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EEG Hyperscanning is a method for studying two or more individuals simultaneously with
the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity)
are influenced by their behavioral and social interactions. The aim of this study was to
compare the performance of different hyper-connectivity measures using (i) simulated
data, where the degree of coupling could be systematically manipulated, and (ii)
individually recorded human EEG combined into pseudo-pairs of participants where no
hyper-connections could exist. With simulated data we found that each of the most widely
used measures of hyperconnectivity were biased and detected hyper-connections where
none existed. With pseudo-pairs of human data we found spurious hyper-connections
that arose because there were genuine similarities between the EEG recorded from
different people independently but under the same experimental conditions. Specifically,
there were systematic differences between experimental conditions in terms of the
rhythmicity of the EEG that were common across participants. As any imbalance between
experimental conditions in terms of stimulus presentation or movement may affect
the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts.
Furthermore, as these spurious hyper-connections reflected real similarities between
the EEGs, they were not Type-1 errors that could be overcome by some appropriate
statistical control. However, some measures that have not previously been used in
hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less
susceptible to detecting spurious hyper-connections of this type. The reason for this
advantage in performance is discussed and the use of the CCorr as an alternative measure
of hyperconnectivity is advocated.
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INTRODUCTION
Over the last decade, the development of techniques that allow
the measurement of neural activity from two or more individu-
als simultaneously, known as hyperscanning, has been heralded
with some justification as a promising new field in social neu-
roscience (Dumas, 2011; Dumas et al., 2011; Sanger et al., 2011;
Babiloni and Astolfi, 2012; Konvalinka and Roepstorff, 2012).
Hyperscanning methods have been used in many different social
contexts but all involve the simultaneous recording of brain activ-
ity from two or more individuals with a view to determining how
co-variation in their neural activity is related to their behavioral
and social interactions and this work has resulted in multiple
claims that neural coupling between people is increased during
social interaction. In contrast, there has been little attempt to
determine how valid the methods used to measure connectivity
are in this context and this paper is one attempt to redress that
omission.

The first true hyperscanning study was reported by Montague
et al. (2002) using two linked fMRI scanners with two individuals
playing a variant of the children’s guessing game, “handy-dandy.”
Other studies have used near-Infrared Spectroscopy (Funane
et al., 2011) and there is also a single case study demonstrating

the feasibility of hyperscanning using magnetoencephalography
(Baess et al., 2012). Most studies, however, have relied upon EEG
which, is not only more readily available than other methods but
is also better suited for use in naturalistic social settings, and these
are the focus of this paper.

The first EEG hyperscanning study was reported by Babiloni
et al. (2006) and involved sets of four individuals playing
Tressette, a bridge-like game. Since then, there have been 30
more EEG publications that meet the definition of hyperscanning
coming from more than 20 independent studies have claimed
increased neural coupling between people engaged in social inter-
action (Babiloni et al., 2006, 2007a,b, 2011, 2012; Flexer and
Makeig, 2007; Tognoli et al., 2007, 2011a,b; Chung et al., 2008;
Tognoli, 2008; Yun et al., 2008; Astolfi et al., 2009, 2010a,b,c,
2011a,b, 2012; Lindenberger et al., 2009; Dumas et al., 2010,
2012a,b; Fallani et al., 2010; Dodel et al., 2011; Lachat et al., 2012;
Naeem et al., 2012a,b; Sanger et al., 2012, 2013; Yun et al., 2012;
Kawasaki et al., 2013). The methods used to establish neural cou-
pling between people have been very consistent and nearly all
studies have used one of three methods: (i) covariance in ampli-
tude or power, (ii) Partial Directed Coherence (PDC); (Baccala
and Sameshima, 2001), and (iii) phase synchrony, mostly the
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Phase-Locking Value (PLV) (Lachaux et al., 1999) or a variant
thereof.

The most frequently used method for demonstrating brain-
to-brain coupling between socially interacting individuals, used
in 12 reports, has been to show that there are contiguous, or near
contiguous changes in EEG amplitude or power (Babiloni et al.,
2007b, 2011, 2012; Tognoli et al., 2007; Yun et al., 2008; Astolfi
et al., 2009; Dumas et al., 2012b; Lachat et al., 2012; Naeem et al.,
2012a,b; Yun et al., 2012; Kawasaki et al., 2013). In most cases,
this EEG amplitude/power has been estimated from event-related
changes or from FFT. Showing that there are co-variances in EEG
power is a weak form of association and although it is suggestive
of neural coupling, it is by no means conclusive.

The second most commonly used method has been that of
PDC which was the approach used in the very first EEG hyper-
scanning study (Babiloni et al., 2006) and has been used in at least
nine further studies since (Babiloni et al., 2007a,b; Astolfi et al.,
2010a,b,c, 2011a,b, 2012; Fallani et al., 2010). PDC is based on
multivariate autoregressive modeling and Granger Causality and
is designed to be able to show the direction of flow of information
(linear) between two systems (Baccala and Sameshima, 2001). As
such, PDC seems ideally suited to role of identifying inter-brain
coupling in hyperscanning studies, at least in those cases where
when one person’s behavior is driving another’s. However, both
PDC and Granger causality are not without their critics. Friston
(2011), for example, provides a critique of the use of Granger
causality in fMRI research and, some of the limitations he men-
tions apply equally well to EEG research. It is certainly the case
that, as Konvalinka and Roepstorff (2012) have observed, the
results of PDC in hyperscanning studies have not replicated well,
but whether this is related to the use of PDC, or to some other
cause, is not clear.

The final class of measures of brain-to-brain coupling all
involve measures of phase synchrony (Lindenberger et al., 2009;
Dumas et al., 2010, 2012a; Sanger et al., 2012, 2013; Yun et al.,
2012). The first use of phase synchronization as a measure of
coupling with electrophysiological data was by Tass et al. (1998),
who defined synchronization as occurring when

∣∣ϕn, m
∣∣ < const,

where const is some suitably small value, n and m are integers,
ϕn, m (t) is the phase difference, nφ1 (t) − mφ2 (t) and φ1, 2 are
the phases of the two oscillators. The most widely used index
of phase locking adopted in hyperscanning studies has been the
Phase Locking Value (PLV) (Lachaux et al., 1999) which is a
measure that seems well suited for capturing the rapid flow of
information between people in social situations. Interestingly,
some hyperscanning studies have used PLV to characterize behav-
ioral interactions even when they have used other measures of
coupling for the EEG (e.g., Tognoli et al., 2007).

Although both PDC and PLV have been used to measure cou-
pling between cortical oscillations recorded in the EEG from two
or more different people, what they actually measure is quite dif-
ferent in each case and, for this reason, it is worth reviewing
what is meant by synchronization. The first scientific descrip-
tion of synchronization came in 1665 from Christiaan Huygens
who wrote a letter to the Royal Society in which he described “an
odd kind of sympathy” in which the pendulums of identical clocks
mounted on the same support came to swing exactly out of phase

(i.e., anti-phase) regardless of the phase they had been in when
they had been set running (Pikovsky et al., 2001; Klarreich, 2002).
The explanation of this phenomenon is that the swing of the pen-
dulum in one clock induced small movements in the support
from which the clocks were suspended that would slightly alter the
swing of the pendulum of the second clock. At the same time, the
pendulum of the second clock would induce movements in the
support that affected the swing of the pendulum in the first clock.
These small mutual nudges would continue to shift the phase of
each pendulum until they came to a point where the nudge from
one would exactly counterbalance the nudge from the other and
this would occur when the pendulums were precisely anti-phase.
In modern terms, the two clocks were in a system of reciprocal
negative feedback and would continue to change until the sys-
tem reached the state of minimum energy transfer between the
two. Minimum information transfer (in fact, zero energy trans-
fer) occurs in the anti-phase condition. An example of in-phase
reciprocal synchronization is shown in Figure 1A.

