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Abstract: Reproductive diseases have become a growing worldwide problem and male factor plays
an important role in the reproductive diagnosis, prognosis and design of assisted reproductive
treatments. Sperm cell holds the mission of carrying the paternal genetic complement to the oocyte in
order to contribute to an euploid zygote with proper DNA integrity. Sperm DNA fragmentation had
been used for decades as a male fertility test, however, its usefulness have arisen multiple debates,
especially around Intracytoplasmic Sperm Injection (ICSI) treatments. In the recent years, it has been
described that different types of sperm DNA breaks (single and double strand DNA breaks) cause
different clinical reproductive effects. On one hand, single-strand DNA breaks are present extensively
as a multiple break points in all regions of the genome, are related to oxidative stress and cause a
lack of clinical pregnancy or an increase of the conception time. On the other hand, double-strand
DNA breaks are mainly localized and attached to the sperm nuclear matrix as a very few break
points, are possibly related to a lack of DNA repair in meiosis and cause a higher risk of miscarriage,
low embryo quality and higher risk of implantation failure in ICSI cycles. The present work also
reviews different studies that may contribute in the understanding of sperm chromatin as well as
treatments to prevent sperm DNA damage.
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1. Introduction

Different fertility societies around the globe and the World Health Organization estimate that
infertility is present in between 7% and 15% of couples in reproductive age [1,2]. In a high number of
cases female factors and especially female age [3], are the most important causes of infertility, however,
different male factors are present in at least 50% of the couples presenting this disorder [4]. Due to
the high percentage of incidence in the pathology, recent research suggests that sperm cell and sperm
DNA may have a major influence not only in natural conception but also in fertility treatments [5,6].

In front of a fertility disorder or a fertility treatment, microscopic semen analysis measuring
sperm concentration, motility and morphology has been the traditional and important first approach
to male infertility and, although a high decrease of these parameters had been associated to a lack of
achievement of natural pregnancy [7] and nowadays home-based technologies in order to advance
the first diagnosis are emerging [8]. However, in most cases these parameters are not indicative of
the positive performance of assisted reproduction techniques (ART) [5,9]. In fact, although they are
improving, ICSI treatments reached limited implantation rates [10]. Because of that, a deeper study is
necessary in most cases to elucidate the alteration in order to design the best treatment in each case.
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2. Sperm DNA and Sperm DNA Damage

Spermatogenesis is a very complex cellular process that implies both meiosis and cell
differentiation. The main stage of meiosis is in prophase I where, spermatocytes deliberately produce
double-strand DNA breaks (DSB) through Spoll protein [11,12]. These DSB are necessary for
homologous chromosomes to allow DNA recombination. Then, after strand invasion, DSB activate the
DNA repair machinery through the protein kinase ataxia-telangiectasia mutated (ATM) in order to
repair the free ends and therefore generate the chiasma by homologous recombination and ATM is
also responsible of inhibiting the formation of new DSB by Spoll [12,13]. After meiosis, haploid round
spermatids suffer a cell differentiation, loosing most part of their cytoplasm and acquiring midpiece
and flagellum in order to possess motility after ejaculation [14]. However, in terms of chromatin,
the most important change happening in spermatids is the exchange of histones by protamines,
which extraordinarily compact about 85% of the human sperm DNA in toroidal structures tied
between them and bond to the nuclear matrix by the matrix attachment regions (MAR regions)
(Figure 1). These MAR regions remain compacted by histones and represent a very small part of
the genome estimated to be around 15% of the human sperm chromatin [15,16]. This high-grade of
DNA compaction with protamines, coupled to a motile architecture of the cell, give the sperm the
perfect features to carry male genetic material to oocyte to form the zygote. It is obvious that if this
male genetic material contains alterations, these may affect the zygote somehow [17]. In fact, it is
undeniable that DNA breaks induce a cellular response in somatic cells leading to an activation of DNA
repair machinery, apoptosis or cell transformation, being the basis of cancer and other diseases [18,19].
Different works in embryos analysing the effect of induced DNA breaks in animal sperm cells through
radiation observed multiple chromosomal alterations such as chromosome breaks, translocations,
fusions and acentric fragments in the zygote [17,20].
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Figure 1. Schematic structure of the sperm DNA compacted in protamines that form toroid structures
(red) linked by MAR regions (matrix attachment regions) compacted in histones (blue) and attached
to the nuclear matrix (green). (A) represents an intact chromatin. (B) represents chromatin with
single-strand breaks (red lines). (C) represents chromatin with extensive double-strand breaks (red
cross). (D) represents chromatin with localized double-strand breaks attached to the nuclear matrix

