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Abstract

Many species of plants produce leaves with distinct teeth around their margins. The presence and nature of these teeth can
often help botanists to identify species. Moreover, it has long been known that more species native to colder regions have
teeth than species native to warmer regions. It has therefore been suggested that fossilized remains of leaves can be used
as a proxy for ancient climate reconstruction. Similar studies on living plants can help our understanding of the
relationships. The required analysis of leaves typically involves considerable manual effort, which in practice limits the
number of leaves that are analyzed, potentially reducing the power of the results. In this work, we describe a novel
algorithm to automate the marginal tooth analysis of leaves found in digital images. We demonstrate our methods on a
large set of images of whole herbarium specimens collected from Tilia trees (also known as lime, linden or basswood). We
chose the genus Tilia as its constituent species have toothed leaves of varied size and shape. In a previous study we
extracted c:1600 leaves automatically from a set of c:1100 images. Our new algorithm locates teeth on the margins of such
leaves and extracts features such as each tooth’s area, perimeter and internal angles, as well as counting them. We evaluate
an implementation of our algorithm’s performance against a manually analyzed subset of the images. We found that the
algorithm achieves an accuracy of 85% for counting teeth and 75% for estimating tooth area. We also demonstrate that the
automatically extracted features are sufficient to identify different species of Tilia using a simple linear discriminant analysis,
and that the features relating to teeth are the most useful.
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Introduction

Characterizing the margin of leaves, including their teeth, is

important for several areas of botanical research. These include

modeling the climate and identifying species, both of which we

discuss here.

It was observed by Bailey and Sinnott in 1915–16 [1,2] that in

warm climates a greater proportion of plant species produce leaves

with entire margins (i.e. smooth leaf edges without teeth) and fewer

produce dentate or serrate leaves (i.e. with teeth on their margins).

Conversely, in cool climates more species tend to produce toothed

leaves. Due to the presence of a large number of well-preserved

leaves in the fossil record, it has also been proposed that the

morphology of fossilized leaves can be used as a ‘‘paleotherm-

ometer’’ to aid in modeling past climates [3–8].

This estimation of temperature by calculating the proportion of

toothed species at a site is called ‘‘leaf margin analysis’’ (LMA)

[3,5]. In its standard form, this is a very simple univariate model

predicting mean annual temperature from the proportion of

species with entire (toothless) margins. This relationship has been

empirically shown to hold for a range of temperate and tropical

forests of dicotyledonous trees although it becomes less accurate

for very cold, dry regions. Note that the term ‘‘blade’’ refers strictly

to the flat part of a leaf, while ‘‘leaf’’ refers to both the blade and

the petiole (stalk); in this work, we are only interested in the blade

and its margin [9].

In this classical LMA, each species is given a binary value simply

recording the presence or absence of teeth. There have been

attempts to produce more accurate models by introducing more

variables and characterizing the leaf margins using more

sophisticated measures than simply the presence or absence of

teeth. For example, CLAMP [4] included scores for the presence

of lobes and teeth, seven different leaf size classes and three leaf

shape classes. Such characters are still limited to having only two

(or a few) valid states, as opposed to continuous measurements of

size, shape etc. Also, the character states are defined ambiguously,

meaning that different researchers interpret them differently.

[5,10].

One more recent approach is ‘‘digital leaf physiognomy’’ [6–8],

a rigorous method of analyzing the size and shape of leaves, both

fresh and fossilized. This extends the classical LMA approach in

several ways, including the incorporation of continuous variables.

For example, it includes a count of the number of teeth present,

rather than just a binary present/absent indication, along with

blade area, perimeter, length and width. Some studies have also

specifically included measures of tooth area and blade area and

their ratio [11], as we do here. Huff, Wilf and Azumah [7]

collected 283 leaves from three distinct living floras (two temperate
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forests and one tropical moist forest). Using Adobe Photoshop 6.0,

they touched up each image to restore obviously damaged

sections, then manually selected every tooth and separated them

from the rest of the lamina. They then calculated the area of the

whole leaf lamina and the area of the separated teeth. A more

recent study by Peppe et al. [8] uses the same methods on a much

larger scale, analyzing over 6500 leaves from 92 diverse sites

(including tropical rainforests, temperate forests, shrubland, and

desert) as well as analyzing 10 fossil floras, and used ImageJ

software (http://rsb.info.nih.gov/ij) to estimate teeth area. This

required a great deal of manual effort to first identify the boundary

of every tooth. Related work has measured the change in leaf

shape along temperature gradients [12]. In this paper, we describe

software that automates this process and we compare this against

manual measurements replicating the digital leaf physiognomy

methods.