True synchronization then, is of interest in neuroscience
because it is a reliable marker of the flow of information
between elements of a system. Simply observing a consistent
phase relationship between two oscillators (clocks, human brains
etc.), however, does not necessarily mean that they are in the

FIGURE 1 | Types of synchrony. (A) Shows “reciprocal” synchronization
whereby the pendulums of the clocks swing in phase because there is
reciprocal influence between the two; (B) shows “induced”
synchronization whereby the phase of the pendulums of both clocks are
influenced by a common external driver; (C) shows “driven”
synchronization whereby the pendulum of one clock influences the phase
of the pendulum of the other clock without any reciprocal influence; (D)

shows “coincidental” synchronization where there is no coupling between
the clocks but the pendulums remain in a fixed phase relationship to each
other because they both swing at the same frequency.
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same condition of reciprocal information exchange displayed by
Huygens’ clocks. Synchronization might also occur if both clocks
are driven by some external influence as in Figure 1B. In hyper-
scanning experiments, this might occur if the participants simul-
taneously experience the same stimuli such as watching a movie
together, even though they are not directly interacting (Hasson
et al., 2008). Alternatively, the influence between oscillators might
be one-way with one oscillator driving another, Figure 1C, which
is exactly the type of coupling that PDC is designed to iden-
tify. Each of these types of synchronization might be of interest,
depending upon the context of the study, and it would often be of
interest to know which type of synchronization is being observed.
In practice, however, these different types of synchronization may
be difficult to tell apart.

There is a fourth type of synchrony which is not really syn-
chronization at all: coincidental synchrony, Figure 1D. This is a
phenomenon which is generally of no interest and, in the context
of hyperscanning, has nuisance value only. Unfortunately, it is not
a rare phenomenon. Had Huygens’s clocks been too far apart to
influence each other, they would have remained in the same fixed
phase relationship to each other indefinitely. Over time, small dif-
ferences between the clocks would lead to a gradual shift in phase
but, at least over short periods of time, the phase difference would
be nearly constant. In general, two oscillators will show a consis-
tent phase relationship whenever they share a common frequency
of oscillation. To put this in the context of the brain, consider
two adults, each with a dominant alpha rhythm of ∼10 Hz sit-
ting in isolation in separate rooms. If we were to measure their
EEG, we could expect to see a fairly consistent phase relation-
ship between their alpha rhythms, at least over short time scales,
even though there is no communication between them. This sit-
uation is exactly the same as the example of the identical but
unconnected pendulum clocks and stems solely from the fact that
they share a common frequency of oscillation. It follows from this
that simply observing a consistent phase relationship does not
imply synchronization or information exchange or, as Pikovsky
et al. (2001) put it, “synchronous variation of two variables does not
necessarily imply synchronization.” The critical feature of synchro-
nization is not that the oscillators are synchronous but that there
is “. . . adjustment of their rhythms, or appearance of phase locking
due to interaction” (Tass et al., 1998).

To put this more formally, two oscillators can be said to be syn-
chronized if deviations from the regular oscillatory cycle of one
oscillator provides information about deviations in the oscillatory
cycle of the other. Such a definition suggests that a measure of the
co-variation or correlation between oscillators might sometimes
be more useful. It is for this reason, that most hyperscanning stud-
ies do not simply measure phase coupling in the EEG between
individuals but compare the degree of coupling between differ-
ent experimental conditions. In the best studies, the experimental
conditions are identical in every way except that in one case the
participants are socially engaged and in the other they are not. In
practice, however, this level of experimental control is difficult to
achieve.

The aim of this paper is to examine the performance
of currently used measures of phase synchronization in
hyperconnectivity studies (PDC and PLV) and compare them

with alternative measures including coherence (COH), the cir-
cular correlation co-efficient (CCorr) and Kraskov’s Mutual
Information estimator (KMI) (Kraskov et al., 2004). Good per-
formance, in this context, is defined by three qualities. First, the
measure should be unbiased and have a low root mean squared
error of estimation (RMSE). Specifically, when the true connec-
tivity, r = 0, the estimated connectivity should be zero or very
close to it. Second, the estimate of connectivity should increase
monotonically as r increases and third, the estimate of coupling
strength between two channels should be independent of the dis-
tribution of the signal in either of the constituent channels. In
particular, the estimate of coupling strength should be insensi-
tive to changes in the variance of the marginal distributions of
deviations from the expected phase in either channel.

The first comparison included simulated time series where the
degree of connectivity could be systematically varied. The sec-
ond comparison compared EEG from individuals independently
recorded but analyzed as though they had been recorded as part of
a hyperscanning study. Because these EEG recordings were com-
pletely independent and there was no social contract between
participants, a good measure of hyperconnectivity should not
detect any synchronization between them. The first example
of EEG data was from an event-related potential paradigm in
which data recorded around the time of the presentation of a
visual stimulus was used. This is analogous to induced synchrony
(Figure 1B) as there may be some apparent connectivity between
individuals because they share similar external stimulation. The
second example of EEG data was from two independent resting
state conditions in which there was no external stimulation to
induce synchrony.

MATERIALS AND METHODS
MEASURES
Five different methods for estimating functional hyper-
connectivity were used in this study.

Coherence (COH)
COH is the traditional Fourier-based method of connectivity and
the Welch estimate of coherence is given by:

COHxy =
∣∣∣ 1

N

∑N
k = 1 Yk

(
f
)

X∗
k

(
f
)∣∣∣

√
1
N
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(
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)
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k

(
f
)
. 1
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(
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)
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(
f
) (1)

where Xi (ω) denotes FFT of the kth segment of the time series
x(t) at frequency f and * indicates the transpose and complex
conjugate. The analysis was performed using the MatLab function
mscohere.m. COH values range from 0 to +1.

Partial directed coherence (PDC)
The PDC from y to x is defined as:

PDCxy
(
f
) = Axy

(
f
)

√
a∗

y

(
f
)
.a

x

(
f
) (2)

where Axy(f ) is an element in A(f ) which is the Fourier Transform
of the multivariate autoregressive (MVAR) model coefficients,
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A(t), of the time series ; ay(f ) is yth column of A(f ). MVAR
and PDC analysis was performed using the Extended Multivariate
Autoregressive Modeling Toolbox for MatLab (Faes and Nollo,
2011). PDC values range from 0 to +1 but as PDCx, y �= PDCy, x

both are reported.

Phase locking value (PLV)
There is an unfortunate terminological confusion over the use of
the term “PLV” as, not only is it often referred to as the Phase
Locking Index (PLI) but, both “PLV” and “PLI” can refer to two
quite different measures that have equations of the identical form
but quite different meaning. The PLV, as originally defined by
Lachaux et al. (1999), is estimated by:

PLVn = 1

N

∣∣∣∣∣
N∑

k = 1

ei(φ(t, k)−ψ(t, k))

∣∣∣∣∣ (3)

where N is the number of trials, φ(t, n), is the phase on trial, n
at time t, in channel φ and ψ(t, n) in channel ψ. The PLVn varies
between 0 and 1 where 1 indicates perfect phase locking and 0
indicates no phase locking. This form of the PLVn is a measure of
the consistency of the phase difference and is related to the inter-
trial variance of the phase difference, σ2

φ − ψ, by the relationship

PLVn = 1 − σ2
φ−ψ. Because this form of the PLVn is based on the

phase difference across trials, it is only suitable for event-related
paradigms.