(yellow circle).
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In the last decade, the previous evidences suggested the incorporation of the sperm DNA
fragmentation tests as a promising analysis in male reproduction and multiple studies were performed
in the field since then [21]. Regarding natural conception, multiple works show a relation of sperm
DNA fragmentation (SDF) to a lack of clinical pregnancy and an increase of time of conception [22-24].
However, after ICSI procedures, opposite results were found by different research groups regarding
embryo quality, implantation and pregnancy outcomes, being some studies that show a positive
relation of SDF [25-28] and others that show a negative relation of SDF to clinical outcomes [29-33].
This controversy, coupled that only a few studies were conducted in a prospective and double blind
manner, led the American Society for Reproductive Medicine to refuse its routine use in 2013 [34].
However, some promising results arisen in the last years might be the explanation why the traditionally
measured sperm DNA damage present a lack of predictive power in ICSL.

The debate in sperm DNA fragmentation started regarding which of all DNA analysis techniques,
that rely on different mechanisms for DNA breaks detection, was the best for the male infertility
diagnosis. Understanding the basis of each technique and the correlations between them is critical to
understand their implications in the male fertility diagnosis and to compare between them. Techniques
are explained in the following part of the review and are summarized in Table 1.

On one hand, the most used techniques for the analysis of sperm DNA fragmentation have
traditionally been the Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL),
Sperm Chromatin Structure Assay (SCSA) and Sperm Chromatin Dispersion (SCD) test. These techniques
offer a unique value of sperm with DNA fragmentation, independently of the type (single and
double-strand DNA breaks) and the region (toroids compacted in protamines or MAR regions compacted
in histones).

TUNEL assay [35] relies on a terminal TdT transferase for the labelling of 3’ free ends of DNA,
resulting in a higher labelling on fragmented sperm cells. Different modifications have been introduced
in the protocol in order to increase its sensitivity in sperm cells, such as the use of a previous DNA
decompaction using dithiothreitol (DTT) or the use of flow cytometer [36-38].

SCSA is based on an acid denaturation of the chromatin and staining with acridine orange.
When DNA breaks are present, chromatin is more susceptible to denaturation and acridine orange
accumulates in the DNA emitting in red fluorescence. When DNA breaks are not present, acridine
orange intercalates in the double helix and emits in green fluorescence. Fluorescence is captured using
a cytometer in order to determine DNA fragmentation [39].

SCD test uses a sperm lysis solution based on DTT, sodium dodecyl sulphate (SDS) and NaCl to
remove the sperm membrane and protamines, that causes the formation of DNA haloes, which allow
the differentiation of fragmented and non-fragmented sperm cells [40].
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Table 1. Techniques for the detection of different types of DNA damage.
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Technique

Basic Principle

Advantages

Disadvantages

Type of DNA Damage Detected

Clinical Effect

TUNEL

Labelling of 3’ free ends with a TdT
transferase. Breaks are directly labelled.

- Highly standardized protocol.

- Need of flow cytometer for higher number

of analysed cells.

- Sensitivity for the detection of DNA breaks

in sperm cells.

- No detection of MAR-region attached DSB.

- Single-strand breaks.
- Extensive DSB.

- Pregnancy achievement.

SCSA

Acid denaturation followed by staining
with Acridine Orange. DNA with breaks
is more susceptible to denaturating.

- Standardized and fast protocol.

- Differentiation of immature sperm

cells (HDS%).

- Need of flow cytometer.

- No detection of MAR-region attached DSB.

- Single-strand breaks.
- Extensive DSB.

- Pregnancy achievement.

SCD

Acid denaturation, lysis of sperm
membranes and extraction of protamines
using detergent and salt.
Non-fragmented sperm cells form a halo
and fragmented sperm cells do not form
halo (form a huge halo that cannot be
seen at the optic microscope)

- Highly standardized protocol.

- Non-standardized analysis.
- Number of analysed sperm cells

- No detection of MAR-region attached DSB.

- Single-strand breaks.
- Extensive DSB.

- Pregnancy achievement.

