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SUPPLEMENTARY FIGURES 

 

 

Supplementary Figure 1. Distribution of potential H7N9 positive markets in China in environmental 

space. Each panel is viewed from a different pair of environmental axes (principal components of the 

environmental covariates at all market locations). The distribution of H7N9 negative markets is shown by grey 

points. Potential H7N9 positive markets are shown by coloured points with colours denoting the chronological 

order of cases. Colours range from yellow (earliest cases) through light and dark orange to red (most recent 

cases). 
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Supplementary Figure 2. Disc-fold validation statistics for a range of values of the smoothing parameter 

 . The solid line gives the mean AUC and the shaded region gives ± 1 standard error.  
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Supplementary Figure 3. Predicted market-level infection risk in mainland China for models trained using each of the 5 disc-fold data subsets and the optimal 

smoothing parameter      . The similarity of predictions between all five models, particularly in the east of the country illustrates that the environmental signature of 

infected markets is common across geographic space. A higher variability between the five models can be noted in the western part of the country. 
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Supplementary Figure 4.  Marginal effect curves of each environmental predictor from a model trained with H7N9 positive markets incriminated using observed 

live-poultry market data. The shaded areas represent the density of the predicted relationships to each environmental covariate (with the effect of the other correlates 

marginalized) from all 120 sub-models, within the lower and upper 95% quantiles of the distribution. The solid lines give the mean effect curves calculated from all models. 

Tick marks on the lower and upper inside edges of each sub-plot show the values of the predictor for H7N9 negative and potentially positive markets respectively. Sub-plots 

are ordered by the mean of their relative contribution to each sub-model, with these average relative contributions given in parentheses with each sub-plot.
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Supplementary Figure 5. Predicted market-level infection risk at markets in mainland China for a model 

trained with H7N9 positive markets incriminated using only the high-quality data subset. 
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Supplementary Figure 6. Predicted pixel-level infection risk across Asia from a model trained with H7N9 

positive markets incriminated using only the high-quality data subset.
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Supplementary Figure 7.  Marginal effect curves of each environmental predictor from a model trained with H7N9 positive markets incriminated using only the 

high-quality data subset. The shaded areas represent the density of the predicted relationships to each environmental covariate (with the effect of the other correlates 

marginalized) from all 120 sub-models, within the lower and upper 95% quantiles of the distribution. The solid lines give the mean effect curves calculated from all models. 

Tick marks on the lower and upper inside edges of each sub-plot show the values of the predictor for H7N9 negative and potentially positive markets respectively. Sub-plots 

are ordered by the mean of their relative contribution to each sub-model, with these average relative contributions given in parentheses with each sub-plot. 
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Supplementary Figure 8. Distribution of key sites in relation to peri-urban and urban extents (top left), 

rice paddy fields land cover (top right), water land cover (bottom left), and combined with transparency 

(bottom right).  
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Supplementary Figure 9. Schematic overview of the livestock modelling process used to downscale 

poultry census data. 
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Supplementary Figure 10. Relationship between the proportions of chickens raised in extensive 

conditions (PExt) and log per capita GDP from corresponding years (PPT 2006) for 79 countries 

(variable years) globally. The solid line shows values of for 2006 estimated from the model presented in the 

supplementary methods. 
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Supplementary Figure 11. Smooth terms fitted in the final GAM live poultry market model. Solid lines 

give the fitted term and the grey shaded areas are ± 2 standard errors. The Y axis gives the response of the 

smoother on the internal model scale. The dimension of the basis function used to fit the cubic regression spline 

is given in the Y axis labels, with larger numbers indicating a more complex fitted curve. 
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Supplementary Figure 12. Predicted and true density of live-poultry markets for all pixels in China. The 

diagonal line gives the theoretical perfect prediction. A small amount of noise was added to the true densities to 

aid visualisation where points overlap. 
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Supplementary Figure 13 A-D. Distributions of environmental covariates used to predict risk of H7N9 infection across Asia. Poultry and human densities are given as 

the number per square kilometre. To aid visualisation, all covariates are plotted on a            scale. 
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Supplementary Figure 13 E-H. Distributions of environmental covariates used to predict risk of H7N9 infection across Asia. Market density (H) is given as the 