However, there is a variant of the Equation (3) that has been
frequently used in EEG hyperscanning studies which involves
averaging the instantaneous phase differences over time within a
single trial:

PLVt = 1

T

∣∣∣∣∣
T∑

n = 1

ei(φ(t, n)−ψ(t, n))

∣∣∣∣∣ (4)

where T is the number of time points. This form of the PLV is
essentially a measure of the intra-trial consistency of the phase
difference between channels. As will become clear, this small
difference between Equations (3) and (4) has important implica-
tions for the interpretation of EEG hyperscanning methods. In an
attempt to remove any ambiguity, we shall refer to the measure
defined by Equation (3) as the trial-averaged PLV or PLVn and
that described by Equation (4) as the time-averaged PLV, PLVt .
PLV values range from 0 to +1.

The PLV is a measure of the consistency of the phase-difference
but, as noted above, simply observing that there is a consistent
phase relationship between two signals does not imply covariance
or information exchange or between them. Indeed, the PLVt can-
not distinguish between coincidental phase synchronization and
true phase synchronization. To see why phase difference is a poor
measure of information exchange, consider the variance of the
difference in the case of the bivariate normal distribution1 which
is given by:

σ2
x − y = σ2

x + σ2
y − 2σxσyρ, (5)

1Unfortunately, the equivalent equation for the bivariate von Mises distribu-
tion is not known.

where σ2 is the variance and ρ is the correlation between the
two distributions x and y. Clearly σ2

x − y can be small, indicating
strong association between the two variables, not only when ρ is
large but when σ2

x and σ2
y are small. This means that although

σ2
x − y is related to ρ, it is a rather poor proxy for it and makes

no sense to measure correlation this way in such cases. The nat-
ural measure of correlation in this case is the Pearson Product
Moment Correlation Coefficient which measures the covariance
of the deviations from the expected (i.e., mean) values of the two
variables.

Circular correlation coefficient (CCorr)
The Pearson Product Moment Correlation Coefficient is not suit-
able for use with circular distributions like phase but there are
several suitable candidates including the Circular Correlation
Coefficient (CCorr) (Jammalamadaka and Sengupta, 2001),
CCorr is a direct parallel to the Pearson Product Moment
Correlation Coefficient for circular data and is given by:

CCorrφ, ψ =
∑N

k = 1 sin
(
φ − φ

)
sin

(
ψ − ψ

)
√∑N

k = 1 sin2(φ − φ
)

sin2(ψ − ψ
) (6)

where φ and ψ are the mean directions for channels 1 and 2
respectively. For oscillatory signals, like the EEG, phase is approxi-
mately uniformly distributed and the population mean directions
are not defined. However, in the case of uniform marginal dis-
tributions, any arbitrary direction can be defined as the mean
without ill effect although for convenience, the sample mean
directions, φ and ψ were always used. Unlike PLVt , the Circular
correlation, CCorr, is much more robust to coincidental synchro-
nization. The reason for this is that CCorr measures the circular
covariance of differences between the observed phase and the
expected (i.e., mean) phase. In the case of a perfect oscillator, the
frequency of oscillation will be constant and there will be no vari-
ance. In the case of a sinusoidal oscillation, knowing the frequency
of oscillation and its phase at any single time point provides a
complete description of its behavior. For imperfect oscillators, as
all real-world oscillators are, there will be small variations in phase
over time. However, knowing the phase of such an oscillator in its
recent past makes it possible to predict its phase in the near future.
In the case of two related channels, if one channel is slightly in
advance of its expected phase at a given time, then the phase
in the other channel is also likely to be advanced (for positively
correlated signals; the reverse for negatively correlated signals).
That is, the phase variance of the oscillators co-varies and this
is what CCorr measures. In the case of two unrelated channels,
the phase variance will not co-vary and the CCorr will be zero.
As the PLV measures the phase difference, which is a poor proxy
for phase covariance, it is likely to be poorer at discriminating
between related and unrelated signals. CCorr was measured using
the CircStat toolbox for MatLab (Berens, 2009). CCorr values
range from 0 to +1.

Kraskov mutual information (KMI)
The KMI is a non-parametric estimator of mutual informa-
tion (Kraskov et al., 2004) based nearest-neighbor method for
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estimating entropy proposed by Kozachenko and Leonenko
(1987) cited in Beirlant et al. (1997). The KMI, adapted for use
with phase data, is given by:

Iφ ψ = �(k) + �(N) −
N∑

i = 1

(
�

(
nφ (i) + 1

) + �
(
nψ (i) + 1

))
(7)

where �(.) is the digamma function, nφ (i) is the number of points
with

∥∥φi − φj

∥∥ ≤ ε (i)/2 and n� (i) is the number of points with∥∥ψi − ψj

∥∥ ≤ ε(i)
2 ; ε(i) is the distance from observation i to its jth

nearest neighbor and distances are measured with respect to the
maximum norm ε (i) = max

{
εφ (i) , φψ (i)

}
and N is the total

number of independent observations. In the simulations reported
here, j = 5 and the distances were angular distances.

For convenience, all mutual information values were trans-
formed to the range 0–1 using the relationship r =

√
1 − e−2Iφ ψ

where, Iφ� , is the mutual information between φ and � and, r,
is the correlation from a bivariate normal distribution with the
same mutual information.

SIMULATIONS
The objective of the simulations was to generate time series when
the phase-coupling between the two could be systematically var-
ied. Phase distributions can be generated from the von Mises
distribution, a circular analog of the Gaussian distribution that
ranges from -π to +π. The von Mises distribution is defined by
its mean direction, μ, and concentration, κ, which are analogous
to the Gaussian mean, μ, and the reciprocal of the variance,1/σ2,
respectively. Examples of the von Mises distribution for μ = 0
and varying values of κ are shown in Figure 2. The von Mises
distribution can be generalized to two dimensions where phase
can be represented as a distribution on the surface of a torus
(Singh et al., 2002). The covariance between the two dimensions
of the bivariate von Mises distribution is controlled by a param-
eter λ. The joint probability density function is defined by the 5
parameters (μ1, μ2, κ1, κ2, and λ) and from this it is a simple
matter of numerical integration to calculate the mutual infor-
mation between the two distributions (see Appendix). Given the

FIGURE 2 | Probability density functions of the von Mises distribution

for different values of concentration, κ.

probability density function of a 2-D von Mises distributions it is
a simple matter to generate random variables with any different
levels of mutual information and concentration (Figure 3) using
the acceptance/rejection method (Gentle, 1998).

