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Abstract

Thymosin beta-4 (Tb4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that
promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tb4
on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy.
Female wild type (C57BL10/ScSnJ) and mdx mice, 8–10 weeks old, were treated with 150 mg of Tb4 twice a week for 6
months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle
function were assessed via grip strength and high frequency echocardiography. Localization of Tb4 and amount of fibrosis
were quantified using immunohistochemistry and Gomori’s tri-chrome staining, respectively. Mdx mice treated with Tb4
showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tb4 stained
exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle
strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic
cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated
wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also
significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated
mdx mice. In exercised dystrophin deficient mice, chronic administration of Tb4 increased the number of regenerating fibers
in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.
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Introduction

Duchenne muscular dystrophy (DMD) is an inherited X-linked

disorder with an incidence of 1 in 3,500 male births that is due to

the absence of dystrophin, a large protein linking the intracellular

cytoskeleton to the extracellular matrix.[1] The animal model of

DMD, the mdx mouse, is genetically similar to the human

deletion.[1–3] Although the underlying gene defect is the same in

human and the mdx mouse, the clinical picture is quite different.

The mdx skeletal muscle undergoes an early acute phase of

degeneration at 3–4 weeks of age followed by a successful

regeneration phase. The histopathology after this acute phase

shows a relatively mild picture, although specific muscles (e.g.

diaphragm) and older mice can show more severe pathology

consistent with human DMD muscle at presentation (failed

regeneration and fibrosis). Commensurate with the pathology,

the physical symptoms of the mdx mouse tend to be relatively mild,

with muscle weakness more obvious after exercise or lengthening

contractions.[4–6] Mdx mice also develop decreased cardiac

systolic function slowly over time. This decreased function can

be measured at significant levels by non-invasive echocardiogra-

phy around nine months of age.[7,8]

In order to identify new potential therapeutic agents, studies

have looked at skeletal muscle gene expression profiles in mdx mice

during disease progression. [9–17] Thymosin beta-4 (Tb4) was one

gene with increased expression in dystrophin deficient skeletal

muscle cells and may play a role in compensatory path-

ways.[11,16–18] Tb4 is a peptide of 43 amino acids that was

first isolated from the thymus gland and subsequently found to be

ubiquitous in nature.[19–21] Tb4 functions mainly as an actin-

sequestering molecule regulating cell migration, proliferation and

differentiation.[22–25] It also promotes wound healing and
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modulates inflammatory mediators.[26,27] Tb4 was recently

shown to promote cardiomyocyte migration, survival and repair

in a coronary ligation model.[28]. Based on these mechanisms, we

studied the effects of chronic Tb4 administration on skeletal and

cardiac muscle function in exercised dystrophin deficient mice.

While we found no significant differences in muscle function, we

did see significantly increased skeletal muscle regeneration in Tb4

treated mdx mice and these regenerating fibers distinctly stained for

Tb4.

Methods

Animal Care
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the

Institutional Animal Care and Use Committee at the Children’s

National Medical Center, Washington, DC and the Veterans

Administration Medical Center, Washington, DC (Protocol

#01079). Eight to ten week old female C57BL/10ScSn-

Dmdmdx/J (mdx) and C57BL/10ScSnJ (wild type) mice weighing

20–30 grams were purchased from The Jackson Laboratory (Bar

Harbor, Ma). All mice were housed in an individually vented cage

system with a 12 hour light-dark cycle and received standard

mouse chow and water ad libitum. All mice were rested at least 10–

14 days before starting acclimations and baseline recordings.

Treatment with Thymosin Beta-4
Tb4 (RegeneRx Biopharmaceuticals Inc., Bethesda, Md) was

given via intraperitoneal injection twice weekly over a 6 month

period to mdx and wild type mice at a dose of 150 mg in 200 ml

PBS. Buffer was given at the same times to mdx and wild type

control groups.

Treadmill Exercise
The treadmill exercise uses a common commercially available

setup (Columbus Instruments, Columbus, Ohio) which employs a

moving belt. We subjected all experimental mice to a 30-minute

run on a horizontal treadmill at 12 m/min, twice a week. This test

was performed during the morning hours twice weekly during the

6 months except in those days on which functional data was

obtained.

