1 Transmission event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough

2 infections

- 3 Timothy Farinholt, PhD¹, Harsha Doddapaneni, PhD^{2,3}, Xiang Qin, PhD^{2,3}, Vipin Menon, PhD^{2,3},
- 4 Qingchang Meng, PhD^{2,3}, Ginger Metcalf^{2,3}, Hsu Chao, DVM^{2,3}, Marie-Claude Gingras, PhD^{2,3},
- 5 Paige Farinholt, MD⁴, Charu Agrawal, MD⁴, Donna M. Muzny M.Sc.^{2,3}, Pedro A. Piedra, MD¹,
- 6 Richard A. Gibbs, PhD^{2,3}, Joseph Petrosino, PhD¹
- 7
- ⁸ ¹Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology
- 9 and Microbiology, Baylor College of Medicine, Houston, TX, USA ²Department of Molecular and
- 10 Human Genetics, Baylor College of Medicine, Houston, TX, USA ³Human Genome Sequencing

11 Center, Baylor College of Medicine, Houston, TX, USA ⁴Department of Medicine, Baylor College

- 12 of Medicine, Houston, TX, USA
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23

24

25

27 Key Points

- 28 **Question:** Which SARS-CoV-2 variant is responsible for 6 cases of vaccine breakthrough, one
- 29 interventional monoclonal antibody treatment, and one death?
- 30 **Findings:** Viral sequencing revealed 6 vaccinated patients were infected with the Delta SARS-
- 31 CoV-2 variant. With no histories of vaccine breakthrough, this suggests Delta variant may
- 32 possess immune evasion in patients that received the Pfizer BNT162b2, Moderna mRNA-1273,
- and Covaxin BBV152.
- 34 **Meaning:** Delta variant may pose the highest risk out of any currently circulating SARS-CoV-2
- variants, with increased transmissibility over Alpha variant and possible vaccine breakthrough.
- 36

37 Abstract

- 38 **Importance:** Vaccine breakthrough by an emergent SARS-CoV-2 variant poses a great risk to
- 39 global public health.

40 **Objective:** To determine the SARS-CoV-2 variant responsible for 6 cases of vaccine

- 41 breakthrough.
- 42 **Design:** Nasopharyngeal swabs from suspected vaccine breakthrough cases were tested for
- 43 SARS-CoV-2 by qPCR for Wuhan-Hu1 and Alpha variant. Positive samples were then

sequenced by Swift Normalase Amplicon Panels to determine the causal variant.

45 **Setting:** Transmission event occurred at events surrounding a wedding outside of Houston, TX.

46 Two patients from India, likely transmitted the Delta variant to other guests.

47 **Participants:** Following a positive SARS-CoV-2 qPCR test at a third-party site, six fully

- 48 vaccinated patients were investigated. Three males and three females ranged from 53 to 69
- 49 years old. One patient suffered from diabetes while three others were classified as overweight.

50 No significant other comorbidities were identified. None of the patients had a history of failed

51 vaccination.