To generate a time series with randomly varying phase shifts,
we first generated an unwrapped and perfectly regular phase series
[0, 2π, 3π . . . .nπ], and generated n independent samples from a
von Mises random distribution [φ1; φ2; φ3; . . . .φn] and added
the two together giving a new phase series [0 + φ1, 2π + φ2,
3π + φ3, . . . .nπ + φn]. The von Mises random variables were
added as phase deviations to the expected regular phase series.
In this case, the aim was to simulate an alpha rhythm with a mean
frequency of f = 10 Hz sampled at = 500 Hz. The phase series
[0, 2π, 3π . . . .nπ] corresponded to a time series of [0, 0.1, 0.2,
0.3. . . n/f ]s so the phase values for intermediate time points from
0 to n/f seconds in 1/� second intervals were estimated by spline
interpolation. Finally, the pseudo-alpha rhythm was obtained by
taking the sine of the interpolated phase series. This created a
smoothly frequency-varying oscillation with constant amplitude
in which the variance of the frequency was determined by, κ, the
concentration parameter of the von Mises distribution. In these
simulations, therefore, 1/κ is a measure of the variance of the
marginal distributions of deviations from the expected phase. An
example is shown in Figure 4. It is a simple matter to general-
ize this process to the 2D cases using random variables a 2D-von
Mises Distribution and the degree of dependency can be con-
trolled by the parameter λ. For the simulations values of λ were
chosen to approximate bivariate correlations of [0, 0.2, 0.4, 0.6,
0.8] and the concentration values of, κ, were [0.25, 0.5, 1, 2, 4,
8]. One hundred samples of 100 s epochs of pseudo-alpha were
generated for analysis for each value of λ and κ.

In order to generate pseudo-alpha time series in which there
was a time-lagged dependency between channels, n + 1 indepen-
dent samples were drawn from a 2D-von Mises distribution [φ1;
φ2); φ3; . . . .φn + 1] and added to the phase series giving two new
phase series [0 + f(1, 1), 2π + φ(2, 1), 3π + φ(3, 1) . . . .nπ + φ(n,1)]
and [0 + φ(2, 2), 2π + φ(3, 2), 3π + φ(4, 2), . . . .nπ + φ(n + 1, 2)].
The rest of the procedure was identical to that for the zero-lagged
time series but with the result that the two pseudo-alpha time
series were maximally correlated with a lag of 100 ms but uncor-
related at lag 0. That is, one time series “caused” the other in the
Granger sense.

Hyperconnectivity analysis
COH was estimated for each pair of time series using Welch’s
method with non-overlapping Hamming Windows of 1024 ms
Equation (1). For PDC, an MVAR model was generated for each
100 s pair of time series using a model order determined by the
Akaike Information Criterion. The PDC was estimated from the
MVAR coefficients following Equation (2). COH and PDC values
were averaged across each of the 100 randomizations.

Estimates of PLVt , CCorr, and KMI were derived from the
instantaneous phase of the time series. Instantaneous phase at
each time point in each time series was estimated from the Hilbert
Transform of the pseudo-alpha data using FFT with a window of
1024 ms and it was these estimates that were used for estimating
coupling strength. The Hilbert Transform produces a “real” and
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FIGURE 3 | Scatterplots of the 2D-von Mises distribution for different values of concentration, κ, and correlation, r.

“imaginary” time series and the phase was estimated by φ (t) =
tan−1

(
Imag(t)
Real(t)

)
. In all cases, the Hilbert-estimated phases were

very close to “true” phase values that had been entered into the
simulation. The phase-series were divided into epochs of 1024 ms
and the PLVt and CCorr were estimated for each using Equations
(4) and (6) respectively. The resulting values were averaged across
all epochs and all randomizations. This procedure of estimat-
ing hyperconnectivity over short epochs and averaging follows
the methods reported in the literature (Lindenberger et al., 2009;
Dumas et al., 2010, 2012a; Sanger et al., 2012, 2013; Yun et al.,
2012) each of whom used segments of EEG of less than 800 ms.

As estimation of KMI assumes independent observations, the
instantaneous phase data was down-sampled to a rate equal to
the mean frequency of the signal i.e., 10 Hz. An estimate of KMI
was derived for each of the down-sampled segments of pseudo-
alpha phase data using Equation (7) and averaged across the 100
random samples.

Statistical analysis
Each of the measures of connectivity was evaluated in terms of
their bias and Root Mean Squared Error of Estimation (RMSE)
for the case where the true connectivity, r, was zero. Bias and
RMSE were defined as: Bias = 1

N

∑N
k = 1 (r i − r̂i

)
and RMSE =

1
N

√∑N
k = 1 (ri − r̂i)

2 where ri is the true connectivity and r̂i is the
estimate of the true connectivity. Note that for COH, PDC and

PLVt , where the values are defined to be greater than or equal to
zero, the Bias and RMSE are equal. Mutual information, by def-
inition must also be greater than or equal to zero but, the KMI
estimator can produce small negative values and for this reason,
Bias will not always be equal to RMSE.

HUMAN EEG
PARTICIPANTS
The data used for this study are a subset of a dataset that has
previously been reported on and full details of the experiment
are reported in Burgess (2012). Participants were 10 healthy
young adults (5 women, 5 men) recruited through advertisement
with a mean age of 25.4 years (SD = 5.8; range 20–40). Written
informed consent was obtained from all subjects and the experi-
ment was conducted as approved by the Riverside Research Ethics
Committee. All investigations were conducted according to the
principles expressed in the Declaration of Helsinki and data were
analyzed anonymously.

Procedure
EEG was recorded from participants at rest (60 s Eyes Open
Relaxed and 60 s Eyes Closed Relaxed) and as they were presented
with a series of faces. There were 90 trials which included the
presentation of a fixation cross for 1000 ms followed by a photo-
graph of a face for the same duration. Each photograph was of the
head and shoulders of a man or woman with neutral emotional
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FIGURE 4 | Simulation of the pseudo-alpha rhythm. (A) Shows the
unwrapped phase of a regular 10 Hz sinusoid (Black line) with random
phase deviations generated from the von Mises distribution (Red lines) and
added to the sinusoid at 100 ms interval. The phase series for the
pseudo-alpha rhythm is formed by a smooth line (Blue line) that connects
the points of the sinusoid + phase deviation. (B) Shows the times series
generated by taking the sine of the phase series in (A).

expressions, facing directly toward the participant. The inter-trial
interval consisted of a blank screen and randomly varied between
1000 and 2000 ms. All data were recorded from participants com-
pletely independently and at separate times. There was no social
interaction between any of the participants at any time during the
recording of these data.

Materials and equipment
Twenty-eight electrodes were positioned on the scalp using
an ECI electrode cap with electrodes placed according to the
International 10–20 system with an additional nine electrodes:
Oz, FC5/6, CP1/2, CP5/6 PO1/2. Horizontal electro-oculogram
(EOG) was recorded from the external canthus of each eye, and
the vertical EOG was recorded from the supra- to suborbit of
the left eye. Electrode impedances were all under 5 k�. EEG and
EOG were amplified using a 32 channel Neuroscan Synapse-II
System. Signal bandpass was 0.1–100 Hz and the digital sampling
frequency was 500 Hz. Reference was to the left ear and converted
to average reference offline.

Data preparation
For the resting state, data were divided into consecutive epochs of
1024 ms. For the event-related paradigm, EEG was divided into
pre-stimulus and post-stimulus epochs each of 1024 ms dura-
tion. The pre-stimulus epochs included data from −1024 ms
to −1 ms and the post-stimulus epochs contained data from +1
to +1024 ms where zero was defined as the time of stimulus onset.