In both digital leaf physiognomy studies mentioned above, the

analysis was repeated manually for every leaf, a process the

authors acknowledge to be ‘‘labor intensive’’ [7] and to risk

introducing human error. They state that ‘‘no existing software

can discriminate teeth from leaf lamina with sufficient reliability’’

[7]. They also used the major axis length as a proxy for leaf (blade)

length, arguing that this latter ‘‘must be measured manually’’.

While major axis length is highly correlated with blade length,

they acknowledge that some leaves are wider than they are long,

which will result in misleading length estimates. To overcome this,

they typically calculate the ratio of major axis to minor axis (the

length to width ratio) whereas we use estimates of the blade length

and width as defined in standard botanical works [9,13]. Also,

some leaves, including those of some Tilia species, can be

asymmetric to the extent that the major axis is somewhat

displaced or rotated from the usual measurement position of

length. Our work goes some way to addressing these gaps by

developing software that can find, count and characterize teeth

automatically to complement our recent work [13] that automat-

ically measures the length of a leaf’s lamina.

Although the function of marginal teeth is still a matter of

debate [8], one theory suggested by Royer and Wilf is that teeth

increase gaseous exchange and allow more photosynthesis,

especially during the early growing season [14]. They also suggest

that the surface area:volume ratio will be highest at the edges of a

leaf, and raised further by the presence of teeth. Larger surface

area:volume ratios will allow improved gaseous exchange, and

therefore photosynthesis and growth, especially in the early

growing season in cold, wet climates. This increased gaseous

exchange occurs alongside increased sap flow [2,4,14]. In such

climates, there is also a risk of leaves becoming over-saturated with

water, filling intercellular air spaces with water and so reducing the

rate of CO2 absorption and therefore of photosynthesis [15]. In

warmer climates, these benefits may be outweighed by the cost of

increased water-loss [8].

Besides climate modeling, the counting and characterizing of

leaf margin teeth can also play a part in species identification. For

example, Pigott [16] provides a formal taxonomic description of

cultivated species of Tilia, the genus we use in our experiments

here, and provides a taxonomic key (a branching set of rules used

to identify species). When distinguishing certain species, he

includes descriptions of teeth size and/or variation in size as

relevant features. For example, part of Pigott’s key relating to T.

japonica includes ‘‘uniform triangular teeth less than 1.5 mm wide

and long…’’ while the part of the key relating to T. mongolica

includes ‘‘leaf-margins with a few large teeth…’’. The leaves we

analyze in this paper are from specimens stored at the herbarium

of the Royal Botanic Gardens, Kew. They were collected from 18

species of Tilia; further details of these specimens are given by

Corney et al. [13] A broader review of the classification of the Tilia

genus is provided by Clark [17]; see also Pigott’s forthcoming book

[18]. In addition, a general review of species identification using

images of botanical specimens has recently been published [19].

Identifying species from images of leaves, flowers or other plant

organs is challenging for a number of reasons. Such structures are

typically non-rigid and three-dimensional, which means that

consistent, high-quality images are hard to generate. Furthermore,

as the plant material dries out, it typically changes color, texture

and shape, and these can continue to change for some time after

collection. Leaf shape can vary considerably not only between

different specimens of the same species, but also between different

leaves on the same plant. Some plants exhibit ‘‘heteroblasty’’,

where leaf shape varies along a single stem as the leaves develop.

These and other issues are discussed in detail in [19].

One of the more successful general-purpose plant species

identification systems is ‘‘LeafSnap’’ [20], which runs on a mobile

phone and attempts to recognize species from images. However,

this system is limited to the range of plants found at three sites in

the United States. It can recognize a few hundred species.

Estimates of numbers of species of flowering plants (or angio-

sperms) vary from about 220,000 [21] to 420,000 [22].

Figure 1 shows detail from a typical herbarium specimen. The

leaf of interest has a toothed margin, and appears relatively

undamaged. In many cases, such leaves are partly hidden behind

other leaves or non-leaf objects, and often also show damage from

tearing or from herbivores. This makes automated image analysis

more challenging than it is for fresh, undamaged leaves, but

digitized herbarium specimens are available in large numbers and

are botanically important. Collectively, the world’s major herbaria

contain over 350 million specimens [23] that have been collected

from around the world for over 250 years, and many of these are

in the process of being digitized. In this work, we will be analyzing

herbarium specimens rather than fresh or fossilized leaves.