Grip Strength Test
Grip Strength was assessed using a grip strength meter

consisting of horizontal forelimb mesh and an angled hind limb

mesh (Columbus Instruments, Columbus, OH). Five successful

hindlimb and forelimb strength measurements within 2 minutes

were recorded and normalized to body weight as previously

described.[29]

Rotarod Test
Mice were trained on the Rotarod (Ugo Basile, VA, Italy) for

two days before collecting data. Each acclimatization session

consisted of four training sessions, 2 per day and each session

lasting 120 seconds at a speed of 5 rpm. Each trial consisted of

placing the mice on the rod at 10 rpm for 60 seconds (stabilizing

period) followed by an acceleration from 10 rpm to 40 rpm within

the first 25 seconds until the animal falls from the rod or until 180

seconds are reached. If the animals fell during the stabilizing

period, they were placed back on the rod to complete the session.

The total testing time is 240 seconds (60 sec stabilization time and

180 seconds test time). Each trial was done twice a day (a gap of

2 h interval between sessions) for 3 consecutive days. The latency

to fall (seconds) was recorded and all six scores per mouse were

averaged and recorded as latency to fall (in seconds) for each

mouse.

Echocardiography
Mice were anesthetized with 1–2% isoflurane in 100% oxygen

and scanning was performed over 20 minutes using a high

frequency ultrasound probe (RMZ 702a, Vevo 660, VisualSonics,

Toronto, Canada) as previously described.[8] Qualitative and

quantitative measurements were made offline using analytic

software (VisualSonics, Toronto, Canada).

Histological Evaluations
At the end of the trial, all animals were euthanized and tissue

samples were taken for further testing. Histological evaluations

were done by two individuals in a blinded manner using coded

H&E stained slides and their results were averaged. The number

of tissues examined per group varied based on tissue availability.

Quantitative stereology (Olympus C.A.S.T. Stereology System,

Olympus America Inc., Center Valley, PA) was used to evaluate

the slides. Assessment criteria included: assessment of total fibers

present, total fibers with central nuclei, total peripheral nuclei,

total central nuclei, regenerating fibers (highly basophilic fibers),

degenerating fibers, and inflammation (an interstitial group of

more than 10 smaller inflammatory cell dark blue nuclei in a high

power field) in five high power (40x) non-overlapping fields in

normal and mdx gastrocnemius muscle sections. Fibers intersecting

the left and top borders of the field where not counted and nuclei

further than one nuclear diameter from the fiber border were

deemed ‘‘central’’.[29]

For immunohistochemistry, tissue slides of untreated mdx

gastrocnemius skeletal muscle were deparaffinized and hydrated.

For antigen retrieval, slides were immersed in citrate buffer

(0.01 M, pH 6.0) and heated twice in a microwave (700 W or

high) for 5 min. The slides were quenched with endogenous

peroxidase by incubation with 3% hydrogen peroxide solution for

5 minutes and washed three times in PBS for 5 minutes. Slides

were then immunostained with rabbit polyclonal antibody to

thymosin b4 (1:2000 dilution; ALPCO Diagnostics, Windham,

NH, USA) at 4uC overnight. After primary antibody incubation,

slides were washed three times in PBS for 5 minutes and incubated

with secondary antibody for 1 hour. Then, slides were washed

four times in PBS for 5 minutes each and the color reaction was

developed with DAB and slides were counterstained Meyer’s

hematoxylin (DAKO, Carpinteria, CA, USA) for 20 seconds,

dehydrated, and mounted with Permount (Fisher Scientific,

Pittsburgh, PA, USA).

Quantification of Fibrosis
Using gastrocnemius, diaphragm and cardiac muscle tissue

from treated and untreated wild type and mdx mice, five

paraffin embedded sections for each group were stained with

hematoxylin and eosin (H&E) (Sigma, St. Louis, Mo) and

Gomori’s Tri-Chrome stain containing: fast green FCF,

chromotrope 2R, and phosphotungstic acid (Sigma, St. Louis,

Mo). The tissue was imaged under a light microscope at 10X

and digital images were obtained using computer software

(Olympus C.A.S.T. Stereology System, Olympus America Inc.,

Center Valley, PA). The digital images were copied into NIH

Image J program and threshold set to separate blue staining

collagen from red staining muscle tissues. The total area of blue

staining collagen was then expressed as a percent of total tissue

area in the image.

Tb4 Treatment in Mdx Mice

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8976



Creatine Kinase (CK) Determination
Blood was obtained by heart puncture immediately after

euthanasia. 250 mL of blood was collected into eppendorf tubes,

allowed to clot and kept at room temperature to allow clot-

contraction prior to centrifugation and serum collection. CK

determination was performed according to the manufacturer’s

instructions using standard spectrophotometric method with

enzyme-coupled assay reagent from Fisher Scientific (CK10).[30]

Absorption at 340 nm was measured every min for 2 min at 37uC
to calculate enzyme activity. Duplicate measurements were done

on each serum sample and the data was expressed as U/L.