For both data sets, epochs including values outside the
range −100 to +100 μV range were excluded from the analysis.
In order to facilitate the comparison between EEG recorded from
different individuals, it was convenient to ensure that each partic-
ipant contributed the same amount of data. For this reason, only
the first 20 epochs for the resting state conditions and the first 50
epochs for the event-related paradigm were included.

Hyperconnectivity analysis
The data from each participant was paired with every other par-
ticipant and analyzed as if they had been recorded jointly in
a hyperscanning experiment. With 10 participants, this gave a
total of 45 pseudo-pairings, one of whom was arbitrarily nomi-
nated as participant 1 and the other as participant 2. Twenty-eight
channels of EEG were recorded for each person meaning that
there were 56 channels for each pair of participants giving a total
of 1540 possible different channel combinations. Of these, only
the 784 hyper-connections that paired data between people were
considered further.

For each pairing, EEG data were concatenated across epochs
in preparation for the hyperconnectivity analysis. For the rest-
ing state data, 20 consecutive epochs of artifact-free EEG were
joined together from each condition to form 20.48 s of data
for each of the eyes open and eyes closed conditions. For the
event-related data, 50 epochs of pre-stimulus and post-stimulus
EEG were concatenated separately to give two time series of
51.2 s each.

COH and PDC were estimated from these concatenated data
for each participant separately using the method described for
simulated data and hyperconnectivity estimates were the high-
est values obtained in each of the Theta (4–8 Hz), Alpha (8–12),
Beta1 (13–19 Hz), Beta2 (20–29 Hz), and Gamma (30–70 Hz) fre-
quency bands. For the phase-based measures, PLVt , CCorr and
KMI, the concatenated data were filtered into the same frequency
bands using Butterworth filters and the instantaneous phase was
estimated using the Hilbert transform in the same way as for the
simulated data. PLVt and CCorr were estimated for each 1024 ms
epoch and frequency band separately and averaged. The KMI was
estimated from the same data down-sampled to 10 Hz.

Statistical analysis
For the rest conditions, connectivity in the Eyes Open and Eyes
Closed conditions were compared and for the event-related data,
connectivity in the pre-stimulus period was compared to that in
the post-stimulus period. The difference in connectivity between
experimental conditions was estimated for each of the 784 elec-
trode pairs and averaged across each of the 45 pseudo-pairs of
participants.

In order to determine if the differences were reliable, a ran-
domization testing procedure was used to control the Type-1
error (Holmes et al., 1996; Burgess and Gruzelier, 1997). Consider
one electrode pair; under the null hypothesis, there should be no
difference between conditions and so randomly swapping the data
between them and calculating the difference many times should
provide a good estimate of the variability in the connectivity of
that electrode pair that is due to chance. If the difference in con-
nectivity observed in the real data set is larger than 95% of the
differences observed in the randomized data sets, it is reasonable
to say that that difference is greater than might be expected by
chance. To extend this idea to multiple electrode pairs, instead of
examining the distribution of the connectivity difference at each
electrode pair in turn, the distribution of the largest difference in
connectivity across all electrode pairs for each randomization was
examined. The 95th percentile of the distribution of the maxi-
mum difference represents the value that would not be exceeded
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at any electrode pair by chance. In this way, the family-wise
Type-1 error can be controlled to 5%.

The maximum difference across all 784 electrode pairs was
estimated for 1000 randomizations of the data. The 95th per-
centile of this distribution was used as the upper cut-off for deter-
mining statistical significance and controlling the per-condition
comparison Type-1 error to 5%. The same process was used to
obtain a lower cut-off value.

RESULTS
SIMULATIONS
The results from the simulations showing the effects of varying
the concentration, κ, and the zero-lagged correlation, r, on each
of the measures of connectivity are shown in Figure 5. The first
criterion of good performance, that the measures should have low
bias and low RMSE can be addressed by examining the mean bias
and RMSE of each of the connectivity measures when r = 0 and
for each value of κ (Figure 6). Note that for COH, PDC and PLV,
the bias equals the RMSE as all values are positive and greater than
0; only for CCorr and KMI do they differ. COH did not meet the
criterion for any value of r and PDC and PLVt only came close
for low values of κ. KMI was close to the criteria for all values of
κ but, as the minimum value of KMI is zero, there was a small,
consistent bias. Only CCorr met the criteria fully.

The second and third criteria of good performance, that
the estimate of connectivity should increase monotonically as r
increases and that it should be insensitive to changes in the vari-
ance of the marginal distributions of deviations from the expected
phase (1/κ), can be considered together. Table 1 shows the pro-
portion of variance in each measure of connectivity that can be
accounted for by r, κ, the interaction r by κ and error derived
from a Two-Way ANOVA of the simulation data. For all of the
measures, except PDC, r, accounted for a good proportion of
the variance but for COH and PLV, this proportion was small

compared to the proportion attributable to κ. The poor perfor-
mance of PDC is this context was unsurprising as it is designed to
identify Granger causality in which one time series leads the other,
not instantaneous associations as seen here. Nevertheless, the sen-
sitivity of PDC to κ meant that relatively high values of PDC were
obtained even where there was no real association between chan-
nels and it was the measure that showed the highest proportion
of error variance. The interaction, r by κ, was important only for
the PLVt where it accounted for 7.5% of the variance and was
manifest as a relatively greater influence of r, at low values of κ

(Figure 5C). The two measures that best met the criteria were
CCorr and KMI as they were both overwhelmingly influenced
by r but not κ and, of the two, CCorr had a much smaller error
variance.

The results from the simulations showing the effects of vary-
ing the concentration, κ, and the 100 ms-lagged correlation, r,
on each of the measures of connectivity are shown in Figure 7.
This simulation was designed to provide an example of Granger
Causality that would be well-suited for analysis by PDC. The first
point to note is that COH was largely unaffected by the change
(compare Figures 5A and 7A) and performed badly with both sets
of data. In contrast, the PLV, CCorr, and KMI were all adversely
affected which is unsurprising as these measures are not designed
for use in this context. In the case of PLVt and KMI, less than
1% of the variance was attributable to r. For PLVt most vari-
ance was accounted for by κ whereas for KMI it was error. The
poor performance of KMI with this data set occurred because it
was estimated from the phase-series down-sampled to 10 Hz, the
same rate at which the random phase deviations were added to
the phase sequence. This meant that the simultaneous estimates
of phase were truly independent. In contrast, because the PLVt

and CCorr were estimated based on intermediate points that were
spline estimates of the preceding and subsequent phase devia-
tions, each datum contained some information about the lagged

FIGURE 5 | The relationship between the true and estimated coupling

for each measure of connectivity for the zero-lagged simulated data at

different levels of concentration, κ. (A) Shows coherence, (B,C) partial

directed coherence, (D) time-averaged phase-locking value, (E) circular
correlation coefficient and (F) Kraskov mutual information. Concentration
values are ¼, ½, 1, 2, 4, and 8.
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FIGURE 6 | The bias and RMSE for each connectivity measure

estimated from the zero-lagged simulated data at different levels of

concentration, κ, when the coupling, r = 0. Blue dots indicate bias and
red circles RMSE. (A) Shows coherence, (B,C) partial directed coherence,

(D) time-averaged phase-locking value, (E) circular correlation coefficient
and (F) Kraskov mutual information. For COH, PDC and PLV, as all values
are >0, bias = RMSE are equal. For CCorr and KMI, where values may
be ≤ 0, bias �= RMSE.

