 × 105 B16.
F10 cells or 1:1 mix of B16.F10 cells:CAF and tumour size monitored. Tumours
were collected for flow cytometry analysis of immune compartments and antigen
specific T cells using pentamers against SIINFEKL (ProImmune). C57BL/6-Tg
(CAG-EGFP)1Osb/J GFP mice (Jax Lab) were used to confirm the presence of
CFSE far red-labelled (C34564, Molecular Probes) CAFs in mixed tumours. At day
9, tumours were collected and prepared for flow cytometry analysis and confocal
imaging. For adoptive transfer assays, splenocytes were isolated from either OT-I
or C57BL/6 mice. Briefly, tissues were mechanically disrupted prior to red blood
cell lysis using ammonium chloride lysis buffer (150 mM NH4Cl, 10 mM NaHCO3,
pH 7.4, 0.4% EDTA). Splenocytes were activated with 10 nM SIINFEKL peptide
(OT-I) or CD3/CD28 (C57BL/6) for 2 days. Antigen specific or wild-type CD8+

T cells were isolated using a MACs CD8+ T Cell Isolation Kit (Miltenyi Biotec) and
expanded in IL-2 (20 ng ml−1) containing media for a further 5 days. Expanded
CD8+ T cells were then live-labelled with cell trace CFSE green or far red
respectively. Seven days after B16.OVA or B16.F10 induction 5 × 106 green and 5 ×
106 for red T cells were injected intravenously. For early time points, tumours,
draining lymph nodes and spleens were collected after 18 h and processed for flow
cytometric analysis. Later time points, 72 h after adoptive transfer, were collected
and treated as for the early time point.

Cell isolation. CAFs were isolated from primary lung tumours derived from LSL-
KrasG12D/+;p53LSL-R270H/ER tumour-bearing mice31,32 21 weeks after adenoviral
Cre infection (5 × 106 pfu mouse−1)33. Tissues were digested (collagenase/dispase)
and seeded into 6 well plates. A differential adhesion protocol was used to select for
tumour cells vs. CAFs and purity of tumour:CAFs culture confirmed by FACS
(EpCam:Pdgfrα). Unlike the accompanying tumour cells, CAFs did not undergo
Cre-mediated recombination and were therefore functionally wild type for Kras
(hemizygous) and p53-null. Normal lung fibroblasts were isolated from control,
non-adenoviral treated mice (p53LSL-R270H/ER). Melanomas and corresponding
fibroblasts were isolated from B16.F10 inoculated into cagEGFP.BL6 mice and
characterised as described below. Tissues were digested as described for tissue
processing and stained for CD45, CD31 and podoplanin prior to FACs sorting.
Tumour cells were excluded by GFP-negative status and immune, endothelial and
pericyte compartments were also excluded. Remaining cells were plated for culture
and characterisation. FRCs were isolated from murine lymph nodes16,32,34. Briefly,
pooled lymph nodes were mechanically disrupted and digested in a 500 μl mixture
of 1 mgml−1 collagenase A (Roche) and 0.4 mgml−1 DNase I (Roche) in PBS at
37 °C for 30 min with 600 r.p.m. rotation. Following centrifugation at 1000 r.p.m.
for 5 min, the supernatant was discarded and replaced with 500 μl of PBS con-
taining 1 mgml−1 Collagenase D (Roche) and 0.4 mgml−1 DNase I. The mixture

returned to 37 °C for 20 min with 600 r.p.m. rotation before addition of EDTA
(final concentration 10 mM). Suspensions were passed through a 70 μm mesh
before plating into 6 well plates. Cultures were expanded and tested for purity by
flow cytometry. At passage 2, any contaminating endothelial cells were removed by
FACS sorting.