Statistical Analysis
Measurements between wild type and mdx mice were compared

at each time point using an analysis of variance with Sidak

adjustment for multiple comparisons (body weight, GSM,

Rotarod, echocardiography, percent collagen). Normality of each

quantitative measurement was confirmed prior to analysis and

those not conforming to normality underwent data transforma-

tions. Histology measurements (degeneration fibers, regenerating

fibers, inflammation, calcification, and central and peripheral

nuclei) were first compared between two investigators to determine

their consistency. Comparisons were then made using Poisson

regression or using negative binomial regression where the Poisson

model did not fit the data due to over dispersion.

Results

Both wild type and mdx mice were treated with Tb4 for 6

months and the behavioral data was collected at baseline (3

months of age), mid trial (5–6 months of age), and end of the trial

(9 months of age). All results are presented as mean 6 standard

deviation except those in figures 1 and 2.

Body Weight
No significant differences were seen in body weights between

treated and untreated mice within the same strain. When

comparing mdx and wild type mice, there was a significant

increase in the body weight of mdx mice at baseline and 6 months

but not at 9 months of age (Table S1).

Grip Strength
Untreated mdx mice had significantly decreased normalized

forelimb grip strength (kilogram force per kilogram; KGF/kg)

compared to untreated wild type mice at 3, 6 and 9 months of age.

Comparing the normalized hindlimb grip strength of these same

groups showed a significant decrease in mdx mice at 3 and 6

months but not at 9 months of age. There were no significant

differences in normalized forelimb or hindlimb grip strength

between treated and untreated mice within the same strain during

the trial (Table S1).

Rotarod
There were no significant differences in latency time to fall on

the Rotarod apparatus between wild type and mdx mice. There

were also no differences between treated and untreated mice

within the strain, but treated mdx mice showed significantly lower

performance in comparison with treated wild type mice at 9

months of age (Table S1).

Echocardiography
High frequency echocardiography found decreased cardiac

function, measured as percent shortening fraction, in untreated

mdx (27.961.86%) mice compared to untreated (30.662.6%) and

treated (32.065.2; p = 0.045) wild type mice (Figure 1). Treated

mdx (26.263.1%) mice also showed significantly decreased cardiac

function compared to treated (p,0.01) and untreated (p,0.05)

wild type mice. There were no significant differences between

treated and untreated mice within the same strain. No significant

differences were found in measurements of left ventricular

chamber size or wall thickness between mdx and wild type mice,

showing no dilation in the hearts of mdx mice with decreased

Figure 1. Significantly decreased cardiac function (mean 6

SEM) measured as percent shortening fraction (%SF) in mdx
mice is seen after 6 months of treatment with thymosin-beta 4
compared to wild type mice. There is no significant difference
between treated and untreated mdx mice.
doi:10.1371/journal.pone.0008976.g001

Figure 2. Significantly increased percent collagen (mean 6 SEM) for cardiac (n = 3 for treated and untreated mdx mice and
untreated wild type, n = 4 for treated wild type; panel A), diaphragm (n = 5 for all groups; panel B), and gastrocnemius (n = 3 for all
groups; panel C) is seen in mdx mice compared to wild type. There was no significant difference between treated and untreated mdx mice.
doi:10.1371/journal.pone.0008976.g002

Tb4 Treatment in Mdx Mice
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function. No significant differences were found in heart rates or

Doppler measurements of aortic, pulmonary, tricuspid or mitral

blood flow velocities between treated and untreated mdx mice

(Table S2).

Skeletal Muscle Histology
Evaluation of the gastrocnemius skeletal muscle histology found

significantly increased number of regenerating fibers in treated mdx

mice (11.6613.5) compared to untreated mdx mice (2.661.1;

p = 0.03). Both treated and untreated mdx mice had increased

central nuclei, central nuclei per fiber and central nucleated fibers

compared to treated and untreated wild type. Untreated mdx mice

showed significantly increased total peripheral nuclei compared to

treated mdx mice (p = 0.014). There was also significantly increased

inflammation (3+) between mdx and wild type mice that was not

significantly altered in the treated groups (Table S3).