number of markets per pixel. To aid visualisation, all covariates are plotted on a            scale.
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Supplementary Figure 14 A-D. Distributions of environmental covariates used to predict risk of H7N9 infection in eastern China. Poultry and human densities are 

given as the number per square kilometre. To aid visualisation, all covariates are plotted on a            scale. 
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Supplementary Figure 14 E-H. Distributions of environmental covariates used to predict risk of H7N9 infection in eastern China. Market density (H) is given as the 

number of markets per pixel. To aid visualisation, all covariates are plotted on a            scale. 
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Supplementary Figure 15. Illustration of the disc-based geographic stratification used to evaluate the 

extrapolation capacity of H7N9 market-level risk models. The blue points give the locations of live-poultry 

markets used to train the model (dark blue points are H7N9 positive, light blue are negative) and green points 

give the locations of markets used to evaluate model fit (dark green points are H7N9 positive, light green are 

negative). 
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Supplementary Table 1. Estimated number of extensively raised poultry and live-

poultry markets in the countries of East, Southeast and South Asia. 

Country Chicken Ducks Poultry Prop. Ext. Ext. Poultry N. markets 

 
(millions) (millions) (millions) 

 
(millions) 

 Afghanistan 12.888 3.1412 16.0292 98.0% 15.7 99.8 

Azerbaijan 22.432 0.9188 23.3508 20.0% 4.7 29.7 

Bangladesh 228.035 42.677 270.712 81.0% 219.3 1393.0 

Bhutan 0.349 0.0726 0.4216 31.2% 0.1 0.8 

Cambodia 17.448 7 24.448 65.0% 15.9 101.0 

China 5200 789.569 5989.569 23.5% 1408.7 8949.0 

Dem. People’s Rep of Korea 16.569 5.936 22.505 58.6% 13.2 83.8 

India 841.865 26 867.865 43.0% 373.2 2370.7 

Indonesia 1349.626 45.292 1394.918 24.0% 334.8 2126.8 

Japan 286 12.6536 298.6536 1.4% 4.1 26.3 
Lao People’s Democratic 
Republic 25.105 3.2 28.305 84.0% 23.8 151.0 

Malaysia 225.79 48.2 273.99 1.0% 2.7 17.4 

Mongolia 0.426 0.2756 0.7016 37.4% 0.3 1.7 

Myanmar 156.407 12.6 169.007 84.0% 142.0 901.9 

Nepal 25.76 0.379 26.139 79.5% 20.8 132.0 

Pakistan 321 3.5 324.5 44.0% 142.8 907.1 

Philippines 158.984 10.268 169.252 75.0% 126.9 806.4 

Republic of Korea 149.2 14.397 163.597 1.0% 1.6 10.4 

Sri Lanka 14.018 0.013 14.031 15.0% 2.1 13.4 

Thailand 231.918 29.233 261.151 33.0% 86.2 547.5 

Viet Nam 218.201 68.633 286.834 70.0% 200.8 1275.5 
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SUPPLEMENTARY METHODS  

A) MARKET SURVEILLANCE AND LITERATURE SEARCH DATA 

In addition to the human cases data collected by China CDC, a database of positive 

identification of influenza A (H7N9) in live-poultry markets was assembled, combining data 

from surveillance carried out by local CDC offices and the Ministry of Agriculture (MOA, 

http://www.moa.gov.cn/zwllm/yjgl/yqfb/), and with the records of influenza A (H7N9) 

published in scientific papers. Here, we summarize information obtained from MOA and the 

procedure used to extract data from scientific papers 

MOA surveillance 

Prior to the emergence of H7N9, the purpose of routine surveillance of poultry and poultry 

market in China was to detect highly pathogenic avian influenza. Routine surveillance 

consists in a combination of active surveillance and passive surveillance. Passive surveillance 

targets poultry and wild birds which are found dead of sickness or unknown apparent reasons, 

whereas active surveillance focuses on establishing fixed sentinels and randomly sampling 

the sentinels to monitor. The primary objectives of national surveillance are chicken, duck, 

goose and other poultry or wild birds. These are sampled from poultry farms, commercial 

poultry farms, backyard poultry raising households, poultry trading markets and slaughter 

houses as well as from main habitats of migratory birds for wild birds. Diagnosis methods 

include serological test by hemagglutination inhibition test (HI) (GB/T 18936-2003), as well 

as etiological test carried out through RT-PCR and fluorescent RT-PCR (GB/T 19438.2-