Cell culture. B16.F10 and B16.OVA cells (CRL-6475, ATCC) were maintained in
DMEM with 10% fetal bovine serum (both Life Technologies) and 1% penicillin-
streptomycin (Sigma-Aldrich). Lung tumour cells were maintained in HAMS-F12
with 10% fetal bovine serum (both Life Technologies) and 1% penicillin-
streptomycin (Sigma-Aldrich). FRCs were maintained in RPMI with 10% fetal
bovine serum, 10 mM HEPES (all Life Technologies), 1% penicillin-streptomycin,
15 μM β-mercaptoethanol (both Sigma-Aldrich). CAFs and normal fibroblasts
were maintained in DMEM with 1.5 g L−1 NaHCO3, 10% fetal bovine serum (both
Life Technologies) and 1% penicillin-streptomycin (Sigma-Aldrich). T cells were
maintained in IMDM with 5% fetal bovine serum (both Life Technologies), 1%
pencillin-streptomycin and 15 μM β-mercaptoethanol (both Sigma-Aldrich). All
cells in culture were routinely tested for mycoplasma contamination (MycoAlert
Detection Kit, Lonza).

Tumour tissue processing for flow cytometry. Tumours were mechanically
disaggregated and allowed to digest in a 1 ml mixture of 1 mg ml-1 collagenase A
(Roche) and 0.4 mgml−1 DNase I in PBS at 37 °C for 1 h with 600 r.p.m. rotation.
The mixture was gently pipetted up and down every 10–20 min. The mix was then
refreshed with 1 ml PBS containing 1 mgml−1 Collagenase D (Roche) and 0.4 mg
ml−1 DNase I and then returned to 37 °C for 1 h with 600 r.p.m. rotation. Col-
lagenase was then neutralised with EDTA (final concentration 10 mM) and cells
were passed through a 70 μm mesh prior to immunostaining. Single-cell suspen-
sions were stained with fixable viability dye eFluor 780 (eBioscience) or live/dead
violet (Molecular Probes) and combinations of the following fluorescently con-
jugated antibodies; SIINFEKL pentamer (ProImmune), podoplanin (clone 8.1.1),
CD31 (clone 390), CD4 (clone GK1.5), CD8a (clone 53.6–7), CD45 (clone 30-F11),
FAS (clone 15A7), FASL (clone MFL3), Interferon-gamma (clone XMG1.2), PD-1
(clone RMP1-30), PD-L1 (clone 10F-9G2), PD-L2 (clone TY25), LAG3 (clone
C9B7W), Tim3 (clone B8.2C12, all 1:300, all BioLegend). Flow cytometry was
performed on CyAn ADP (Beckman Coulter) and LSR Fortessa (BD Biosciences)
analysers. Unstained, viability dye only, and single-stained compensation beads
(Invitrogen) served as controls. Doublets were gated out using forward-scatter
width/height and sideward- scatter width/height event characteristics. Offline
analysis was carried out on FlowJo (Treestar).

CAF characterisation. FACs analysis of fibroblasts was performed using a panel of
typical CAF markers; podoplanin (clone 8.1.1), PDGFRα (clone APA5) and β
(clone APB5) (all 1:300, all BioLegend), FAP-α (1:50, AF3715; R&D Systems); and
markers to exclude immune cells (MHCII; clone KH74 and CD45; clone 30-F11),
epithelial cells (EpCAM, clone G8.8; Biolegend) and endothelial cells (CD31, clone
390; BioLegend). Morphological characteristics assed and visualised using an EVOS
microscope and functional analysis was measured in terms of collagen gel con-
traction capacity. 1.5 × 105 cells were seeded into 2 mgml−1 collagen gel (BD
Biosciences) and detached from the sides of 24 well plates. Gel contraction was
imaged over time and quantified as percentage area change over time. CAFs dis-
played typical CAF morphology, marker profiles and functionality were utilised
(Supplementary Fig. 1).