53 Introduction

54 High numbers of global SARS-CoV-2 infections have led to the emergence of variants, notably Alpha variant (B.1.1.7 UK), Beta (B.1.351 S. Africa), Gamma (P.1 Brazil), Epsilon (B.1.429 55 56 California), lota (B.1.526 New York) and now, Delta and Kappa (B.1.617.2 and B.1.617.1 India). 57 Each of these strains gained advantageous mutations to become a dominant strain, e.g., lota first discovered November 23, 2020, represented 45% of new cases as of February 7, 2021¹. 58 59 Increased transmissibility results from genomic changes such as nonsynonymous mutations in the receptor-binding domain (RBD) of the S-gene (encodes the spike protein) conferring higher 60 binding affinity to host angiotensin-converting enzyme 2 (ACE2) receptors or more efficient 61 cleavage by Transmembrane Serine Protease 2 (TMPRSS2) and subsequently, viral entry^{2,3}. 62 Mutations could also lead to vaccine breakthrough⁴. The spike protein's RBD is 63 immunodominant⁵, targeted by convalescent sera and vaccine-elicited antibodies (Pfizer 64 BNT162b2⁶), though evidence suggest substantial role of the amino-terminal domain (NTD). 65 66 Mutations in the RBD therefore pose a risk of allowing immune evasion to one or more of the current vaccines⁴. The Kappa and Delta variants emerged from the Indian state of Maharashtra 67 68 in December 2020, contributing to a resurgence of cases in the country, representing 70% of daily new cases on May 2, 2021⁷. The B.1.617 lineage is now widely circulating in over 50 69 70 countries based on viral sequence data and is classified as a variant of concern by the CDC. 71 The Kappa and Delta variant lineages are defined by 7 and 8 nonsynonymous mutations in the S protein respectively (Figure 1). 72 73 Emergent data suggests partial immunity to the Kappa variant, as convalescent sera and 74 vaccine-elicited (Pfizer BNT162b2 and Moderna mRNA-1273) antibodies show a 2.3- and 4-fold 75 reduction in neutralization in vitro respectively (noting that this study used protein-pseudotyped lentiviruses lacking the T478K mutation found in Delta variant)⁸. A test negative case control 76 77 study estimated the effectiveness of vaccination (two weeks post second vaccination) against

symptomatic disease by Delta variant to be as high as 88% for Pfizer BNT162b2 in the UK
 (compared to 93% for Alpha variant)⁹.

80 Here we describe a transmission of a Delta variant containing SARS-CoV-2 strain, between 81 family members associated with events surrounding a wedding with 92 attendees, near 82 Houston, Texas. Attendance required guests be fully vaccinated and took place outdoors in a 83 large, open-air tent. To date, 6 individuals have tested positive for SARS-CoV-2, all patients 84 were symptomatic, one patient severely enough to receive monoclonal antibody infusion 85 treatment (Regeneron Pharmaceuticals Inc.) and one patient has died. Encounter timings and 86 viral sequence similarities suggest the strain containing the Delta variant was transmitted to 87 wedding guests from two patients travelling from India. With no history of vaccine failure in 88 these patients, our observations suggest these are true cases of vaccine breakthrough, 89 mediated by the Delta variant.

90

91 Results

92 In early April, 2021, Patient 0a, a man with no comorbidities, and Patient 0b, a woman with 93 diabetes, travelled from India to attend a wedding in Texas (designated 0a and 0b due to 94 difficulty establishing true patient 0). Both tested negative for SARS-CoV-2 by gPCR as part of 95 the pre-flight criteria. Formal wedding events were held outdoors and in a large open-air tent 96 and attendance required full vaccination (Patient 0a and 0b travelled to Houston 10 days after 97 their second doses of Covaxin BBV152, Table 1). Patients 1-5 confirmed having close 98 encounters with Patient 0a and 0b at the wedding. Events were attended by fewer than 100 99 guests.

On the evening of the first night of the wedding, Patient 0b complained of fatigue but associated it with diabetes and jet lag. Patient 0a developed a cough two days after the wedding and both him and Patient 0b developed a fever three days after. Patient 0a and 0b tested positive for SARS-CoV-2 by nasal swab gPCR 4 days after the wedding at a third-party site. Patient 0a's

symptoms progressed over the following days and was admitted to the hospital on day 6 post
 wedding. He was transferred to Baylor St. Luke's hospital in the Texas Medical Center with
 worsening symptoms. A month after the wedding, Patient 0a died from complications of COVID 19.