2004). The active surveillance scheme is conducted twice a year and organized at the 

province level. The guidelines provided to all provinces for the serological surveillance are to 

organize surveillance through random sampling proportional to the number of birds in the 

farm. While for the etiological surveillance, the provinces are required to randomly select at 

least 120 epidemiological units (excluding villages) with at least 30 chicken or other poultry 

in each group. The results obtained at province level are hence submitted to the national 

level, and the national reference lab should report the test results every month. Since the 

emergence of H7N9 outbreak in China, the MOA issued an Emergency Surveillance Scheme 

on H7N9 on 7th August, 2013. The surveillance targets were specified chicken (especially 

layer, yellow feather broilers and other breeds which have long raising cycle), waterfowl 

(duck, goose), domestic pigeon and quail, wild birds and environment in high risk areas. The 

scope of surveillance was specified to be all poultry trading markets in China, stalls selling 

live poultry in farmers markets, poultry with certain size, backyard poultry raising farmers, 

poultry slaughter houses, and habitats of migratory birds. Since September 2013 onward (data 

used in this study only included epidemiological data collected until the 27
th

 Jan. 2014) , a 

centralized surveillance scheme was conducted. Every surveyed markets had to be sampled 

according to an assumed prevalence of 2%, by 150 throat and cloacal swabs and 150 

serological samples. In addition, 30 environmental samples had to be tested. For the live 

poultry markets which tested H7N9 positive, 30 serological and etiological samples had to be 

prepared and positive results had to be reported to the national level as soon as possible.  

 

Literature search  

We used the key words of “H7N9” and “Poultry” or “live poultry market” or “live bird 

market” in PUBMED searches (http://www.ncbi.nlm.nih.gov/pubmed/ ) from March 31 
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onward, 2013 when Chinese government officially announced the confirmation of novel 

H7N9 virus to Feb 2, 2014. A total of 48 published papers were included at the first stage, 

and after reading, only 10 papers were included into our analysis because they include 

information positive tests for H7N9 by real time RT-PCR from samples either collected from 

poultry or live poultry markets 
1–10

.  

B) MAPPING HUMAN POPULATION DENSITY 

Human population densities across the region were mapped primarily using datasets 

produced by the WorldPop project (www.worldpop.org.uk), and Gridded Population of the 

World (GPW)
11

 for those countries where WorldPop data were unavailable. For the 

WorldPop datasets, census data at as high an administrative unit as available for the circa 

2010 round of national censuses were assembled (see 

http://www.worldpop.org.uk/data/methods/ for full list of input census data). A novel semi-

automated dasymetric modelling approach that incorporated the detailed census and ancillary 

data layers in a flexible random forest statistical model was then applied
12

 to generate 

modelled gridded predictions of population density at approximately 100m spatial resolution. 

The use of the random forest technique in combination with covariate layers that include 

OpenStreetMap-derived infrastructure (http://www.openstreetmap.org/), Landsat-derived 

land cover data (http://www.mdafederal.com/geocover/geocoverlc/gclcoverview), satellite 

nightlights (http://ngdc.noaa.gov/eog/viirs/download_viirs_ntl.html), slope 

(http://hydrosheds.cr.usgs.gov/index.php), and a variety of settlement features
13

, amongst 

others related to human population distributions, has been shown to produce substantial 

increases in population mapping accuracies over previous approaches examined
11,14

. This 

prediction layer was then used as the weighting surface to perform dasymetric redistribution 

of census counts at a country level to create a population count surface. Where census data 

were not available for 2010, UN derived urban and rural growth rates 

(http://esa.un.org/unup/) were applied to adjust counts. The final datasets were degraded to 

the spatial resolution of other layers used in the analyses. Where these WorldPop datasets 

were unavailable at the time of writing, GPW data adjusted to match 2010 UN population 

totals were incorporated. 