Having established that is it useful for botanists to count and

characterize any teeth present on a leaf margin, let us consider

three options for measuring teeth.

Manual
Leaves can be examined by hand either in the field or in

herbaria. This approach is accurate for counting teeth, although

rather slow and labor intensive. It is also hard to estimate tooth

area or perimeter however, which is perhaps why such characters

are rarely used in traditional taxonomic keys for species

identification. Although accurate, it is worth noting that people

are not perfect at counting large numbers of objects, so repeated

trials are likely to generate slightly different results, even if great

care is taken. When measuring leaf area, it has been found that

measurement errors account for less than 0.1% of the total

variation [24], the main variation being due to variability of leaves

within a single tree and among populations.

Digitized
If digital images of leaves are created and examined, then tools

such as ImageJ can be used to measure tooth area and related

features. This still requires great manual effort, to select the

boundary of each tooth in a graphics package, for example, which

limits possibilities. There will still be some variation between

different people performing the same task, as different users will

inevitably draw slightly different boundaries or make different

decisions when selecting teeth.

Automating Digital Leaf Measurement
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Automated
If specially-written software is used that automatically analyzes

digital images, with minimal human effort required, then

arbitrarily large sets of leaves can be analyzed. Furthermore,

software can measure features such as area and angle as well as

counting teeth. The cost to this approach is that software tends to

fail to reach human performance levels at tasks such as those

involving pattern recognition and image processing. Thus, as in

many other areas, there is an inevitable trade-off between

automation and accuracy.

The main purpose of the algorithm described here is to

automate a task that is currently carried out in a manual and/or

digitized (but not automated) fashion, and thus to increase the

value of specimens in herbaria for studies of morphological

variation. With such automation, there is always a trade-off

between a gain in speed and a loss of precision. The automated

system we describe here may be less accurate than the manual

approach, but it requires minimal human intervention and only

readily-available computer resources. The main goal is speed:

once extracted, thousands of leaf images can be processed in less

than an hour, allowing for far larger studies than would otherwise

be practical or possible.

One existing system for leaf analysis is the WinFOLIA software

tool (http://www.regentinstruments.com/products/folia/FOLIA.

html). This is a commercial tool that can be used as a portable leaf

area meter, and is capable of counting teeth and measuring tooth

area, along with a number of other botanically relevant features. It

is not clear how successful this would be for analyzing herbarium

specimens, as opposed to single-leaf images, but it does include

tools to allow the user to manually separate the leaf from

background clutter, and to manually select and ‘‘restore’’ damaged

parts of the leaf.

We recently demonstrated a method for automated character

extraction from whole herbarium specimens [13]. In that work, we

described software that automatically analyzed images to locate

leaves and to find the exact boundary of those leaves. In brief, that

software used deformable templates, optimized by evolutionary

computing algorithms, to quickly find the approximate location of

each leaf in the image. This approximation was then improved

using a level-set method to find the exact boundary separating the

leaf from the background (plain paper) and from other objects

present (such as other leaves, stems, flowers). Having found and

recorded the outline of each leaf, that system then used local

morphological characteristics to identify the primary vein and then

automatically extracted the length and width of each leaf blade.

With minimal human effort, this system analyzed 1127 images and

located and measured 1645 leaves. Although the results were not

perfect, the quality was high enough to obtain a strong correlation

between the extracted leaf blade dimensions and similar measure-

ments reported in the literature.

Here, we extend that work and describe a new algorithm that

analyzes the leaf outlines that have been extracted from the whole

herbarium specimens. We use local morphological features to

locate any teeth present on the margin of the leaf lamina. Once

located, we represent each tooth as a triangle and measure its area,

perimeter, internal angles and other features as described below.

We compare these automatically extracted characters with a

manually measured sample, and demonstrate their value in a

simple species identification task. We have limited our studies here

to images of herbarium specimens, and not experimented with

either a) images of isolated fresh leaves nor b) images of fossils. We

Figure 1. A detail from a typical herbarium sheet. In this example, the leaves are held in place with glue, which are seen here as translucent
blobs. Other non-leaf objects appear, such as the stalk at the top. The specimen is mounted on heavy cartridge paper (c. 420|270 mm).
doi:10.1371/journal.pone.0042112.g001
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believe that compared to the current work, the first of these is

likely to yield better results, as the leaves are undamaged, while the

latter is likely to yield worse results, as fossils are often fragmented.