Quantification of Fibrosis
Using Gomori’s tri-chrome staining, an analysis of percent

collagen showed significantly increased collagen found in the left

ventricles of untreated (3.8360.9%) and treated (4.3961.2%) mdx

mice compared to both untreated (1.661.1%) and treated

(1.8260.9%) wild type controls (all p values,0.05) (Figures 2

and 3). The diaphragm also showed significantly increased percent

collagen in the untreated (22.967.5%) and treated (25.066.6%)

mdx mice compared to untreated (7.460.8%) and treated

(7.961.8%) control mice (all p values,0.01). The gastrocnemius

also showed significantly increased percent collagen in untreated

mdx mice (6.2561.7%) compared to untreated control mice

(3.061.1%; p,0.05) (Figure 2). There were no significant

differences in percent collagen between treated and untreated

groups within the same strain.

Serum Creatine Kinase
There was a significant increase in serum creatine kinase in both

treated (520561785 U/L, n = 8) and untreated (578862494 U/

L, n = 10) mdx mice compared to treated (1416108 U/L, n = 14)

and untreated (85675 U/L, n = 13) wild type controls (p,0.001).

There was no significant difference between treated and untreated

mdx mice.

Tb4 Localization Using Immunohistochemistry
Staining of untreated wild type and mdx skeletal muscle

(gastrocnemius) with anti-Tb4 antibody shows localized staining in

regenerating fibers. Sequential slides were stained for desmin, a

marker for regenerating fibers, and this staining corresponded to

Tb4 staining. There was no staining of fibers with either anti-Tb4

or anti-desmin antibodies in wild type tissue (Figure 4).

Discussion

We completed a six month trial using Tb4 in exercised mdx and

wild type mice. We found no significant improvement in treated

mdx skeletal or cardiac muscle function compared to untreated mdx

mice. However, we did find significantly increased regenerating

fibers in treated mdx skeletal muscle and these fibers convincingly

stained for Tb4. While Tb4 led to increased regeneration in mdx

skeletal muscle, it did not improve fibrosis in the cardiac,

diaphragmatic or skeletal muscle of treated mdx mice. This study

shows that chronic Tb4 administration is beneficial for skeletal

muscle fiber regeneration in dystrophin deficient mice.

Previous gene profiling experiments showed increased Tb4

expression in skeletal muscle of mdx mice. Tseng et al. (2002)

showed that in 16 week old mdx mice, the gastrocnemius muscle

showed a two-fold increase in Tb4 mRNA expression. Boer et al.

(2002) showed that another member of the thymosin family with

similar properties, thymosin beta-10, showed a 4-fold increased

expression in 13–15 week old mdx gastrocnemius muscle compared

to wild type.[9] Nakayama et al. (2004) found up-regulation of Tb4

in 2 month old mdx hindlimb skeletal muscle cell culture and showed

that it was not altered after the addition of micro-dystrophin to the

Figure 3. Gomori’s tri-chrome stained slides of cardiac tissue
showing increased fibrosis in mdx mice. A) Untreated wild type
cardiac tissue showing minimal collagen staining (light blue color)
corresponding to a percent collagen of 1.8260.5%. B) Untreated mdx
cardiac tissue showing diffuse fibrosis in the LV and RV ventricular walls
corresponding to a percent collagen of 3.8360.5%. C) Tb4 treated wild
type mice showing few increased areas of collagen staining corre-
sponding to a percent collagen of 1.660.5%. D) Tb4 treated mdx
cardiac tissue showing large areas of collagen staining in the LV and RV
walls corresponding to a percent collagen of 4.3960.7%. (LV – left
ventricle, RV – right ventricle).
doi:10.1371/journal.pone.0008976.g003

Figure 4. Peroxidase staining of regenerating fibers using anti-
TB4 antibodies in skeletal muscle (gastrocnemius). A) Mdx
muscle treated with anti-TB4 antibody shows peroxidase staining of
regenerating fibers (*); B) Mdx muscle treated with anti-desmin
antibody shows staining in regenerating fibers (#), the same as in
plate A; C) Wild type muscle treated with anti-TB4 antibodies shows no
staining; D) Wild type muscle treated with anti-desmin antibodies
shows no staining.
doi:10.1371/journal.pone.0008976.g004

Tb4 Treatment in Mdx Mice
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culture.[11] However, the authors did not find a similar increase in