 

C) MAPPING CHICKEN AND DOMESTIC DUCK DENSITIES 

Since the livestock densities of the Gridded Livestock of the World (GLW) were produced
15

 

significant improvements have been made in the sub-national statistics on reported poultry 

numbers; a new set of 1 km predictor variables, based on Fourier-processed MODIS imagery, 

has been compiled; and numerous modifications have been made to the modelling approach. 

Some of these improvements have already been applied to modelling poultry distributions in 

Asia
16,17

 and new, global 1 km resolution datasets for all livestock species are currently being 

produced under a collaborative effort between UN-FAO, ILRI (under the CGIAR Research 

Programmes on the Humidtropics, CCAFS and A4NH), the Université Libre de Bruxelles, 

ERGO and others at the University of Oxford. These are freely available for download from 

the Livestock-Geo-Wiki (http://www.geo-wiki.org/branches/livestock/). 

Supplementary Fig. 9 gives an overview of the livestock modelling process applied (which is 

described in more detail in Van Boeckel et al.
16

). The starting point is the collection of 

reported statistics on livestock numbers from many sources and for a range of years. The 

majority of the data originate from agricultural censuses or surveys carried out by 

http://www.worldpop.org.uk/
http://www.worldpop.org.uk/data/methods/
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government departments but often the reported figures are estimated from those and compiled 

in statistical yearbooks. Data from the most recent years were compiled at the highest spatial 

resolution (smallest administrative areas) available. Metadata are available from the authors, 

and are provided with the GIS layers available through the Livestock-Geo-Wiki.  

These reported statistics are then linked to a polygon file of administrative areas at the 

corresponding level. The resulting geographic database is then masked using a 1 km 

resolution raster grid to exclude areas not suitable for poultry production (e.g. dense urban 

areas, water bodies and protected areas). The effective density of livestock, accounting for the 

area suitable, is estimated for each polygon and assigned to each 1 km pixel, with unsuitable 

areas receiving a density of 0. 

This pixel level dataset is used to train statistical models to predict livestock densities from a 

suite of environmental predictor variables. From this dataset, a number (typically 5) of 

subsampled datasets is generated by selecting pixels at random, subject to a set of rules to 

ensure that samples are representative of the dataset (maintaining an average number of 

sample points per 10,000 square km (typically 30) and ensuring that at least one point is 

assigned in each polygon). For each sample point in each subsample, data values are 

extracted for a) the density of the livestock type in question; b) the appropriate suitability 

masks; c) a number (typically 3 or 4) of stratification layers (described below); and d) the 

values of the predictor variables, all mapped at 1 km spatial resolution. Each subsample is 

then subjected to a five-fold cross-validation, with 75% of sample points used to train models 

and the remaining 25% used to test their goodness of fit. The five cross-validation folds for 

each of the five subsamples leads to a total of 25 bootstrap datasets for each livestock type. 

Because the relationships between poultry densities and other spatial variables are likely to 

differ under varying conditions of agro-ecology, demographics and socio-economics, the 

analysis is spatially stratified. The stratification layers included are: a) an unsupervised 

clustering into 25 ‘eco-zones’ based on the predictor variables
15

; b) the 11 classes defined by 

the Global Livestock Production Systems (GLPS) map version 5
18

; and c) a series of 13 

biomes
19

.  

A comprehensive set of predictor variables allows the model to take advantage of 

relationships between livestock densities and climatic, environmental, demographic and 

topographic variables. The majority of these predictor variables are derived from temporal 

Fourier decomposition of MODIS satellite imagery products recorded at 8-day intervals 

between 2001 and 2008
20

. The resulting imagery captures seasonal characteristics of the 

environment (land surface temperatures and vegetation indices, for example). These 

predictors are augmented by gridded data on vegetation (length of growing period and timing 

of greening-up and senescence), human population density, infrastructure and topography. 

Separate regression models for the log(x+1) transform of livestock densities are derived for 

each stratum of each stratification scheme employed. In situations where a stratum has 

insufficient sample points to create a robust model a general, un-stratified model is used for 

that tile. This creates, for each stratification scheme, a mosaic of predicted values from 

different regression models depending on the stratum. The quadratic form of each predictor 

variable is also provided to each model to enable the model to fit non-linear effects of 

covariates, giving a model of the form: 
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The regression models for each bootstrap are applied to the predictor variables, using each 

stratification scheme. 

