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Mitochondria in addition to be a main cellular power station, are involved in the regulation
of many physiological processes, such as generation of reactive oxygen species,
metabolite production and the maintenance of the intracellular Ca2+ homeostasis.
Almost 100 years ago Otto Warburg presented evidence for the role of mitochondria
in the development of cancer. During the past 20 years mitochondrial involvement in
programmed cell death regulation has been clarified. Moreover, it has been shown
that mitochondria may act as a switchboard between various cell death modalities.
Recently, accumulated data have pointed to the role of mitochondria in the metastatic
dissemination of cancer cells. Here we summarize the modern knowledge concerning
the contribution of mitochondria to the invasion and dissemination of tumor cells
and the possible mechanisms behind that and attempts to target metastatic cancers
involving mitochondria.
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INTRODUCTION

Mitochondria are intracellular organelles that produce the majority of the energy in the cells,
providing synthesis of ATP by oxidative phosphorylation (OXPHOS) (Mitchell, 1961). Beyond
energy production mitochondria have multiple functions including the generation of reactive
oxygen species (ROS), metabolite production, the regulation of intracellular Ca2+ homeostasis
and modulation of cell death pathways. Additionally, mitochondria contribute to the regulation
of signaling pathways linked to the cell proliferation, differentiation, and many others (Porporato
et al., 2018). The multiple functions of mitochondria allow cells to adapt to the changing of
environment, including the availability of nutrients and oxygen, making them perfect stress sensors
(Vyas et al., 2016). These functions also determine the crucial role of mitochondria in development
and progression of cancer. Indeed, mitochondria may drive tumor progression through adaptation
to changing metabolic demand, contributing to chemoresistance, and regulating cell death
pathways (Gogvadze et al., 2008). Furthermore, mitochondria have been shown to be linked to the
metastatic dissemination of cancer cells. Importantly, mitochondrial turnover, i.e., fission/fusion,
is deeply involved in the regulation of different mitochondrial functions and metastatic cascade.
However, the role of mitochondrial dynamics in cancer cell invasion and metastasis remains
highly controversial. Here we took an attempt to summarize the present knowledge about
the functions of mitochondria that contribute to the metastatic dissemination and invasion
including mitochondrial dynamics, cell death, oxidative stress, metabolism and bioenergetics,
Ca2+ signaling, and mtDNA (Figure 1). Additionally, we highlight the existing therapy approaches
to target metastatic cancers involving mitochondria.
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FIGURE 1 | Schematic representation of mitochondrial involvement in metastasis. Arrows or blunt ends indicate activation or inhibition, respectively. Red arrow
indicates increased level. ∗ - function depends on the tumor type. OXPHOS, oxidative phosphorylation; ER, endoplasmic reticulum; ROS, reactive oxygen species.
For details, see text. Figure is created using BioRender.

MITOCHONDRIA AND MIGRATION

Metastasis is one of the main cause of cancer patients’ death.
Metastatic dissemination is characterized by cell detachment
from the primary tumor mass, further migration through
blood and lymphatic vessels and colonization of different
tissues. The metastatic cascade can be subdivided into different
stages, including local invasion, intravasation, survival in
the circulation, extravasation, survival at a second site and
finally outgrowth at this site. The epithelial to mesenchymal
transition (EMT) is a biological phenomenon occurring
during embryonic development but also associated with
cancer metastasis (Chaffer and Weinberg, 2011). During EMT
cancer cells lose their epithelial features and temporally
acquire mesenchymal characteristics which allow them
to migrate from the original site in order to colonize
different tissues.

Epithelial to mesenchymal transition is regulated by various
molecular pathways including TGF-β/Smad, Wnt/β-catenin,
Notch, mitogen-activated protein kinase (MAPK), IKK/NF-
κB and PI3K/Akt (Lamouille et al., 2014), cytokines (e.g.,
TGF-β and EGF) and transcription factors Snail (Snai1),

Slug (Snai2), Twist (helix-loop-helix factor), and ZEB1/2
(zinc-finger E-box-binding homeobox) (Lu and Kang, 2019),
etc. Overexpression of EMT transcriptional factors leads to
the downregulation of epithelial markers and Tight Junction
proteins, such as E-cadherin, occludin, and claudins, which
in turn results in the loose of apical cell polarity (Lu and
Kang, 2019). On the other hand, EMT activation provides
the upregulation of mesenchymal markers: N-cadherin,
vimentin, and fibronectin. In addition, EMT is accompanied
by increased expression of matrix metalloproteinases (MMPs)
and urokinase plasminogen activator (uPA), which contribute
to the degradation of the extracellular matrix (ECM) and
the basal membrane of epithelial tissue (Lu and Kang,
2019). These events lead to the loss of cell-cell and cell
matrix adhesion contacts and an increase in cell motility
and cell migration, which are the hallmarks of metastasis
(Chaffer and Weinberg, 2011).