DMD patient derived cell lines. Turk et al. (2005) found significantly

increased prothymosin beta-4 (Ptmb4), the precursor protein, at 8 of

9 time points ranging from 1 to 20 weeks in mdx hindlimb

muscle.[17] Hara et al. (2005) found up-regulation of Tb4

expression in mdx skeletal muscle cell cultures and that Tb4

stimulated migration and chemotaxis of myoblasts.[18] All of these

studies used mice from 1 to 20 weeks old, a time period of rapid

degeneration and regeneration in the mdx skeletal muscle and

demonstrate that Tb4 is important in skeletal muscle regenerative

pathways. Our study supports these previous reports. We

demonstrate the presence of Tb4 in regenerating fibers (Figure 4)

of mdx gastrocnemius muscle. We also showed a significantly

increased number of regenerating fibers in the gastrocnemius of

Tb4 treated mdx mice (Table S3). This parameter has significant

variation because the gastrocnemius muscle develops patchy areas

of regeneration and the majority of the muscle that is sampled shows

no areas of regeneration at all. In another study, Tb4 stimulated the

migration of stem cells in hair follicles leading to increased hair

growth. [31] Tb4 may likewise stimulate satellite cell migration in

skeletal muscle cells, leading to improved regeneration. Importantly,

this is the first correlation of gene expression data with in vivo

administration and histological localization and supports an integral

role for Tb4 in muscle regeneration.

Another potential mechanism of Tb4 mediated regeneration is

the inhibition of apoptosis. Tb4 was shown to decrease apoptosis

in an ethanol-treated corneal epithelial model and inhibit

activation of NF-kB during TNF-a stimulation in human corneal

epithelial cells. [32,33] In cardiac tissue, Bock-Marquette et al.

(2004) showed that Tb4 decreased cardiac fibrosis secondary to

ischemic damage in a coronary ligation model. This beneficial

effect of Tb4 on myocyte cell survival was also related to decreased

apoptosis and found to be mediated by PINCH, ILK and Akt. [28]

Previous C2C12 muscle cell culture experiments from our lab also

showed that Tb4 directly decreased NF-kB activation from TNF-a
stimulation. [34] These studies support the direct action of Tb4 on

muscle cells to inhibit NF-kB and consequently apoptosis and

potentially improve muscle regenerative capacity.

Studies of Tb4 in multiple tissue models showed modulation of

various inflammatory cytokines. [35–37] While, these changes

may acutely promote wound healing, the effects of chronic Tb4

treatment on different cytokine levels are not known. Chronic

treatment could induce a more prolonged cytokine response that

may become more pro-inflammatory and pro-fibrotic, decreasing

the beneficial effects seen with acute Tb4 administration. This

might explain why this study found no significant changes in the

amounts of collagen in skeletal and cardiac muscle in chronically

Tb4 treated mdx mice.

Also, previous studies showed that decreased levels of Ac-

SDKP, the active tetrapeptide that is released from Tb4, led to

increased cardiac and renal perivascular fibrosis.[38] Pokharel

et al. (2004) also showed that in rats over-expressing angiotensin-

converting enzyme, which decreases levels of Ac-SDKP, there was

increased cardiac collagen content.[39] Thus, the chronic

exposure of cardiac and skeletal muscle to Tb4 may lead to a

down-regulation of Tb4 expression or receptor activity and a

decrease in Ac-SDKP.

Although we did not directly measure Tb4 levels in treated

mice, a previous study showed significantly increased levels in the

hearts and skeletal muscle of mice after treatment with 400

micrograms of Tb4 via intraperitoneal injection.[40] Chronic

exposure of Tb4 could potentially lead to the development of anti-

Tb4 antibodies. These antibodies could neutralize Tb4 and

prevent any beneficial effects on cell survival and decreased

fibrosis. The presence of any antibodies was not assessed in this

study.

This study found a significant increase in Tb4 positive

regenerating fibers in the skeletal muscle of exercised mdx mice.

There were no beneficial effects of chronic Tb4 treatment on

muscle function or fibrosis. This study provides histological

correlation for previous gene expression studies showing the

importance of Tb4 in skeletal muscle regeneration.

Supporting Information

Table S1 Body weight, normalized grip strength, and Rotarod

latency to fall measurements in treated and untreated wild type

(BL10) and mdx mice after 6 months of treatment with thymosin

beta-4.

Found at: doi:10.1371/journal.pone.0008976.s001 (0.05 MB

DOC)

Table S2 Cardiac M-mode and spectral Doppler echocardiog-

raphy measurements in treated and untreated wild type (BL10)

and mdx mice after 6 months of treatment with thymosin beta-4.

Found at: doi:10.1371/journal.pone.0008976.s002 (0.05 MB

DOC)

Table S3 Gastrocnemius skeletal muscle histology measure-

ments in treated and untreated wild type (BL10) and mdx mice

after 6 months of treatment with thymosin beta-4.

Found at: doi:10.1371/journal.pone.0008976.s003 (0.04 MB

DOC)
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