FIGURE 7 | The relationship between the true and estimated coupling

for each measure of connectivity for the 100ms-lagged simulated data at

different levels of concentration, κ. (A) Shows coherence, (B,C) partial

directed coherence, (D) time-averaged phase-locking value, (E) circular
correlation coefficient and (F) Kraskov mutual information. Concentration
values were ¼, ½, 1, 2, 4, and 8.

relationship between the phase series. This is the reason why
CCorr shows some sensitivity to increases in r, although much less
than for the zero-lagged data. Of course, each of these measures
would perform much better if they had been estimated across a
range of time lags.

As expected, PDC performed better on this simulation than
with the zero-lagged data. PDC1, 2 showed a clear monotonic
increase with r correctly showing that channel 1 led channel 2.
Similarly, PDC2, 1 showed a monotonic decrease with r, meaning

that the predictability of channel 1 given channel 2 diminished as
the predictability of channel 2 increased. However, in both cases,
the largest proportion of variance was attributable to κ, not r.

HUMAN STUDIES
Event-related changes in synchrony
The results of the hyperconnectivity analysis between pre-
stimulus and post-stimulus conditions, controlled for multiple
comparisons, are shown in Figure 8. As all the data were recorded
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independently, there can have been no true synchronization
between the recordings. Nevertheless, there were a small num-
ber of significant changes in synchronization between the pre-
and post-stimulus conditions identified by PDC and CCorr and a
very large number for the PLVt . For PDC and CCorr, the changes
in synchronizations involved both increases and decreases but
for PLVt , they were exclusively in the direction of increased
synchrony in the post-stimulus period. The estimates of mean
synchrony averaged across the pre- and post-stimulus periods
for each of the connectivity measures are shown in Figure 9. For
PDC, the estimated levels of synchrony were consistently very low
(range 0.01–0.03) and were also low for CCorr but more vari-
able (range 0.001–0.14). In contrast, the mean synchronization
was much higher for PLV with values ranging from 0.19 to 0.56.

As these data were from an event-related paradigm, it was also
possible to estimate the between-trial synchronization using PLVn

and CCorrn. Figure 10 shows the significant differences in PLVn

and CCorrn between the pre- and post-stimulus periods. There
were no significant differences in synchronization between condi-
tions using CCorrn but there were several using PLVn in the theta
and alpha frequency ranges. The estimates of mean synchrony
in the pre- and post-stimulus periods for PLVn and CCorrn are
shown in Figure 11. The PLVn and CCorrn were rather larger than
their time-averaged equivalents and were approximately equal
across the frequency bands (PLVn range 0.12–0.17; CCorr range
0.12–0.19).

Resting state
The results of the hyperconnectivity analysis between the eyes
open and eyes closed resting states, controlled for multiple com-
parisons, are shown in Figure 12. There were a number of
significant differences in hyperconnectivity between eyes open
and eyes closed using PDC. Most of these indicated that neu-
ral activity at multiple sites in pseudo-pair participant 1 was
a significantly stronger predictor of neural activity at electrode

FIGURE 9 | Mean Hyperconnectivity values for time-averaged

event-related EEG by connectivity measure and frequency band.

FIGURE 8 | Significant changes in mean time-averaged

hyperconnectivity between pre- and post-stimulus conditions by

connectivity measure and frequency band. The rows represent the
hyperconnectivity results for each of the measures used (PDC1, 2, PDC2, 1,
PLVt and CCorr) and the columns represent the frequency bands (theta,
alpha, beta1, beta2, and gamma). The pairs of large circles in each cell
represent the heads of the participants in a pseudo-pair. The smaller circles
indicate the topographical location of the EEG recording electrodes. For PLVt

and CCorr, lines drawn between the heads joining electrode sites indicate

that there was a significant change in connectivity from the pre- to the
post-stimulus periods between the first member of a pseudo-pair and the
second member. Red lines indicate an increase in connectivity from the pre-
to the post-stimulus period and blue lines indicate a decrease. For PDC1, 2,
lines connecting electrode sites between the heads show that neural activity
in the first member of a pseudo pair was more predictive of the neural
activity of the second member of the pair in the post-stimulus period than in
the pre-stimulus period. Allocation to first or second member of the
pseudo-pair was arbitrary.
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FIGURE 10 | Significant changes in mean trial-averaged

hyperconnectivity between pre- and post-stimulus conditions by

connectivity measure and frequency band. The rows represent the
hyperconnectivity results for each of the measures used (PLVn and
CCorrn) and the columns represent the frequency bands (theta, alpha,
beta1, beta2, and gamma). The pairs of large circles in each cell
represent the heads of the participants in a pseudo-pair. The smaller

circles indicate the topographical location of the EEG recording
electrodes. Lines drawn between the heads joining electrode sites
indicate that there was a significant change in connectivity from the
pre- to the post-stimulus periods between the first member of a
pseudo-pair and the second member. Red lines indicate an increase in
connectivity from the pre- to the post-stimulus period and blue lines
indicate a decrease.

FIGURE 11 | Mean Hyperconnectivity values for trial-averaged

event-related EEG by connectivity measure and frequency band.

site FP1 in participant 2 when the eyes were closed than when
they were open. There were also two links indicating/that neu-
ral activity participant 2 drove neural activity in participant 1.
There were also a small number of hyper-connections identi-
fied by CCorr, one showing significantly lower synchronization
between the participants in the eyes closed condition in theta fre-
quency range and four showing the reverse in the alpha frequency
range. However, by far the largest numbers of significant changes
in synchrony were identified by PLVt . In the theta frequency
range, there were multiple hyper-connections that were signifi-
cantly higher in the eyes open condition than in the eyes closed
condition. In the alpha frequency range, there was an even larger
number of hyper-connections that were greater in the eyes closed
condition. The estimates of mean synchrony in the eyes open
and eyes closed conditions for each of the connectivity measures
are shown in Figure 13 As was the case with the event-related
data, mean connectivity was low for PDC (range 0.01–0.11) and
CCorr (0.001–0.06) but was very much greater for PLVt (range
0.13–0.40).

DISCUSSION
The issue of how best to measure hyperconnectivity depends in
no small part on what one is trying to measure. Many hypercon-
nectivity researchers intended to measure synchronization which,
in the Huygens sense means that two oscillators (in this case,
the EEG of two people) interact in such a way that their cycles
become synchronous. However, synchronization, as defined by
the PLV, is rather different and simply means there is a consistent
phase difference between the two signals but does not necessar-
ily imply covariance between them. By this criterion, any pair of
EEG channels with a common dominant frequency would be syn-
chronized, which surely makes this definition too inclusive to be
useful. Instead, a more useful definition is that two oscillators can
be said to be synchronized if deviations from the regular oscilla-
tory cycle of one oscillator provides information about deviations
in the oscillatory cycle of the other.

By this definition, none of the commonly used measures of
connectivity fared well in the simulations. COH, PDC, and PLV
were biased measures of the co-variation between phase series
and, under a broad range of conditions provided inaccurate esti-
mates of the true hyperconnectivity. In particular, they were each
prone to detect hyperconnectivity that didn’t exist. It is well
known that COH is a biased estimator of true coherence (Maris
et al., 2007) but using Welch’s method limits the extent of the
problem. PLV too, is a biased estimator of coupling strength and
the bias is greater when small samples of data are used, particu-
larly, as is the case with PLVt , when non-independent data points
are used (Vinck et al., 2012). To put the scale of the problem
in context, consider those simulations where the concentration
was close to the mean value seen in the human EEG recordings
and the true hyperconnectivity was zero (κ = 2, r = 0). Here the
estimated coupling strengths were 0.65, 0.19, and 0.58 for COH,
PDC, and PLV respectively.