While further research is necessary, we believe that our methods

are a useful contribution to the area.

Methods

We now describe our algorithm and two sets of experiments to

evaluate it. We compare the algorithm’s estimates of tooth count

and tooth area with manual estimates and then use the extracted

characters to perform basic species identification.

Tooth-finding Algorithm Details
In previous work [13], we described a method for finding the

outline of leaves in digital images of whole herbarium specimens.

Such outlines can also be found from images of isolated leaves on

plain backgrounds using straightforward segmentation methods

(e.g. [19,25]). In this work, we use the outlines found by our

previous software, though all our methods require is that the edges

of the leaves are represented as an ordered set of 2D Cartesian co-

ordinates. We do not assume that the outline is ‘‘perfect’’, nor that

the leaf itself is free from damage. Instead, we attempt to locate

and characterize any teeth that are present and do not attempt to

infer the characteristics of any ‘‘missing’’ teeth. Here, we provide

details of our algorithm for finding and characterizing marginal

teeth, given a leaf outline.

For each leaf outline, we first find the centroid of the leaf by

calculating the mean of all the edge points (Figure 2A). We then

calculate the distance from the centroid to each edge point in turn

(Figure 2B). We then analyze the local morphology to identify

teeth by calculating the change in the distance to the centroid.

Intuitively, the tip of a tooth will be represented as a local

maximum of this function, while a sinus between two teeth will be

represented by a local minimum. By taking the first numerical

difference of the distance vector, we can find all such local extrema

(Figure 2C). Table 1 provides an outline of the main algorithm.

Note that we count all teeth present and do not distinguish

between primary and secondary teeth.

Let xi~(x0,x1)[<2 be the ith point on the margin of a leaf,

defined by the image co-ordinates (x0,x1). Then the centroid

M~
1

n

Xn

i
(xi) where n is the total number of points on the edge.

The distance from each marginal point to the centroid is

di~M{xi. As an initial approximation, where diwdi{1 and

diwdiz1, we label di as the tip of a tooth and where divdi{1 and

Figure 2. Centroid-contour plots. A) The outline of a single leaf with the centroid marked. B) The centroid-contour plot for the same leaf. The left
side of the plot corresponds to the leaf tip (marked ‘T’) and moves clockwise around the leaf through the insertion point at the top of the leaf
(marked ‘IS’) and back to the tip at the right hand side. C) A detail of the centroid-contour plot around the insertion point. Here, individual teeth tips
are marked by our software with a circle and each sinus is marked with a cross.
doi:10.1371/journal.pone.0042112.g002

Table 1. Outline of algorithm for tooth finding algorithm.

Input: a set of coordinates x[R2

teeth /1

sinuses /1

M/ centroid(x)

# Calculate distance from centroid to contour:

for i/1 toDxD

di/Dx{MD

# Identify probable teeth and sinuses

for i/1 toDxD

if diwdi{1 and diwdiz1 then add i to teeth

if divdi{1 and divdiz1 then add i to sinuses

sdt/ standard deviation of dt,Vt[ teeth

sds/ standard deviation of ds,Vs[ sinuses

# Remove excessively large (or small) teeth from final set

for i[teeth

if diw2|sdt,teeth/teeth\di # remove unusually large objects

if area ið Þv15, teeth/teeth\di # remove very small objects

if
di{ min di{1,diz1ð Þ

min di{1,diz1ð Þ w0:25, teeth/teeth\di # remove lobes

Output: teeth, sinuses

Pseudocode for tooth finding algorithm. Teeth are initially defined as locally
maximum centroid-contour distances. Very large objects, very small objects and
lobes (with incision fractions greater than 25%) are then removed from this set.
doi:10.1371/journal.pone.0042112.t001
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divdiz1, we label di as a sinus. In this simplest of forms, the