In vitro ovalbumin uptake and processing. For antigen uptake analysis, cells (3 ×
104 per well in a 24 well plate) were incubated with 50, 100 or 150 μg ml−1 FITC-
OVA in complete media for 15 min before being washed with ice-cold PBS+ 5%
FBS. For antigen processing, 3 × 104 cells per well were seeded in 24 well plates and
pulsed with DQ-OVA, 100 μg ml−1 in PBS for a 15 min pulse. Wells were then

Fig. 4 CAFs process and present model antigen and kill antigen-restricted T cells via PD-L1/2 and FASL. a Schematic of in vivo experimental design.
Following intratumoural injection of DQ-OVA, tumours and lymph nodes were collected for analysis. b DQ-OVA processing by CAFs, LECs or BECs as a
percentage of live CD45− cells. c MHCI-SIINFEKL expression by DQ-OVA-negative CAFs compared with DQ-OVA-positive CAFs. d In vivo PD-L1 (white
bars), FASL (grey bars) and PD-L2 (black bars) expression by tumour cells (Tum) and CAFs (CAF). e Representative confocal micrograph of B16.OVA
tumour for podoplanin (CAFs, red), PD-L2 (green) and FASL (white). Scale bar: 30 μm. f Schematic of in vivo blocking antibody experiments. g Day 9
tumour volumes after PD-L2 neutralisation. h MHCI-SIINFEKL pentamer-specific CD8+ T cell frequency within control and treated tumours. i Day 9
tumour volumes after FASL neutralisation. j MHCI-SIINFEKL pentamer-specific CD8+ T cell frequency within control and treated tumours. k Publically
available microarrays analysed for PD-L2 in normal fibroblasts and CAFs from human lung (GSE22862), colon (GSE46824 and GSE1257), pancreatic
(GSE21440) and breast cancers (GSE29270). l Representative image of tumour-stroma interface of stage III lung adenocarcinoma from tissue microarray;
CAFs (podoplanin, red), PD-L2 (green), nuclei (DAPI, blue). Dashed line: tumour border. Demonstrable staining was not detected in normal lung tissues.
Scale bar: 50 μm. b, d Data shown as mean ± SEM. *P < 0.05, ***P < 0.001 (one-way ANOVA with Tukey’s or Dunnett’s post hoc analysis). NS, not
significant. b n= 18 tumours from three experiments. c Data shown as mean ± SEM. *P < 0.05. n= 12–15 tumours from two experiments. g–k Data shown
as mean ± SEM. *P < 0.05, **p < 0.01. (two-tailed unpaired Student’s t-test). n= 4 and six tumours from two experiments. Symbols represent individual
tumours (b, c, g–j) or humans sample (k)
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washed with ice-cold PBS+ 5% FBS and cultured in pre-warmed full culture media
for 0, 15, 45, 90, or 120 min at 37 °C. Uptake of FITC-OVA and processing of DQ-
OVA were detected on a CyAnTM ADP Analyser (Beckman Coulter).

In vitro inhibition of ovalbumin uptake and processing. To determine the route
of antigen processing and impact of this route on cross presentation, wells were
incubated in the presence of lactacystin (0.02 μM), ammonium chloride (0.5 μM),
MG132 (0.01 μM) or chloroquine (0.05 μM) for 1 h before, and throughout incu-
bation with antigen.