108 Four other guests have tested positive for SARS-CoV-2 following confirmed interactions with 109 Patient 0a and 0b. All positive patients received Pfizer BNT162b2, Moderna mRNA-1273, or 110 Covaxin BBV152 (Table 1). Six of these have experienced symptoms of COVID-19 (Table 1). 111 Patient 1, who received the Pfizer BNT162b2 vaccine developed severe symptoms and was 112 admitted to Baylor St. Luke's hospital for monoclonal antibody infusion treatment (Regeneron Pharmaceuticals Inc.) on ten days after the wedding. The density of vaccine breakthrough 113 114 resulting in COVID-19 symptoms suggested the patients were carrying a SARS-CoV-2 variant. 115 To characterize the variant, total RNA was extracted from nasopharyngeal swabs of each of the 116 6 patients. All positive for SARS-CoV-2 Wuhan-Hu-1 and negative for Alpha variant by gPCR 117 (Table 1). Human RNase P (RP) gene control values suggested sampling of patients and RNA 118 isolation were performed optimally. Amplicon libraries were successfully prepared from all 6 119 qPCR positive samples (N1 Ct value 17 - 29), with 900,754 - 2,381,756 pass-filter reads 120 generated using Swift Biosciences Sarscov2 analysis pipeline (sTable 1). Median sequence 121 coverage ranged from 2085x to 12,932x with >99.7% of the genome covered at 40x or greater. 122 All 6 samples were identified as the SARS-CoV-2 Delta variant based on the presence of the 10 123 mutations listed by the CDC's 'Selected Characteristics of SARS-CoV-2 Variants of Interest'. 124 These mutations, located on the S protein were T19R, (G142D), 156del, 157del, R158G, 125 L452R, T478K, D614G, P681R, D950N. 156del, 157del, R158G are annotated as a single mutation (S:GAGTTCA22028G:Glu156 Arg158delinsGly) due to their proximity (Figure 1). 126 127 Phylogenetic analysis places each patient sample in a subclade of the Delta variant (white box, 128 Figure 2).

130 Discussion

131 Ending the current SARS-CoV-2 pandemic requires limiting the spread through continued 132 vigilance of masking, social distancing, and vaccination. Variants emerge from areas experiencing uncontrolled viral spread and display increased transmissibility due to mutations in 133 134 the spike protein. These mutations may occur in the antigenic region of the RBD, altering 135 binding sites for vaccine-elicited antibodies. Mutations such as the ones found in the Kappa 136 variant, provide partial resistance to antibody neutralization (Pfizer BNT162b2, Moderna mRNA-1273. Regeneron⁸, and Covaxin BBV152¹⁰), likely due to changes in epitope sequence. 137 Vaccine breakthrough by highly transmissible variants (Delta variant up to 50% more 138 transmissible than Alpha variant, SAGE) could lead to significant setbacks in pandemic control 139 140 efforts, requiring renewed social distancing and masking efforts. Significant vaccine 141 breakthrough could necessitate vaccine boosters or targeted lockdowns to reduce spread of 142 infection. An analysis of spike protein epitopes found several antigenic regions (IDa-IDi, Zhange et al.). Delta variant spike protein contains mutations in three of these regions (450–469 IDf, 143 144 480–499 IDg, and 522–646 IDh, Figure 1) possibly resulting in decreased neutralization by 145 vaccine-elicited antibodies. 146 According to the cases presented in this study, antibodies elicited in patients receiving Pfizer 147 BNT162b2, Moderna mRNA-1273, and Covaxin BBV152 may provide decreased immunity to 148 the Delta variant. It is possible that some individuals in this study failed to produce an effective immune response to their immunization, however, none of the patients had a history of vaccine 149 150 failure. 151 Our observations support continued efforts to generate SARS-CoV-2 genomic sequences from 152 positive patient samples, in order to identify possible vaccine breakthrough mutations. The 153 continued effectiveness of vaccine-elicited antibodies towards SARS-CoV-2 variants highlights 154 the importance of vaccination efforts. Partial efficacy of current vaccines (70% at 75% coverage)

- 155 is theoretically sufficient to stop a pandemic¹¹. Slowing the spread could prevent emergence of
- 156 future variants, hastening the end of this pandemic.
- 157

158 Materials and Methods

159 Specimen collection and ethical considerations

All individuals were initially tested by third party SARS-CoV-2 testing sites. To confirm,

161 nasopharyngeal swabs were collected by a physician or nurse as close to the first positive test

as possible. Samples were submitted to the Alkek Center for Metagenomics and Microbiome

163 Research for RNA extraction and the Human Genome Sequencing Center for qPCR

164 confirmation. Protocols for collection, qPCR testing, and whole genome sequencing were

approved by the Baylor College of Medicine Institutional Review Board (H-47423).