Alkaline
Comet

Lysis of sperm membranes and
extraction of protamines, alkaline
denaturation and electrophoresis at
alkaline pH. DNA breaks migrate
towards cathode forming a DNA tail.

- Differentiation of mostly single
strand DNA breaks at 4 minutes of
electrophoresis.

- Modulation: longer electrophoresis

time may allow elucidating total
DNA damage.

- Allow quantification of DNA breaks

with specific software.

- Technique and analysis are not
standardized between laboratories.
- No detection of MAR-region DSB.

- Studies comparing different electrophoresis

times are needed.

- Mostly single-strand breaks (4
min. electrophoresis).
- Probably extensive DSB.

- Pregnancy achievement (4 min.
electrophoresis time).
- Some studies related alkaline
Comet to ICSI success using
longer times of electrophoresis.

Neutral
Comet

Lysis of sperm membranes and
extraction of protamines and
electrophoresis at neutral pH. DNA
breaks migrate towards cathode forming
a DNA tail.

- Differentiation of MAR-region
specific DSB.

- Technique and analysis are not
standardized between laboratories.

- MAR-region specific double
strand breaks.
- Extensvie DSB.

- First trimester miscarriage risk.
- Risk of implantation failure in
ICSI cycles.

- May be associated to slower
embryo kinetics.

Two-tailed
Comet

Lysis of sperm membranes and
extraction of protamines. First, neutral
electrophoresis and, after alkaline
denaturation and rotation of slide 90°,
alkaline electrophoresis. Sperm present
two DNA tails.

- Detection of single and double
strand DNA breaks in the same
sperm cell.

- Technique not standardized
- Difficult interpretation. Requires
experienced observer.

- Single-strand breaks.
- Extensive DSB.

- Not known if MAR-region
specific double strand breaks
(lack of studies comparing to

neutral Comet alone).

- Pregnancy achievement.
- Need of human clinical studies
regarding ICSL.

HDS: High DNA Stainable sperm; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labelling; SCSA: Sperm Chromatin Structure Assay; SCD: Sperm Chromatin Dispersion;
ICSI: Intracytoplasmic sperm injection.
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On the other hand, Comet assay [41] relies on a DNA decompaction and protein depletion coupled
to a single-cell electrophoresis in an agarose micro gel. DNA molecules that contain breaks move
towards the cathode and the length of the “comet tail” can be measured to determine the grade of DNA
fragmentation at a single cell level. This technique has been applied in multiple different protocols,
which usually vary in agarose concentrations and in electrophoresis times [42,43]. As the Comet assay
can be performed in alkaline or neutral pH, different types of DNA breaks can be detected (Table 1)
(Figure 1): (i) alkaline Comet assay performed in a small electrophoresis time (about four minutes)
detect mostly single-strand DNA breaks affecting both toroidal regions and MAR regions in a high
number of break points [44,45] and (ii) neutral Comet assay can detect two types of double-strand
DNA breaks (Figure 2): (a) extensive DSB, which represent a very small part of total DSB and can be
observed as very long comet tails separated from the sperm core; and (b) localized DSB localized and
attached to the MAR region, as demonstrated in pulsed-field gel electrophoresis [43—46], being the
most common DSB. Although extensive DSB result in longer Comet tails, they cannot be distinguished
from localized DSB in a single Comet. However, when a semen sample present high number of sperm
cells with extensive DSB (long tails), single-strand DNA damage is also present in a high amount
(Ribas-Maynou personal observation). Previous studies had shown that localized DSB represent very
few break points in the genome, as long chromatin fibres with a break point in the end can be seen in a
detailed neutral Comet image (Figure 2A), which is supported by Kaneko et al., using pulsed field
gel electrophoresis [47]. We demonstrated that localized DSB remain attached to the sperm nuclear
matrix [45], maybe through a TOP2B or similar protein [45,46], a very important feature taking into
account that the nuclear matrix is inherited to the male pronucleus in the zygote [46,48-50], giving a
chance to the embryo to repair the DSB.

A

Halo Comet tail

Halo Comet tail

Figure 2. (A) Picture and scheme of neutral Comet with localized DSB (double-strand DNA breaks)
attached to the nuclear matrix (green). Comet halo consists in non-fragmented chromatin and comet
tail is formed by chromatin fibres attached to the nuclear matrix with low number of DNA breaks at
the end (arrows). (B) Picture and scheme of neutral Comet with extensive DSB. Comet tail is formed by
DNA fragments that are not attached to the nuclear matrix. This comet also shows part of localized
DNA breaks attached to the MAR region (arrow).