For each bootstrap the regression models created under each stratification scheme are merged 

by selecting, pixel by pixel, the model from the stratification scheme that resulted in the 

lowest residual mean square error (RMSE). This creates a ‘best RMSE composite’ prediction 

for each bootstrap. The predicted log densities for the 25% of sample points reserved for 

testing the model fits are then compared for a) the un-stratified model; b) the best RMSE 

composite model; and c) the individual stratifications used.  The best RMSE composite was 

used by default in most instances. However, if one of the stratification schemes is comparable 

to the composite from the best RMSE, the principles of parsimony are followed and the 

model is simplified by using the regression equations from that single stratification scheme. 

Based on either an individual stratification or an aggregate prediction for each bootstrap the 

predicted log densities are then averaged across the 25 bootstraps to give the mean predicted 

log (x + 1) density of poultry in each pixel. In the post-processing stages these results are first 

de-transformed and then adjusted so that the totals for each administrative area match those 

of the reported statistics. For polygons for which no reported data were available the 

predicted densities are retained. The second post-processing stage is that of country 

correction, where the pixel values are further adjusted to match FAOSTAT national totals for 

a specified reference year (2006 in the previously available datasets, and 2010 in the revised 

datasets described in the present study). 

For China, census data on chicken and duck numbers at the end of the calendar year 2010 and 

the numbers of individuals sold per year were obtained from three sources: a) published 

yearbooks, such as the China Animal Husbandry Yearbook, Statistic Yearbook of China or 

provincial yearbooks (e.g. http://data.stats.gov.cn/); b) the official website of the Ministry of 

Agriculture of China (http://english.agri.gov.cn/) and Agricultural Bureaus at province and 

prefecture level; c) contact with provincial Bureaus of Animal Husbandry, provincial 

Departments of Commerce, Statistics Bureaus and Chinese Agricultural Universities to 

obtain any data not available from sources a or b. These data were combined with the data 

compiled by FAO for the other countries in Asia, and the modelling procedure described 

above was carried out with this hybrid data set.  

 

D) EXTENSIVELY AND INTENSIVELY RAISED CHICKEN 

The next step involves disaggregating chicken densities between extensive and intensive 

production systems. Previous models of intensive versus extensive livestock production
18

 

estimated the proportion of extensively raised poultry (PExt) as a function of the output/input 

(O/I) ratio, where output was the amount of meat (in this case) produced in a year and input 

was the standing stock during the same period. During exploratory investigations per capita 

gross domestic product (GDP) (in Purchasing Power Parity (PPP), reference year 2006) was 

found to correlate strongly with O/I ratios (r = 0.81). Furthermore, national estimates of per 

capita GDP are available for most years and countries from the World Bank, and sub-

national estimates are available for a number of countries. For the present analysis, PExt was 

modelled for chickens using log per capita GDP. We checked that this choice would not 

reduce predictive power, compared to the O/I ratio previously used, by simultaneously testing 

per capita GDP and O/I ratio in a multiple regression model to predict chicken PExt. It was 

found that the increase in predictability due to the inclusion of O/I ratio was marginal. A logit 
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link function was used to model the proportion of extensively-raised stock so that the 

predicted proportions were bounded between 0 and 1. The model was weighted by the stock, 

so that countries with greater livestock populations would have a stronger influence on the 

model than those with fewer. The final model for chickens and the goodness of fit plot are 

presented in Figure D.1.  The model formulation was as follows: 

                                                  

where PExt is the proportion of extensively-raised chicken in a country, GDPYLG is the 

log10 -transformed per capita GDP in the same year as the PExt estimate (PPT 2006), and r 

and L are model parameters. The best-fit parameters identified by the non-linear, weighted 

least-square regression were r = 3.735 and L = 3.348 (supplementary Fig. 10). The 

correlation coefficient between observed and predicted PExt values was 0.806. This model 

was applied to all countries in the study area, using FAOSTAT national totals to predict the 

total stock of extensively raised chicken and ducks. 