Immunofluorescence. Collected tumours were embedded in OCT medium (Tis-
sueTek). 10 μm sections were fixed in ice-cold acetone for 10 min, blocked with 5%
chicken serum in PBS, and incubated with the following primary antibodies, 4 °C
overnight: goat anti-podoplanin (BAF3244, 1:50, R&D Systems), PE conjugated
anti-PDL2 (107206, 1:100, BioLegend), APC-conjugated anti-FASL (17–5911,
1:100, eBiosciences), Hamster anti-CD3e (553238, 1:100, BD Pharmingen),
Biotinylated-rat anti-Thy1 (ab25285, 1:100, Abcam). Cell nuclei were counter-
stained with DAPI and sections were mounted in ProLong Gold (Invitrogen).
Confocal images were taken using Leica SP5 confocal microscope and processed
with Volocity (Perkin Elmer). For immunocytochemistry, cells were fixed following
in vitro assays and stained for Rab5 (C8B1), Rab7 (D95F2), EEA1 (2411S) and
LAMP1 (1D4B), all Cell Signalling Technologies, all 1:100). Cell nuclei were
counterstained with DAPI and sections were mounted in ProLong Gold (Invi-
trogen). Confocal images were taken using Leica SP5 confocal microscope and
processed with Volocity (Perkin Elmer). For human tissues, lung TMAs were
purchased from Cambridge Biosciences. Slides were dewaxed in xylene and
rehydrated in graded alcohols prior to antigen retrieval in sodium citrate pH6. A
non-immune block was performed for 1 h prior to incubation in primary anti-
bodies at 4 °C overnight: sheep anti-human podoplanin (AF3670, 1:20), mouse
anti-human PD-L2 (MAB1224, 1:80, both R&D Systems). Samples were washed
and incubated in fluorescently conjugated secondary antibodies before cell nuclei
were counterstained with DAPI and sections were mounted in ProLong Gold
(Invitrogen) ready for imaging.

Live imaging and post analysis. To live label cultures, Cell Tracker Stains
CMTPX (C34552) or CMFDA (C2925) (both Life Technologies) were employed
and used according to manufacturer’s guidelines. To induce tumour cell death for
debris uptake assays, GFP-labelled tumour cells were killed with puromycin (200
μg ml−1) prior to incubation with labelled CAFs. To determine the intracellular
compartment of engulfed tumour debris, cells were incubated with LysoTracker
(Life Technologies) according to manufacturer’s guidelines. Untreated or live-
labelled cells were imaged over a period of 24 h on a Leica DMi8 microscope with
environmental chamber. Images were taken every 10 min. After live imaging, cells
were fixed in 4% PFA for 10 min at RT and stained. Actin cytoskeleton was
visualised with Phalloidin-Atto 647N (Sigma-Aldrich).

T cell/CAF phenotyping and co/tri-cultures and phenotyping. 104 fibroblasts
were seeded in to wells of a 24 well plate in control media or media containing 5
nM SIINFEKL peptide. Cells were incubated overnight and washed thoroughly
three times with PBS+ 5% FBS. 105 antigen-specific or wild-type T cells were co-
cultured with fibroblasts, or alone, for 48 h. Baseline T cell and fibroblast flow
cytometric phenotyping was carried out at this point. T cells were collected and
remaining fibroblasts were collected by cell dissociation and both cell types were
stained for phenotypic markers and analysed by flow cytometry. For T cell phe-
notyping combined with target cells, antigen bearing tumour cells were stained
with cell tracker green (Life Technologies, CFDA) prior to co-culture. Three hours
after target tumour cell addition, brefeldin A (BFA, BioLegend, 1:1000) was added
to the cells and T cell phenotype was assessed after a further 3 h BFA treatment.
For tumour cell killing assay, tumour cell viability was assessed by live/dead
staining (Life Technologies) and Annexin V (BioLegend) staining after overnight
incubation.

Statistical analyses. Statistical analyses were performed using GraphPad Prism
6 software (GraphPad). For comparisons of three or more groups, data were
subjected to one-way ANOVA analysis, followed by Dunnett’s multiple compar-
isons test when comparing every mean to a control mean, or Tukey’s multiple
comparisons test when comparing every mean to every other mean. When two
groups were compared, a two-tailed paired or unpaired Student’s t-test was applied.
Data are represented as mean ± SEM, and p ≤ 0.05 was considered significant.

Data availability. The expression of PD-L2 by human fibroblasts from normal and
tumour tissues referenced during the study; lung (GSE22862), breast (GSE29270),
pancreatic (GSE21440) and colon (GSE46824 and GSE1257) are available in a
public repository from the NCBI GEO2R website (http://www.ncbi.nlm.nih.gov/
geo/geo2r/).

All the other data supporting the findings of this study are available within the
article and its Supplementary Information files and/or from the corresponding
author upon reasonable request.
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