These spurious couplings are not solely due to the familiar
bias of the estimators. Rather, the coupling was driven by changes
in the variances of the individual phase series (i.e., 1/κ of the
marginal distributions of deviations from the expected phase).
As Table 1 shows, COH, PDC, and PLVt were more sensitive to
changes in the variance of the marginal distributions of deviations
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FIGURE 12 | Significant changes in mean time-averaged

hyperconnectivity between eyes open and eyes closed resting states by

connectivity measure and frequency band. The rows represent the
hyperconnectivity results for each of the measures used (PDC1, 2, PDC2, 1,
PLVt , and CCorr) and the columns represent the frequency bands (theta,
alpha, beta1, beta2, and gamma). The pairs of large circles in each cell
represent the heads of the participants in a pseudo-pair. The smaller circles
indicate the topographical location of the EEG recording electrodes. For PLVt

and CCorr, lines drawn between the heads joining electrode sites indicate

that there was a significant change in connectivity from the pre- to the
post-stimulus periods between the first member of a pseudo-pair and the
second member. Red lines indicate an increase in connectivity from the pre-
to the post-stimulus period and blue lines indicate a decrease. For PDC1, 2,
lines connecting electrode sites between the heads show that neural activity
in the first member of a pseudo pair was more predictive of the neural
activity of the second member of the pair in the post-stimulus period than in
the pre-stimulus period. Allocation to first or second member of the
pseudo-pair was arbitrary.

from the expected phase than to changes in the covariance of
the phases (Table 1). The result is that any change in the vari-
ance of the marginal distributions of deviations from the expected
phase will be identified as a change in hyperconnectivity whether
or not there is any real change in the covariance of the signals.
Indeed, using PLV to measure hyperconnectivity is akin to trying
to determine the correlation between two continuous variables
by measuring the variance of the difference between them; the
difference is related to co-variance (see Equation 5), but only
indirectly so.

Instead, it may be more appropriate to use a measure that esti-
mates the co-variation of the distributions directly. Both COH
and PDC measure the co-variation between the signals (to be
precise, the cross-power spectral density) and so should be suit-
able for this purpose. However, both methods assume that the
covariance between signals is stationary throughout an epoch,
which in our simulations, it was not. The rapidly changing phase
shifts in our simulations are the most likely reason for the poor
performance of COH and PDC here. CCorr also estimates the
co-variation of the distributions directly but does not assume a
constant phase relationship across each epoch and we were able to
show in the simulations that it provides an unbiased estimate of
hyperconnectivity with a very low RMSE. In addition, we showed
that a more general measure of hyperconnectivity, which esti-
mates mutual information rather than phase-covariance, KMI,
also performs well, although there was a small positive bias

FIGURE 13 | Mean Hyperconnectivity values for time-averaged resting

state EEG by connectivity measure and frequency band.

in the estimates and the computational demands were much
greater.

The persuasiveness of simulations depends in no small mea-
sure on how realistic one perceives them to be, so it is often
helpful to supplement them with evidence from real data. By
creating pseudo-pairs of participants from EEG data recorded
in completely independent sessions, and analyzing them as if
their data had been collected during a hyperscanning study, we
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Table 1 | Showing the proportion of variance accounted in each

connectivity measure by correlation and concentration.

Connectivity

measure

Zero-lagged data 100 ms-lagged data

source of variance (%) source of variance (%)

R κ r by κ Error R κ r by κ Error

COH 18.2 77.3 2.5 2.0 16.7 78.4 2.8 2.1

PDC1, 2 1.2 85.8 1.0 12.0 39.5 56.9 0.9 2.7

PDC2, 1 0.4 86.4 0.9 12.3 22.1 55.3 16.1 6.6

PLVt 15.6 76.2 7.9 0.3 0.8 97.8 1.1 0.2

CCorr 99.0 0.3 0.2 0.6 62.7 2.1 1.4 33.8

KMI 95.6 0.0 0.0 4.4 0.0 0.1 0.0 99.9

could be confident that any hyper-connections observed would be
spurious. We considered two conditions. The first was an event-
related paradigm that might be expected to generate spurious
hyper-connections because the participants were subject to sim-
ilar sensory experiences and this comparison was designed to
emulate the case of induced synchrony (Figure 1B). The second
was a comparison of two resting states (eyes open and eyes closed)
in which there was no exogenous stimulation and this compari-
son was designed to emulate the case of co-incidental synchrony
(Figure 1D).

In both the event-related and resting-state paradigms, PDC
and CCorr each identified a small number of spurious hyper-
connections that differed between conditions. Most of these
connections were weak (<0.1) and some showed an increase
in hyperconnectivity whilst others showed a decrease and they
can easily be dismissed as Type-1 errors. The only exception
to this was the anomalous finding of multiple spurious hyper-
connections using PDC1, 2focused on a single electrode (FP1).

A very different pattern was seen in the case of PLVt , however.
In the event-related data, nearly 20% of all possible connections
in the theta frequency band (n = 145) were erroneously found to
be significantly higher in the post-stimulus period. In addition,
the strength of connectivity was strong with a mean PLVt of 0.51.
There were also multiple spurious hyper-connections found using
the trial-averaged PLVn with 14 (1.8%) and 10 (1.3%) found in
the theta and alpha frequency bands although the strength of the
connections was weak, 0.13 and 0.12 respectively. In the resting
state comparisons, PLVt showed a decrease in hyper-connectivity
from the eyes open to the eyes closed conditions in 54 cases (7%)
whilst in alpha, there was a corresponding increase in 170 (22%)
hyper-connections and again, the strengths of the connections
were moderately strong with a mean value of 0.37 in theta and
0.41 in alpha.

This strong and systematic pattern of findings using PLV
in these very different paradigms is troubling because, in the
absence our knowledge that these hyper-connections must be
spurious, they might easily have been accepted as real. Such
a large number of hyper-connections cannot easily be dis-
missed as Type-1 errors. The problem of multiple comparisons
is well-understood by hyperconnectivity researchers and most
recent studies have included appropriate statistical mechanisms
to control the family-wise Type-1 errors that would otherwise

ensure. In this case, a robust and well-established method for con-
trolling the family-wise Type-1 error control had been used but
the real problem is that spurious connections were found despite
these precautions. The clear implication is that statistical con-
trol of Type-1 errors is not sufficient to guard against detecting
spurious connections.

Far from being a statistical artifact, it is likely that the large
numbers of spurious hyper-connections identified by PLVt arose
from real similarities between the EEG recorded from different
participants. In general, any systematic difference between the
experimental conditions that affects the variance of the phase dif-
ference of the EEG recorded, will affect the PLV. This might occur
in a number of ways but would include, for example, a systematic
difference in rhythmicity between conditions. Any strong oscil-
latory component in the EEG means that the phase at any time
point is much more predictable (i.e., the phase variance is lower).
If the phase variance in one or both EEG channels is reduced,
the variance of the phase difference will also be reduced and this
means that PLVt will be higher.