method will often detect minor defects in the leaf and falsely label

them as teeth; to reduce this, we ignore very small local deviations,

and only label a point as a tooth if it has a distinct sinus on both

sides. We also reject all candidate teeth that are much larger than

average to remove incorrectly identified regions. Specifically, we

initially calculate the standard deviation of the areas of all the

candidate teeth, and then reject anything that is more than two

standard deviations above the mean. This often occurs where

leaves have been damaged, because a torn edge can resemble a

serrated margin. Such a correction should also help to distinguish

teeth from lobes, although the Tilia specimens that we are

analyzing here do not tend to be lobate. The Manual of Leaf

Architecture [9] distinguishes a lobe from a tooth by considering

the depth of the incision. A tooth is a ‘‘projection separated by

sinuses that are incised less than 25% of the distance to the

midvein’’ [p. 28]. If the incision on either side is more than 25%,

the projection is considered to be a lobe [p. 26]. We incorporate

this threshold to reject lobes and not count them as teeth. As

described by Royer et al. ([6], Appendix S1), a more reliable test

to distinguish lobes from teeth involves measuring the distance

from the sinus to the midvein along the axis of symmetry of the

indentation. We use the shortest distance from the sinus to the leaf

centroid as an approximation to this.

Each tooth we find is defined by three points: the tip of the tooth

and the sinus to either side. Figure 3 shows five teeth from the

margin of one leaf, each represented by a white triangle. Figure 4

shows one of these teeth in detail, with the two sinuses labeled A

and B, and the tip labeled C. For simplicity, we treat the tooth as a

triangle and ignore the (typically very slight) deviations from

straight lines found in the sides of each tooth. Treating the tooth as

a triangle makes it trivial to calculate the area and the angle

between two outer edges of the tooth.

We model the nth tooth as a triangle AnBnCn. We use the

convention that a is the length of the side opposite corner A and so

on, so tooth n has a total outer edge of length anzbn. We also

define the base of the triangle (AB) as the implicit boundary

between the tooth and the rest of the lamina, which has a length of

cn. For each leaf, the software counts the number of teeth, the total

area of all the teeth, the angles at the tips of the teeth and the inner

perimeter. From these values, we can also derive features such as

the ‘‘frequency’’ of teeth (i.e. the number of teeth per unit length of

margin), the mean tooth area, and so on. A full list of all the

features used in this paper is given in Table 2.

We have implemented the algorithm using Matlab v.7.10

(MathWorks, Natick, MA, USA) on a standard desktop PC

(3.1 GHz CPU, 4 Gb RAM). Processing a single leaf takes around

0.8 s. This could undoubtedly be improved through further

optimization and/or using parallel computing. The source code is

available via http://www.computing.surrey.ac.uk/morphidas/.

Measuring Teeth Manually
In order to establish ground truth values and to evaluate the

software, we chose 50 leaves at random for a manual analysis. In a

few cases (six), the leaf extraction method described previously [13]

failed to work satisfactorily, and the automatically extracted leaves

were either very badly damaged, substantially hidden behind other

Figure 3. Detail showing several teeth from the margin of a
leaf. Each tooth is approximated with a triangle.
doi:10.1371/journal.pone.0042112.g003

Figure 4. A single tooth modeled as a triangle. The visible
pixelation is due to this being a small detail from a much larger image.
doi:10.1371/journal.pone.0042112.g004
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leaves, or had in some way been incorrectly extracted. To include

these images in the evaluation would mean penalising the tooth-

finding algorithm for mistakes made elsewhere. We removed these

examples and replaced them with different randomly chosen

leaves before carrying out the comparisons.

We followed previously-published methods for the manual

analysis [6–8]. Accordingly, we used the open-source image editor

GIMP (www.gimp.org/) to edit the image of each leaf, cutting

each tooth in turn and pasting it into a second image file, counting

the teeth in the process. We then loaded this latter file into ImageJ

v.1.42q (National Institute of Mental Health, Bethesda, Maryland,

USA; http://rsb.info.nih.gov/ij), and used the ‘‘Analyze particles’’

routine to calculate the number and area of the teeth. The whole

process took in the order of 20 minutes per leaf after initial

training, with most of time consumed in selecting individual teeth.

We do not count the very tip of the leaf as a tooth, as this area

includes the primary vein [7]. The tip is often 10 or 20 times larger

than the teeth of the same leaf. Including this as a tooth would

distort measures such as the mean tooth size, total tooth area and

so on.

Note that the area calculated by ImageJ is based on the number

of pixels forming each tooth and unlike our software, it does not

assume that each tooth is triangular. The ImageJ results therefore

incorporate the typical slight convexity of teeth, which could lead

to a small discrepancy in the results compared to our software’s

output.