Studies using all the techniques showed that oxidative damage detected by alkaline Comet
assay presented a good correlation to TUNEL, SCSA and SCD techniques [23,51,52]. Although these
techniques may potentially detect double-strand breaks, a study conducted by our group analysing the
same semen samples with five methodologies showed that no correlation was present with the neutral
Comet assay [23]. Then, the latter would be the only technique that is able to differentially detect
MAR-region double-strand breaks [23,44], whereas TUNEL, SCSA and SCD may detect extensive DSB.
A Comet assay variant (two-tailed Comet assay) applying both alkaline and neutral Comet assay in
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the same slide by turning it 90° between electrophoresis allows to distinguish single and double-strand
DNA breaks on the same sperm cell [53]. However, no studies have been performed comparing these
techniques and alkaline or neutral Comet assay separately in order to elucidate if double-strand breaks
detected in two-tailed Comet assay correspond to MAR region localized DSB.

3. Oxidative DNA Damage, Alkaline Comet Assay and Pregnancy Achievement

Using alkaline Comet assay in different cohorts, an study published in 2012 [43] showed that the
extensive single-strand DNA breaks were reversely associated to the achievement of natural pregnancy
independently of the neutral Comet results (Figure 1 and Table 1). This was confirmed and compared
with TUNEL, SCSA and SCD tests in 2013, demonstrating also that alkaline Comet is the most sensitive
technique for the prediction of natural pregnancy achievement [23,43]. Which is also in accordance to
the numerous studies from other research groups that find similar association in natural pregnancy
using TUNEL, SCSA, SCD and Comet assay tests [5,51,54-58].

Single-strand breaks are produced mainly due to reactive oxygen species (ROS) [42,53,59],
which may come from exogenous sources such as environmental toxicants, smoking, alcohol, diet,
radiation and so forth or from endogenous sources such as an increase of leukocytes, presence of
varicocele or even the ROS generated by mitochondria for the movement of sperm cell [60-62].
Free radicals may cause lipid peroxidation, mitochondrial and nuclear DNA base modifications such
as 8-OH-guanine and 8-OH-2'-deoxyguanosine (8-OHdG), an oxidized base adduct that destabilize
DNA structure and cause a DNA break [63-65]. This affectation does not find a restriction by DNA
condensation and therefore may affect both toroids compacted in protamines and MAR regions
compacted in histones [44]. Then, if such an extensive damage happens to the sperm DNA due
to oxidative stress, the sperm membranes would also be affected and usually sperm motility is
lost. Because of that, a strong negative relation between progressive motility and oxidative damage
(single-strand DNA damage) analyzed using TUNEL, SCSA, SCD and alkaline Comet [55,61,66].

As mentioned before in this review, controversial results are found in different studies regarding
ICSI outcomes: some of them which found predictive value of oxidative damage [25-28] and other
with opposite results [29-33]. If single-strand DNA breaks present a correlation to progressive motility
and sperm morphology and ICSI procedures use the most motile sperm cells with better morphology,
paternal genome should be free of oxidative damage. In this regard, a work by Gosalvez et al. [67]
demonstrated that motile sperm organelle morphology examination (MSOME) selected sperm cells
were free of DNA damage analysed by SCD test. Moreover, a work using Comet assay suggested that
grade I and Il sperm cells present lower incidence of oxidative DNA damage than grade III and IV [68].
These results need to be further confirmed in conventional ICSI sperm selection. However, our data
suggest that no relation is present between alkaline Comet and embryo quality, embryo kinetics or
implantation [69].

4. Double-Strand DNA Damage, Recurrent Miscarriage and Preimplantation Failure in
ICSI Cycles

Analysing the data of the patients and donors with high DSB, a specific profile was observed
with low oxidative damage and high neutral comet values in patients with first trimester recurrent
miscarriage where all related female factors were discarded and in one subgroup of fertile donors [44].
In a recent study, our group has found that patients with this profile who undergo ICSI treatments
produce embryos with a delayed embryo development to blastocyst, which also cause lower
implantation rates [69]. Other works also show that double-strand breaks may contribute to a higher
implantation failure risk [6,25]. Since implantation failures in ICSI cycles and miscarriages present
similar profiles with high DSB, one may think that they might have similar origin. In fact, small number
of DNA breaks localized in concrete regions of the genome might induce a cell failure where the affected
regions are necessary for the development. In our last study, embryos that achieved implantation
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presented faster embryo kinetics than those that did not achieve implantation [69]. In fact, faster
embryo kinetics had been associated to embryo euploidy [70-72].