166

180

167 cDNA synthesis and amplicon libraries.

168 RNA extracted from nasopharyngeal swabs of six individuals that tested positive for SARS-COV-2 using qPCR was converted to 1st strand cDNA using SuperScript[™] IV First-Strand 169 170 Synthesis System (Thermo Fisher, Cat. No. 18091050). The 1st strand cDNA reaction was 171 performed starting with 10 µl of total RNA in 25 µl reaction mix, which was incubated at 23°C for 10 minutes followed by 50°C for 50 minutes. The resulting 1st strand cDNA was then diluted with 172 173 DEPC treated water, where for two samples with Ct<24 cDNA was diluted 20 times and for the remaining four samples, with Ct>24, cDNA was diluted 2 times, respectively. This diluted 1st 174 175 strand cDNA (10 ul) was used as input for amplification of the SARS-CoV-2 viral genome, using 176 the SARS-CoV-2 Additional Genome Coverage Panel (Cat#COVG1V2-96). This panel was 177 designed against SARS-CoV-2 Wuhan-Hu-1 strain (NC 045512.2) and has 345 amplicons of 178 116-255 bp (average 150 bp) that cover 99.7% (29,828 of 29,903 total bases) of the genome. These amplicons come in a single tube, and the workflow involves two rounds of PCR, a 179

multiplex PCR (4 + 18 cycles) and the indexing PCR (9 cycles) to generate sequence ready

libraries. The reaction mixes and the thermocycler conditions were performed according to the Swift Normalase® Amplicon Panels (SNAP) Workflow. Libraries were barcoded with 8bp unique dual indices at the Indexing PCR. For library normalization, the 2 nM Normalase I protocol was performed on libraries individually, followed by pooling 5 µl of each post-Normalase I library to perform Normalase II reaction, which results in sequence ready library pool. Before sequencing, the normalized library pool concentration was measured using qPCR with KAPA Library Quantification Kits (Roche, KK4835, 07960204001).

188

189 Illumina Sequencing.

The pooled SARS-CoV-2 amplicon libraries were sequenced on Illumina NovaSeq 6000 S4
flowcell to generate 2x150bp reads.

192

193 Swift amplicon data analysis.

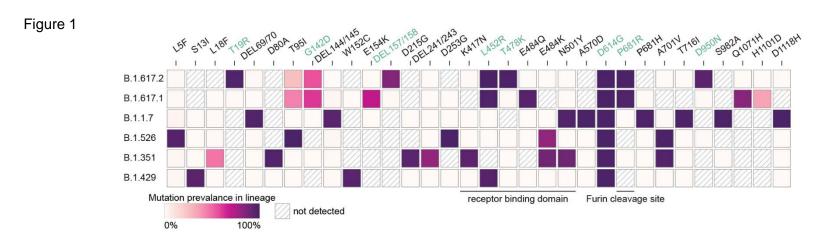
Swift amplicon data were analyzed using Swift Biosciences Sarscov2 analysis pipeline (https://github.com/swiftbiosciences/sarscov2analysis_docker) with minimum read coverage depth of 3. The GATK variants were next filtered with allele fraction >=80, and min read depth 30x^{12,13}. Swift analysis pipeline produced variant vcf file, consensus genome, pangolin lineage and Nextclade assignment (https://clades.nextstrain.org/). Variant vcf from Swift amplicon data was also annotated using SnpEff¹³.