We measure the accuracy of counting the teeth using the

relative error. If the software found s teeth and the manual

inspection found m teeth, then the relative error is e~
Dm{sD

m
.

Similarly for the area, we calculated the relative error based on the

difference between the software’s estimate of total area and the

manual calculations (via ImageJ). These relative areas are unitless

and allow us to compare errors relating to leaves with widely

varying characters. We also calculate the root-mean-square (RMS)

error, which has the same units as the features being measured.

We assume that the manual measurements are perfect, though we

acknowledge that some errors are inevitable. For comparison,

Huff et al. [7] estimated the error in their manual area

measurements as less than 1 mm2, although no details are given.

Table 2. List of automatically extracted features.

Blade length L

Blade width W

*Number of teeth N

Total blade area S

Total blade perimeter P

*Total length of outer edges PO~
XN

n~1
(anzbn)

*Total tooth base length PB~
XN

n~1
c

*Inner perimeter (i.e. perimeter of blade after teeth are removed) PI ~P{POzPB

*Total area of teeth
ST ~

XN

n~1

1

2
D~AAB|~BBCD

*Blade area excluding teeth P{ST

Compactness 4pS

P2

Shape factor P2

S

*Mean angle at tip
T~

1

N

XN

n~1
arccos

~AAC:~BBC

a:b

 !

*Frequency of teeth N

PI

*Relative tooth area ST

S

*Mean ratio of lengths of outer edges 1

N

XN

n~1

an

bn

Perimeter Ratio P

PI

*Tooth Area Blade Ratio ST

S{ST

*Tooth Num Blade Ratio N

P

*Mean Tooth Area ST

N

List of extracted features. The right-hand column gives the definitions in terms of the points A and B (the two sinuses) and C (the tooth tip), as in Figure 4, with a being

the length of BC, b the length of AC and c the length of AB. The form
PN

n~1 refers to summing a value across all the identified teeth.

*Tooth-related characters. Features without a star relate to the blade but not specifically the teeth. Some of the experiments here distinguish between ‘‘tooth related’’
and ‘‘non-tooth related’’ characters.
doi:10.1371/journal.pone.0042112.t002
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Classification Methods
To test the effectiveness of automatic character extraction, we

carried out some simple species identification experiments. The

main goal here is to test the usefulness of the automatically

extracted tooth-related features, rather than to produce the

optimum classifier. We therefore only use a subset of the data

and a simple classifier, as we discuss below. Note that the term

‘‘classification’’ is used in taxonomy to refer to the grouping of

items by similarity. Here, we use the word in the statistical and

machine learning sense: the assigning of an item to one of a fixed

set of pre-defined classes. In taxonomy, this is often called

identification, or in this case, species identification.

We use linear discriminant analysis (LDA) as this simple method

provides a useful benchmark. The results are likely to be improved

by using more sophisticated non-linear algorithms such as support

vector machines or artificial neural networks, as we describe in

related ongoing work [26]. The LDA method works by estimating

the parameters of a Gaussian distribution for each class being

modeled. For each previously unseen test point, the probability of

it having been generated by each distribution is calculated and the

class with the highest probability is assigned to that point. To

provide an unbiased estimate of the model accuracy, we need to

divide the data into a non-overlapping training set (90% of the

records), used to estimate the model parameters, and a testing set

(10% of the records), used to estimate its accuracy.

We use LDA to predict the species labels using the extracted

features. The classes used have widely ranging sizes, because

different numbers of leaves were found for each specimen and

because the number of available specimens varied widely between

species. In a number of cases, very few leaves were found for some

species. To mitigate these issues, in this part of the analysis we

restrict the scope to the four species with the greatest number of

available leaves, namely Tilia cordata, T. americana, T. platyphyllos

and T. tomentosa. We balanced the data set by randomly sampling

(without replacement) an equal number of examples from each

species, limited by the size of the smallest class. We then used

stratified sampling such that each training set contains (approx-

imately) the same number of samples of each species under

consideration. We also normalized the data so that each feature

had a mean of zero and a standard deviation of one. To obtain

reliable estimates of model accuracy we used 10-fold cross-

validation, and repeated the whole process 100 times to allow for

the effect of the randomized sampling. In each case, the model was

evaluated using a hold-out test set of data that had not been used

to build the model. Note that because the data sets are stratified,

all classes (i.e. species) have equal prior probabilities.