DSB are the most lethal alteration that may happen in a zygote, since paternal and maternal
pronucleus remain separated in early mammalian embryos and, therefore, no complementary chain
would be available for DNA repair [73-75] and a few number of DSB are sufficient to delay cell
cycle [76]. It is important to note that paternal double-strand breaks remain attached to the nuclear
matrix and probably to other proteins such as TOP2B [20,46,77] and the nuclear matrix is inherited at
male pronucleus until first mitotic division [49,78]. This may be crucial at the zygote, because it may
give a chance to correctly repair both free ends of the double-strand break. There is a consensus point
that oocyte quality may play a role in this DNA repair, since different studies proved that early embryos
are able to repair DNA damage [79-84]. In this sense, in patients with DSB, the most significant delay
observed in the embryo kinetics was just after fertilization, indicating that DNA repair machinery
may be active in this stage [69]. Recent studies in sperm cells demonstrated that MAR regions are
required as a scaffold for DNA replication after fertilization [48] and, in somatic cells, nuclear matrix
also is involved in transcription, cell regulation and replication [85,86]. In mammals, inducing DSB in
sperm cells and used these sperm cells to fertilize eggs observed chromosomal alterations in paternal
genome of the embryo and showing also a delay in the first embryo cleavage [17,20,87]. Moreover,
studies inducing double-strand DNA breaks in mice sperm through radiation observed a p53 and p21
related response and less number of foetuses [88,89] or less survival of offspring in a dose dependent
manner [90].

5. Prevention of DNA Damage

The data presented in the studies referenced before supports that oxidative damage may affect
the pregnancy achievement capacity due to misbalanced levels of oxidants/antioxidants [61,91].

The use of antioxidants has been widely applied in subfertile males [92]. Several works
demonstrated that they are a positive contribution on sperm count, motility, morphology and also
proved that they help reducing oxidative DNA fragmentation [93-96]. Although there are very few
studies with randomized and placebo controls, Cochrane review suggests that the use of antioxidants
causes from 1.8 to 4.6 fold increase in the chances of achieving a natural pregnancy. However, up to
a 6.5 fold increase in miscarriages might be observed [97]. In ICSI treatments, it is still not clear
if antioxidants could help on improving pregnancy and birth rates [98-100]. High quality studies
including different groups of patients are necessary in order to elucidate the need of antioxidants in
ICSI procedures.

Treatments for the reduction of double-strand sperm DNA damage should also reduce the
miscarriage risk and the implantation failure risk in ICSI cycles, showing also less delay on embryo
kinetics. Until our knowledge, no validated treatment reduce the incidence of MAR-region localized
DSB. However, a study conducted in humans in 2006 by Schmid and colleagues demonstrated that
men with daily caffeine consumption presented increased values of DSB measured with neutral
Comet independently of male age in healthy non-smokers [101]. Caffeine is a known inhibitor of
DNA repair, as it has been described that inhibits ATM kinase [102,103] and DNA resection in
homologous recombination through Rad51 [104,105]. Also, it has been reported to affect cell cycle
at both G1/S and G2/M checkpoints and inducing programmed cell death through p53-dependent
pathway [106]. Studies in animals reported that caffeine administration to rats caused an impairment
of pregnancy [107]. Other studies inducing DNA strand breaks in sperm cells through radiation and
cultivating the oocytes and the produced embryos in caffeine demonstrated that chromosome and
chromatid aberrations persist in the zygote, indicating oocyte DNA repair is inhibited by caffeine [17].
Since spermatocytes must produce double-strand breaks through Spoll in prophase I in order
to perform DNA recombination and later, they need to repair these DSB. According to previous
results, the consumption of caffeine would impair ATM kinase and/or resection of double-strand
breaks [104,105] and may induce that a few double-strand breaks would not be repaired, causing that
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mature sperm cells present DSB [101]. Further basic studies are needed to explain how a spermatocyte
with double-strand breaks can escape the pachytene checkpoint [108,109]. Reducing the incidence
of DSB in sperm cell would improve clinical outcomes in terms of miscarriage and implantation in
ICSI cycles.
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