The final step is to distribute spatially the numbers of extensively-raised chickens (based 

either on reported statistics or estimated from the LGP model). The general approach 

described in Gilbert et al.
21

 and Robinson et al.
18

 was used, whereby extensively-raised 

chickens were distributed equally among the rural population. 

The spatial disaggregation of extensively-raised animals involves: a) estimating the rural 

population in each country; b) estimating the total number of chickens raised extensively in 

each country based on reported (when available) or modelled PExt, multiplied by the total 

chicken population (taken from FAOSTAT 2006); c) combining (a) and (b) to estimate the 

average number of extensively-raised chickens per rural person for each country; and d) 

applying this rate to the mapped rural population density to estimate the number of 

extensively-raised chickens per pixel. The distribution of intensively-raised chickens is then 

estimated by subtracting the raster distribution of extensively-raised chickens from the 

modelled raster distribution of the total number of chickens. In some locations, the number of 

extensively-raised chickens is higher than the predicted total numbers; typically in situations 

where either a very high rural population density results in large predicted numbers of 

extensively-raised chickens, or if the predicted total density is very low. In these cases, the 

numbers of extensively-raised livestock are set to zero, and the numbers of extensively raised 

livestock in other pixels are corrected, pro rata, such that the national totals of numbers of 

livestock raised extensively and intensively match those reported or predicted. 

 

E) MAPPING LIVE-POULTRY MARKETS IN ASIA 

Since the dataset of live-poultry markets was available only for China, a statistical model was 

fitted to this dataset and used to predict the number of live-poultry markets per pixel for all of 

Asia. To account for social and geographic differences in the abundance of live-poultry 

markets these predictions were subsequently corrected at a national level so that the predicted 

ratio of poultry markets to humans for each country matched the ratio of chickens to humans 

from recent census data. 

For each of the 138,602 pixels covering mainland China, the number of live-poultry markets 

from the dataset within that pixel was calculated. The number of live-poultry markets was 

then modelled in a statistical framework. 
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Generalized additive models (GAMs) were fitted using the bam function (an implementation 

of GAM tailored for large datasets) in the R package mgcv
22

 with a Poisson likelihood and a 

log-link. This implementation calculates an optimal degree of smoothing for each model term 

as a part of the model fitting procedure. A GAM was used since it is able to capture non-

linear effects of covariates (though not non-additive interactions) as with a boosted regression 

tree model, but with much less computational burden. Additionally, the effectiveness of 

boosted regression tree models for modelling count data has not been assessed. 

Four covariates were assessed for their capacity to predict the number of live-poultry markets 

per pixel: accessibility, density of ducks, density of chickens and human population density. 

The human population density data layer was obtained from the AsiaPop
14

 database in all 

countries where it was available to date, and from the Gridded Population of the World 

(GPW) database
23

 elsewhere. The travel time to major cities was extracted from the Nelson 

accessibility maps
24

 and the poultry covariates are described in detail in Supplementary 

information A. All covariates were transformed prior to model fitting and smooth terms 

modelled using cubic regression splines. 

To determine the optimal set of covariates to use in the final market model, the full model 

(using all covariates) was compared with models excluding each of these variables in turn 

and with models using each variable alone. Goodness of fit was compared using the Bayesian 

information criterion (BIC), which trades off goodness of fit against the complexity in the 

model in order to prevent overfitting. The model containing all terms had the best fit, with a 

BIC 12 lower than the second best model (which had all covariates except the accessibility 

covariate). 

The market dataset distinguished between wholesale and resale markets. In order to assess 

whether these markets differed in their distributions, an second model was produced by 

separately fitting GAMs for the wholesale and retail market datasets and summing the 

predicted number of markets. Despite this alternative model having twice as many 

parameters, the fitted likelihood was no better than the initial model. This indicates that the 

spatial distribution of these two types of markets is very similar and that they differ only in 

their total number. The initial model (using data on the number of either type of market) was 

therefore used in subsequent analyses. 

The smooth components of the final model are shown in supplementary Fig. 11. The final 

model explained 69.1% of the deviance in dataset (compared with an intercept-only null 

model). A plot of the true and predicted market densities for the training dataset 

(supplementary Fig. 12) showed no evidence of zero-inflation and the Chi-squared estimator 

of overdispersion indicated that the model residuals were not overdispersed, supporting the 

use of the Poisson likelihood. 