We carry out two sets of studies. First, we use a single multi-class

LDA to predict all four classes. This is a challenging task: requiring

one model to model several classes simultaneously is always hard.

Therefore we carried out a second set of studies using two-class

LDA models. Here, one LDA model is trained to classify T. cordata

and T. americana, a second trained to classify T. cordata and T.

platyphyllos, and so on, with a total of six classifiers.

In each study, we analyze the usefulness of the tooth-related

features by building classifiers using a) tooth features only; b) non-

tooth features only; and c) both sets of features. The non-tooth

features are leaf characters such as blade area and perimeter. The

automatic extraction of these features is described in [13]. Table 2

lists both sets of features.

Results

Counting and Measuring Teeth
Here, we estimated the accuracy of the software’s feature

extraction by comparing the output values to manual estimates

described above. The results are summarized in Table 3.

From the manual counts we found that this sample of 50 leaves

had between 22 and 86 teeth each, with a mean of 51.52 teeth per

leaf. The system predicted a mean of 54.24, showing only a very

slight over-estimation on average. The correlation between the

manual and software counts was r~0:873 (p&0), showing a very

strong positive correlation. The root-mean-square error between

the manual and software estimates was 8.76, suggesting that the

predictions were typically accurate to within less than 9 teeth

either way. In fact 78% of cases had single-digit errors, while the

largest errors were an underestimate of 21 teeth and an

overestimate of 18 teeth. A paired t-test shows a significant

difference (p~0:0267), suggesting some systematic pattern to these

errors despite the high overall accuracy. In this case, the mean

relative error is 0.15, which is equivalent to an accuracy of 85%.

Figure 5 compares the manual count (horizontal axis) with the

software’s estimated teeth count (vertical axis) for all 50 leaves.

The best-fit-line on the graph does not go through the origin, but

has a y-intercept of around 12. This shows that there is a small but

systematic over-estimate of the number of teeth, as noted above.

Thus although the software is not perfect, it does give a good

indication of the number of teeth present across a wide range of

values.

To complement this, we also manually measured the area of a

number of teeth using the ImageJ application, following the

methods described by Peppe et al. [8] and others. We manually

measured the area of 951 teeth, specifically those visible in 16

leaves drawn from the random sample of 50 leaves used above.

The total tooth area for a leaf was on average 76 mm2, compared

with the software’s estimated average of 67 mm2. The mean

relative error for total tooth area was 0.248, equivalent to an

accuracy of over 75%, and a root-mean-squared error of 24 mm2.

The worst case was an overestimate by 46 mm2, though most

errors were 10 mm2 or less. A paired t-test shows no significant

difference between the manual and automated estimates of area

(p~0:2654).

Species Identification
Having established the basic accuracy of our system, we now

demonstrate the potential value of automated leaf margin

character extraction, with some experiments in species identifica-

tion (Table 4). For the multi-class LDA, we randomly sampled 131

records from each class as that is the size of the smallest class.

Table 3. Summary of results.

Tooth count

n Manual Software Relative error RMS error

50 leaves 51.52 54.24 0.1496 8.766

Total tooth area

n Manual Software Relative error RMS error

951 teeth
( = 16 leaves)

75.96 66.79 0.2480 24.01

Summary of results, comparing the manual estimates of the mean number of
teeth per leaf and the total area of the teeth per leaf, with the software’s
estimates of the same measures. The mean relative absolute error and root-
mean-square error are also given.
doi:10.1371/journal.pone.0042112.t003
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Given that there are four equal-sized classes, it is trivial that a

purely random estimator would achieve an accuracy of around

25% true-positive. Using only non-tooth features, such as blade

length and width, produces an LDA with a classification accuracy

of just over 35%. A two-tailed t-test shows that the LDA using only

non-tooth features performs significantly better than the random

classifer would do (p&0). However, using the tooth features alone

produces an accuracy of over 42%, also a significant increase.

Combining tooth and non-tooth features gives a slight further

improvement to 43%.

We then created a series of 6 binary classifiers, each trained to

distinguish between two species. With just two balanced classes, a

random classifier would be 50% accurate. The average accuracy

of the 6 classifiers was 60.7% using non-tooth features, 67.8%

using tooth-features and 68.3% using all features. Each of these

successive improvements is significant according to two-tailed t-

tests (with p&0 in each case). Table 5 show the relative

performance of each pairwise classifier. It also shows that certain

pairs of species are relatively hard to classify, leading to low

accuracy scores. For example, T. tomentosa and T. platyphyllos are

only distinguished with around 57–61% accuracy, while T. cordata

and T. americana are distinguished with up to 81% accuracy.