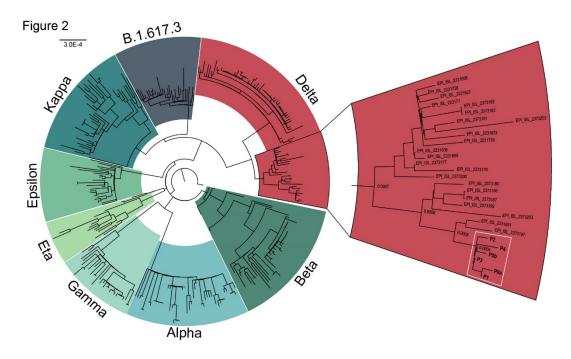
200

201 Phylogenetic Analysis.

Sequences for the designated variants of concern and variants of interest by centers for disease control (CDC), was downloaded from GISAID on 2nd June 2021¹⁵. All samples downloaded from GISAID, were analyzed using Pangolin V3.0.3 with pangoLEARN 2021-05-27¹⁶ to ensure that the variant designation assigned by GISAID is accurate. Global alignment of 334 sequences including the sequences from the current study was done using MAFFT v7.480¹⁷. Maximum-

207	likelihood phylogenetic tree with boot strap (5,000) was generated using IQ-Tree V2.1.2 ^{18,19} .
208	Annotation and visualization of the tree was carried out by using FigTree v1.4.4
209	(http://tree.bio.ed.ac.uk/software/figtree/). Clades were labeled with the WHO nomenclature.
210	
211	Acknowledgments.
212	Part of this work was supported by the National Institute of Allergy and Infectious Diseases
213	(Grant#1U19AI144297). The authors are grateful to the production teams at HGSC for data
214	generation. We also thank Swift Biosciences for their input for amplicon sequencing. We
215	gratefully acknowledge the authors and the originating and submitting laboratories of the
216	sequences from the GISAID hCov-19 Database on which our research was based. See
217	supplemental acknowledgment for details.
218	
219	
220	
221	
222	
223	
224	
225	
226	
227	
228	
229	
230	
231	


232


- Figure 1. Spike protein mutation prevalence in SARS-CoV-2 variant lineages. Only mutations
- found in greater than 50% in at least one lineage are displayed. Green text denotes a mutation
- found in all patients in this report. Figure modified from Outbreak.info⁵

236

- 237 Figure 2. Phylogenetic analysis of SARS-CoV-2 variants. All patients (white box) cluster in a
- sub clade of the Delta variant (red). Sequences obtained from GISAID.

- 240 **Supplementary Figure 1.** Mutation metrics from sequencing results for all 6 samples. Figure
- 241 generated using Coronapp⁹

Sample	Sex	Age	Height (cm)	Weight (kg)	Vaccine Weight (kg) received Symptoms		Comorbidities†	N1 qPCR Ct
Patient 0a	Male	67-69	177.8	81.6	Covaxin BBV152	Fever, cough, body aches, fatigue, loss of taste and/or smell, Shortness of breath at rest, Shortness of breath with activity	None	29
Patient 0b	Female	65-70	152.4	53	Covaxin BBV152 BV152 BV152 BBV152 BFever, cough, body aches, fatigue, loss of taste and/or smell, Shortness of breath at rest, Shortness of breath with activity		Diabetes	27
Patient 1	Male	60-66	172	68	Pfizer BNT162b2	Cough, fatigue	None	17
Patient 2	Male	59-64	170.1	77	Pfizer BNT162b2	Fever, cough, fatigue	Hypertension	24
Patient 3	Female	51-56	155	63.5	Moderna mRNA-1273	Fever, cough, body aches, fatigue, loss of taste and/or smell	Overweight	25
Patient 4	Female	51-56	162.6	88.5	Moderna mRNA-1273	Fatigue, loss of taste and/or smell	Overweight	22

Table 1.	Patient	demographics,	vaccine	history,	and symp	otoms

† - As defined by the Centers for Disease Control and Prevention

Supplementar	/ table 1	Swift Am	plicon Norma	lase Panel se	auencina	metrics
ouppionionital	y table i			1400 1 41101 00	quononig	111011100