For this to happen, it is necessary that the change in rhyth-
micity is one that reliably occurs in most individuals but this
is not difficult to achieve. The remarkably consistent, yet reli-
ably predictable responses of the EEG to challenges attest to
this (e.g., event-related potentials and event-related desynchro-
nization). Given the same stimulation and cognitive and motor
demands, any arbitrarily chosen group of neurotypical partic-
ipants will produce event-related changes in their EEG that
look very much like those produced by any other neurotypical
group. Change the stimuli or the demands, and the topog-
raphy and time-frequency characteristics of the responses will
change in predictable ways. In short, different people pre-
sented with the same conditions will produce similar EEG
responses.

Most of our spurious hyper-connections can be explained
through this mechanism. Consider the resting state comparisons.
The difference between the eyes open and eyes closed resting
states is typically characterized in terms of the Berger effect in
which opening the eyes severely attenuates the alpha rhythm. That
is, the rhythmicity in alpha is greater when the eyes are closed than
when they are open. We should expect, therefore, that in the alpha
frequency band, PLVt would be higher when the eyes were closed
and this is what we observed. In addition, there is a stronger theta
rhythm in the eyes open condition than in the eyes closed condi-
tion so we should expect to find higher PLVt with eyes open, and
this too was seen (Figure 12).

The same phenomenon can account for the spurious hyper-
connections seen with the event-related data. The presentation
of a visual stimulus, like a face, will induce a power increase in
the theta frequency range in the post stimulus period (i.e., theta
synchronization) (Burgess and Gruzelier, 1997). The presence
of a stronger oscillatory component in the post-stimulus period
meant that phase variance was lower than in the pre-stimulus
period giving higher PLVt values (Figure 8). One might also have
expected a reduction in PLVt in alpha because the presentation of
a visual stimulus is invariably followed by a power reduction in
that frequency range (alpha desynchronization) but this was not
seen in this case.
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A similar mechanism can account for the spurious synchro-
nizations detected by the trial-averaged PLVn. The presentation of
a visual stimulus induces a phase-re-organization of the ongoing
EEG (Burgess, 2012). In the pre-stimulus period, a cross-section
across trials at any given time point, would show that the phases
were randomly distributed. In the post-stimulus period, although
the EEG is not strictly phase-locked, the phase-variance is much
reduced and this reduction of phase-variance within each chan-
nel means that the phase difference between channels will also
be reduced. The result is the increase in PLVn that we observed
(Figure 10).

The important point to note is that the statistically signifi-
cant but spurious differences in PLV observed derived not from
any connection between the participants involved but from the
fact that our experimental conditions were associated with sys-
tematic differences in the rhythmicity of the EEG. This has two
important implications for the field of hyperscanning. First, it
means that spurious hyper-connections are likely to be found
under a broad range of experimental conditions as any systematic
difference between conditions in terms of movement, stimulus
presentation or mentation could have this effect. Second, these
spurious connections are not Type-1 errors that can be overcome
using a statistical control for multiple comparisons.

There are two obvious ways to tackle this problem: improved
experimental control and the use of a different measure of phase
synchronization. There is certainly no substitute for good exper-
imental design and if the conditions to be compared can be
matched in terms of stimulus presentation and movement, and if
appropriate control conditions are used, then much of this prob-
lem would be resolved. Indeed, this is already the case with the
better designed studies in the field. However, although it might be
possible to obtain this level of experimental control in restricted
social situations, one of the key attractions of hyperscanning is
that it has the potential to open a window on the neural co-
ordination of people socially interacting in the real world. Not for
the first time, strict experimental control and ecological validity
stand in opposition to one another.

The other approach to tackle this problem is to adopt an alter-
native measure of phase synchronization. Any measure that is
sensitive to changes in the marginal distributions of deviations
from the expected phase is also likely to be sensitive to changes in
the rhythmicity of the EEG. Although PLV was the most problem-
atic measure in this context, at least in terms of detecting spurious
hyper-connections in human EEG, the simulations showed that
PDC and COH were also vulnerable in this respect, at least under
certain circumstances. The real problem is that, although the PLV
is widely used as a measure of phase synchronization, a high value
of PLV does not necessarily mean there is any true phase syn-
chronization at all. If we wish to claim that two time series, or,
in this case, two phase series, are related to each other, we need to
show that deviations from the dominant frequency in one oscil-
lator co-vary with deviations in the other. Had the pendulums
on Huygens’s clocks simply shown a consistent phase relationship
to each other, he would never have discovered the phenomenon
of phase synchronization. What surprised him was not that the
pendulums remained in the same fixed phase relationship to each
other where they’d started, but that they progressively shifted

phase until their swings became aligned. As Pikovsky et al. (2001)
put it, “This adjustment of rhythms due to interaction is the essence
of synchronization.”

This emphasis on synchronization has been unfortunate
because what most EEG hyperscanning researchers wish to show
is that cortical oscillations from different people are systemati-
cally related to each other in a way that depends upon their social
interactions. This means that we need to show that there is covari-
ance (or more generally, mutual information) between the EEG
of the people concerned. Synchronization is one way of doing this
but, as this study has shown, there may be advantages from using
a measure of correlation instead. Fortunately, we have at least
two candidate measures that might serve: CCorr and KMI. CCorr
is insensitive to changes in the marginal distributions of devia-
tions from the expected phase and, hence, resistant to changes in
the rhythmicity of the EEG because it measures the co-variation
between phase series. Adopting this measure, or some suitable
alternative such as KMI, may not solve the problem completely,
but it may go a long way to reducing the risk of detecting spurious
hyper-connections in future.

To conclude, existing measures of hyper-connectivity are
biased and prone to detect coupling where none exists. In partic-
ular, spurious hyper-connections are likely to be found whenever
any difference between experimental conditions induces system-
atic changes in the rhythmicity of the EEG. These spurious
hyper-connections are not Type-1 errors and cannot be con-
trolled statistically. Measures of the co-variance or mutual infor-
mation between phases-series provide more robust evidence of
true hyperconnectivity and are to be preferred in this context.
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APPENDIX: THE 2 DIMENSIONAL VON MOSES
DISTRIBUTION
The probability density function of the von Mises distribution in
given by:

f (φ) = eκ cos(φ − μ)

2πI0(κ)
(A1)

where φ is the phase (−π < φ < π), μ and 1/κ are analogous
to the mean and variance of the normal distribution respec-
tively and I0(κ) is the zero-order modified Bessel function. In two
dimensions, circular variables can be represented as a probability
distribution on a torus and a convenient parallel to the bivariate
normal distribution is given by the two dimensional von Mises
distribution whose probability density function is given by Singh
et al. (2002):

f (φ,ψ) = 1

C
e[κφ cos[(φ − μφ)] + κψ cos[(φ − μψ)]

+ λ sin[(φ − μφ)] sin[(ψ − μψ)]] (A2)

where C is a normalizing constant and λ is a parameter describ-
ing the statistical dependency between the two distributions φ

and ψ. Concentration values of, κ, were defined so that κφ = κψ

and the values used in the simulations were [0.25, 0.5, 1, 2, 4,
8]—see Figure 2. The mutual information, Iφψ, between distribu-
tions depended upon λ and κ and could be estimated accurately
through numerical integration (Hnizdo et al., 2008). Values of λ

were selected for each value of κ, that generated distributions with
mutual information values of [0, 0.0204, 0.0872, 0.2231, 0.5108].
For convenience, mutual information values were converted to
putative correlation values by the relationship r =

√
1 − e−2Iφψ

giving values of [0, 0.2, 0.4, 0.6, 0.8] respectively.
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