These results clearly show that using the automatically extracted

features allows identification of species at considerably better than

chance rates. Furthermore, using tooth-related features signifi-

cantly improves the results compared with using other features.

Figure 5. Comparison of manual count of teeth on each leaf with the system’s estimate. Each cross represents one of 50 leaves. The line is
a least-squares best-fit line.
doi:10.1371/journal.pone.0042112.g005

Table 4. Species identification using multi-class LDA.

Features used Mean accuracy
Standard deviation of
accuracy

None (random classifier) 25.00 –

Non-tooth 35.38 1.69

Tooth 42.06 1.49

All 43.16 1.56

Comparison of LDA (linear discriminant analysis) classification accuracy using
different sets of features. The ‘‘random classifier’’ assigns class labels at random,
and scores 25% because there are four possible classes. The list of ‘‘tooth
related’’ and ‘‘non-tooth related’’ features is given in Table 2. Two-tailed t-tests
comparing each classifier’s accuracy with the classifier of the row above all
showed significance with p-value &0. Results shown are based on 100 trials.
doi:10.1371/journal.pone.0042112.t004
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Discussion

In this work, we have demonstrated that it is possible to

automatically locate and measure leaf margin teeth from images of

herbarium specimens, extending our previous work in this area

[13]. We have also shown that after identifying teeth, it is possible

to automatically extract characters from them such as tooth size

and shape. As far as we are aware, this is the first time such

automation of the analysis of leaf margins from herbarium images

has been demonstrated. We believe that the accuracy is sufficient

to demonstrate the potential benefits of automation in tasks such as

climate modeling and species identification.

This paper is focused on describing a novel algorithm and

performing some initial evaluation. We have therefore not

attempted to also carry out detailed climate modeling using the

extracted leaf features. One possible future study would be to use a

set of specimens that have already been used to estimate climatic

features, automate the character extraction, and build a similar

model. The results could then be compared with the model built

from manually-extracted characters.

Our results suggest a trade-off between speed and accuracy.

One option is to use manual estimations, which are relatively slow

but (allowing for slight human errors) highly accurate. The

alternative is an automated system such as the one we present

here, which reduces accuracy slightly but is significantly faster.

The manual measurements we used here for purposes of

comparison followed a similar procedure to that used in previous

work [7,8] and took around 20 minutes per leaf. The software,

running on a standard desktop PC took less than a second per leaf,

over 1000 times faster. This potentially allows far larger studies to

be carried out when the images are available, facilitating studies of

variation in species and populations. Ongoing digitization of

herbarium specimens means that such images are already

available in many cases.

The species classification experiments are included to demon-

strate the usefulness of tooth features in identifying species: they

allow pairwise classification with an accuracy of up to around 81%

in this case. As noted above, the accuracy could be improved

further in a number of ways, such as by using non-linear classifiers

(e.g. artificial neural networks), improved features (e.g. more

sophisticated modeling of tooth shape) or more sophisticated

feature selection methods. In a closely related study, we

demonstrated the use of artificial neural networks on equivalent

data, and achieved marginally stronger results [26]. Multiclass

classification is always a challenge, and it would be naı̈ve to expect

the methods we describe here to successfully scale up to

distinguishing between thousands of species. Identifying species

within a given genus is a more common task for taxonomists and it

is that task that we have demonstrated here, albeit for only a subset

of the species.

The method could also be applied to images of single leaves

(rather than extracts from herbarium specimens). This is likely to

improve the results, as single-leaf images tend to show leaves that

have been carefully selected to be free from major damage, and

free from obscuration or clutter from other objects in the image.

Fossilized leaves vary widely in quality in this regard, with some

being almost undamaged while others are reduced to fragments.

This presents a substantial challenge for any automated process,

but one that we feel is comparable to the challenges of analyzing

herbarium images, as these also contain damaged, overlapping or

incomplete leaves. In its current form, our method is not

appropriate for automated fossil leaf analysis but it is, we believe,

a step in that direction. We have only used our algorithm for

leaves of the genus Tilia; it may need some adjustments to work as

effectively with other genera, but the same approach should work

for a wide variety of leaves.
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