	Reads passed						Bases without					
Sample	filter	Yield (Mb)	Mean	Stdev	Median	Maximum	coverage	0x %	>=5x %	>=10x %	>=20x %	>=40x %
Patient 0a	900,754	272	2941.96	3405.34	2085	216863	46	0.15	99.85	99.84	99.83	99.8
Patient 0b	2,381,756	719	15470.4	11416.18	12932	108010	43	0.14	99.85	99.85	99.84	99.84
Patient 3	1,458,602	440	9711.2	8845.54	7534	81585	42	0.14	99.83	99.81	99.8	99.72
Patient 1	1,424,114	430	8651.92	14635.48	4457	159997	40	0.13	99.84	99.84	99.83	99.72
Patient 4	1,501,130	453	9067.53	8965.74	6690	119267	42	0.14	99.86	99.84	99.83	99.8
Patient 2	1,710,539	517	11420.22	10814.68	8203	91027	41	0.14	99.85	99.84	99.83	99.72

References

- 1. New York City COVID-19 Cases Caused by SARS-CoV-2 Variants Report (3.23 .2021). 2021;0:2021.
- 2. Ogawa J, Zhu W, Tonnu N, et al. The D614G mutation in the SARS-CoV2 Spike protein increases infectivity in an ACE2 receptor dependent manner. *bioRxiv*. 2020;90033(4). doi:10.1101/2020.07.21.214932
- 3. Hatmal MM, Alshaer W, Al-Hatamleh MAI, et al. Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. *Cells*. 2020;9(12). doi:10.3390/cells9122638
- 4. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev Microbiol*. 2021;614. doi:10.1038/s41579-021-00573-0
- 5. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell*. 2020;181(2):281-292.e6. doi:10.1016/j.cell.2020.02.058
- Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. *Nature*. 2020;586(7830):594-599. doi:10.1038/s41586-020-2814-7
- 7. Mullen JL, Tseung G, Latif AA, et al. Center for Viral Systems Biology outbreak.info. Published 2020. https://outbreak.info/
- Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR. The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. *bioRxiv*. 2016;(212):6-8.
- 9. Bernal JL, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 variant Background. :0-2.
- 10. Yadav PD, Sapkal GN, Abraham P, et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. *Clin Infect Dis.* 2021;6(2):106192. doi:10.1093/cid/ciab411
- 11. Bartsch SM, O'Shea KJ, Ferguson MC, et al. Vaccine Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an Epidemic as the Sole Intervention. *Am J Prev Med*. 2020;59(4):493-503. doi:10.1016/j.amepre.2020.06.011
- 12. Paden CR, Tao Y, Queen K, et al. Rapid, Sensitive, Full-Genome Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2. *Emerg Infect Dis.* 2020;26(10):2401-2405. doi:10.3201/eid2610.201800
- 13. Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. *Fly (Austin)*. 2012;6(2):80-92. doi:10.1101/2021.03.09.21252822
- 14. Mercatelli D, Triboli L, Fornasari E, Ray F, Giorgi FM. Coronapp: A web application to annotate and monitor SARS-CoV-2 mutations. *J Med Virol*. 2021;93(5):3238-3245. doi:10.1002/jmv.26678

- 15. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to global health. *Glob Challenges*. 2017;1(1):33-46. doi:10.1002/gch2.1018
- Rambaut A, Holmes EC, O'Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol*. 2020;5(11):1403-1407. doi:10.1038/s41564-020-0770-5
- 17. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol Biol Evol*. 2013;30(4):772-780. doi:10.1093/molbev/mst010
- Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular biology and evolution. *Mol Biol Evol.* 2018;35(2):518-522. doi:10.5281/zenodo.854445
- Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol Biol Evol*. 2020;37(5):1530-1534. doi:10.1093/molbev/msaa015