This model was then used to calculate the expected number of live-poultry markets per pixel 

for the rest of Asia.  

Whilst the spatial distribution of markets is likely to follow a similar pattern across Asia as in 

China, the average density of markets is likely to vary between regions, with some countries 

having more live-poultry markets per capita than others. At the country level, this is 

influenced by a) the average consumption of poultry per-capita (e.g. China, which has 4.3 

chickens per person is likely to have more live-poultry markets per person than India, which 

has only 0.68 chickens per person), and b) by the proportion of poultry that gets traded 

through live-poultry markets, which was assumed to be correlated to the proportion of 

extensively-raised poultry. To illustrate this; Thailand, South Korea and Myanmar have 
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similar numbers of poultry per person, but the share of these poultry being traded through 

live-poultry markets is likely to be much higher in Myanmar, where a very high proportion of 

poultry is still produced under extensive modes of production and trade. To account for these 

national differences, the number of live-poultry markets per country was assumed to be 

proportional to the amount of extensively raised poultry (estimated as described above). 

The number of live-poultry markets per 1,000,000 extensively raised chickens and ducks 

observed in China was then applied to other countries to estimate the total number of live-

poultry markets in each country. The results of this procedure are presented in supplementary 

Table 1, and these totals were used to apply post-hoc national corrections to the predictions of 

the live-poultry market model. 

 

 

F) ENVIRONMENTAL COVARIATES 

In order to predict H7N9 infection risk across Asia, a range of contemporary gridded 

environmental covariate raster layers were produced. These layers were either produced by 

updating existing datasets with new information or were built from scratch. The distributions 

of the 8 covariates are shown across Asia in supplementary Fig. 13  and in the area of eastern 

China from cases have been reported in supplementary Fig. 14.   

 

G) MODELLING AND EVALUATION 

The results of two types of BRT models are presented in the main text: a pixel-level 

presence-background model and market-level presence-absence models using the values of 

environmental covariates aggregated across the area surrounding each market. This section 

provides additional information about the procedures used to fit these models. 

Pixel-level presence-background BRT model 

In order to facilitate comparison of our modelling approach with those previously used to 

map avian influenza, we fitted a model to a dataset of the presence or assumed absence of 

H7N9 at the pixel-level in China. In order to fit this model, the values of environmental 

covariates were extracted at pixels in which infected markets were present (presence pixels) 

and at 5000 pixels randomly selected from across China (background or pseudo-absence 

pixels). We followed the methodology of Martin et al.
25

, selecting background pixels only 

from areas of China at least 0.0833 decimal degrees from any pixel containing an infected 

market, and where the human population density was at least one. 

This approach is widely used in the ecological literature for mapping the distributions of 

species where only sites of occurrence of the species are known
26

. There are several 

limitations of this approach. These include the ‘contamination’ of the pseudo-absence records 

(which are assumed by the statistical model to be sites of true absence) with sites in which the 

species (or in our case pathogen) is in fact present
27

 and bias of the resulting predictions due 

to conflation of the true distribution of the species with the distribution of reporting 

probability
28

. In the case of H7N9 infection, which is closely tied to live-poultry markets and 

humans, this approach leads to a model which predicts the combined distribution of the 
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pathogen and the distributions of these reporting units. Since the distributions of markets and 

humans are easily predicted using environmental covariates, such models unsurprisingly lead 

to very high validation statistics
29

. Whilst models fitted in this way are useful for mapping 

risk at these spatial units, they lack a transparent biological interpretation regarding the 

ecology of the pathogen.  

Market-level presence-absence BRT models 

For the reasons stated above, we focused our analysis on live-poultry markets as the 

units of reporting. Instead of fitting BRT models using the values of environmental covariates 

at pixels in which infections had or had not been reported, we extracted the values of 

covariates corresponding to the location of each market, and trained the model to predict the 

probability that the market itself was infected.  In order to account for the aggregating effect 

of markets, which import poultry from an area surrounding the market, we calculated the 

value of covariates at each market as a weighted mean of the values of covariates at pixels in 

an area surrounding the market. This weighting was calculated using an isotropic two-

dimensional Gaussian smoothing kernel in geographic space, of the form: 

 
  

      

    

where   are the coordinates of the pixel where the weighting is to be calculated,   are the 

coordinates of the market and   is a distance specified to represent the size of the market 

catchment area. All pixels within    of the market in question were considered in the 

weighting. As well as training models using market-level covariate values aggregated in this 

way, continuous prediction maps of market-level risk were produced by making predictions 

to gridded surfaces with this weighted averaging procedure applied to all pixels. 

Model validation procedures 

Three types of model validation statistics are presented in the main text: training-set 

validation statistics, standard cross-validation statistics and spatially-stratified cross-

validation statistics. Whilst a range of different validation statistics can be used for binary 

data such as the presence or absence of a pathogen, most of these are subject to an 

assumption that the absolute probability of presence can be accurately predicted
30

. This 

assumption is violated in the case of an emerging disease since the disease has yet to become 

established in all areas which are suitable for it. A commonly used metric in the species 

distribution modelling literature – the area under the receiver operating curve (AUC), instead 

evaluates the models ability to rank sites by probability of presence and is therefore the most 

suitable for this application. 

Training-set and standard cross-validation AUCs were calculated as the mean of the scores of 

each of the 120 BRT submodels included in the ensemble. For each of these submodels the 

training-set AUC was calculated from the predictions to the full dataset used to train the 

model. Standard cross-validation AUCs were calculated using the four randomly-selected 

folds of the training datasets used to perform the final step of the cross-validation procedure 

of Elith et al.
31

 which is used to fit the BRT submodel, whilst determining the optimal 

number of regression trees to include in the submodel. 

Training-set validation statistics are the least reliable estimates of predictive capacity to a 

new dataset, since it is most prone to statistical overfitting. It is included here only to enable 

comparison with previous studies which have used this metric. Standard cross-validation is 

widely used to overcome this issue
32

. However, because training and evaluation records are 
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selected at random from the dataset, and occurrence records of a species or pathogen are 

spatially clustered, even a model with poor predictive ability may appear to predict well when 

measured in this way. Instead, the ability of a model to make accurate predictions in new 

locations is better measured by performing a spatially-stratified cross-validation where 

training and test sets are sampled from geographically distinct regions
33

. 

We carried out spatially-stratified cross-validation by assigning markets to either the training 

or evaluation datasets according to whether they fell outside (training) or inside (evaluation) a 

disc of radius 1000 km (supplementary Fig. 15). Discs were placed at random, centered on 

the location of a market, subject to the constraint that at least 45 infected markets (around 

28% of the total number) were present in both the training and evaluation sets. This constraint 

ensured that sufficient data were available to adequately train the model and to evaluate its 

predictive capacity. The disc-fold validation procedure was implemented in R
34

  using code 

adapted from the sperrorest package
35

.  This disc-fold validation procedure was repeated 5 

times for each model run (example in supplementary Fig. 15), with a full BRT ensemble 

fitted for each fold, and the mean and standard error of the AUCs calculated. 

Collinearity of environmental covariates 

Many of the covariate layers used in this analysis exhibit similar spatial distributions across 

China and the rest of Asia. In addition, a number of these have been constructed by 

combining other environmental layers (such as human population density) with additional 

datasets. Whilst all of these environmental layers are considered to be risk factors for avian 

influenza infection, they exhibit high collinearity. Collinearity can lead to problems with 

fitting many commonly used statistical models (such as generalized linear and additive 

models), leading to poor predictions
36

. Because the boosted regression tree (BRT) approach 

we apply is able to fit complex (i.e. non-additive) functions in the environmental space, the 

accuracy of its predictions are unaffected by collinearity in environmental covariates
31

. This 

is one of the reasons that this approach has been so successful at predictive modelling of the 

distributions of species and diseases
37,38

. However, whilst predictions from BRT models are 

unaffected, such collinearity does limit our ability to test eco-epidemiological hypotheses 

about the drivers of H7N9 distribution. As such, the ordering of the relative contributions of 

environmental covariates (as displayed in Figure 2 in the main text) should be treated only as 

an indication of likely importance of groups of covariates, rather than a formal comparison. 
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