Mitochondrial Dynamics and Migration
Mitochondria have been shown to contribute to carcinogenesis
including metastatic dissemination and EMT by different
mechanisms. Being extremely dynamic organelles mitochondria
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continuously change their morphology undergoing fission
(fragmentation) and fusion (elongation). These processes
are regulated by highly conserved guanosine triphosphatases
(GTPases) (Senft and Ronai, 2016). Fission is controlled by
cytosolic dynamin-related protein 1 (Drp1), which is recruited
to mitochondria by adapter proteins, including mitochondrial
fission factor (Mff) and mitochondrial dynamics proteins
of 49 and 51 kDa (Mid49/51), where it forms oligomeric
ring structures and executes mitochondrial fission. Fusion is
mediated by two GTPases in the outer mitochondrial membrane
(OMM), i.e., mitofusins 1 and 2 (Mfn1, 2), whereas the inner
mitochondrial membrane (IMM) fusion is promoted by the
cristae-shaping protein Opa1 (Losón et al., 2013). In cancer
cells, mitochondrial fission/fusion is unbalanced due to the
mitochondrial dysfunction (Srinivasan et al., 2017). Several
studies have demonstrated that increased fission and/or
reduced fusion are associated with malignant transformation in
different types of cancer (Senft and Ronai, 2016). Furthermore,
upregulation of mitochondrial fission and increased expression
of Drp1 was shown to promote cancer metastasis (Zhao et al.,
2013; Sun et al., 2018a). For example, overexpression of Drp1
was detected in breast cancer metastatic cells compared to the
non-metastatic, whereas silencing of Drp1 or overexpression
of Mfn1 resulted in mitochondrial elongation and significantly
suppressed the metastatic properties of breast cancer cells (Zhao
et al., 2013). Similarly, increased mitochondrial fission was
observed in hepatocellular carcinoma (HCC) metastatic cells.
Comparison of levels of Drp1 in tumor samples and in the
normal tissues revealed its higher expression in the former,
which is associated with the promotion of tumor cell survival
and metastasis formation (Sun et al., 2018a). In addition,
downregulation of Drp1 inhibits glioma cells invasive properties
affecting cytoskeleton remodeling through the RhoA/ROCK1
pathway (Yin et al., 2016). Recent data have also suggested the
existence of a link between mitochondrial fission and hypoxia-
induced migration. The inhibition of Drp1 by Mdivi-1 leads
to the decreased migration induced by hypoxia (Han et al.,
2015). Taken together, these studies provide the evidence that
mitochondrial fission is required for cancer cell migration and
to support the metastatic potential of cancer cells. In migrating
cancer cells, mitochondria localize at the leading edge along
microtubules, where the energy demand is higher, providing
necessary supply (Senft and Ronai, 2016). Unfortunately, the
mechanism involving Drp1 in regulation of the process of
cancer metastasis remains not fully understood. Different
studies suggest that fission is required for efficient redistribution
of mitochondria, and the upregulation/activation of Drp1 is
associated with the migration of cancer cells (Zhao et al., 2013;
Senft and Ronai, 2016). Another study has shown that inhibition
of mitochondrial fusion may abolish invasion of syntaphilin-
depleted prostate adenocarcinoma cells. Syntaphilin suppresses
mitochondrial dynamics, cancer cell dissemination in vivo.
Moreover, its downregulation correlates with poor outcome
of cancer patients. Thereby, the silencing of both Mfn1, 2 and
syntaphilin abolished mitochondrial trafficking and abrogated
the migratory response (Caino et al., 2016). Thus, mitochondrial
dynamics are linked to cancer cell migration, and the relative

contribution of fission or fusion depends on tumor type and
molecular context.

ROS Contributes to Migration and
Metastasis
Reactive oxygen species constantly generated during the
metabolic process and play a crucial role in the regulation of
various cellular functions (Vyas et al., 2016). Mitochondrial
electron transport chain (ETC) is the main source of ROS (Vyas
et al., 2016). Complexes I and III are often regarded as the
major sites of mitochondrial ROS (mtROS) production, but more
recent studies indicate that at least ten other mitochondrial
enzymes also contribute to ROS generation, including Complex
II (Quinlan et al., 2013). The role of ROS in cancer remains
highly controversial. First, in cancer cells a higher level of ROS
is detected compared to their normal counterparts (Cannito
et al., 2010; Vyas et al., 2016). A moderate increase of ROS level
was shown to support cancer cell proliferation and migration
and to activate different signaling pathways associated with
cell survival, contributing to tumor growth and malignant
transformation (Kumari et al., 2018). Indeed, the level of ROS
has been shown to activate the PI3K pathway. The primary
known ROS target in the PI3K pathway is phosphatase and
tensin homolog (PTEN). ROS promote the inactivation of
the tumor suppressor PTEN by oxidizing active-site cysteine
residues, causing the formation of a disulfide bond, which
prevents PTEN from inactivating the PI3K pathway (Lee et al.,
2002; Sullivan and Chandel, 2014). Since ROS can inactivate
protein tyrosine phosphatases through oxidation of cysteine
residues, ROS may have many yet-to-be discovered effects on
diverse, mitogen-activated pathways that are normally inhibited
by phosphatases (Sullivan and Chandel, 2014). ROS can stimulate
the phosphorylation of MAPK and extracellular signal-regulated
kinase (ERK), cyclin D1 expression and JUN N-terminal kinase
(JNK) activation, all of which are linked to tumor cell survival
and growth (Gorrini et al., 2013). ROS may activate different
processes associated with metastatic dissemination and invasion.
They may be involved in cytoskeleton remodeling. The cell
cytoskeleton is dynamic structure composed of microtubules
and filaments. Cytoskeletal rearrangements are important for
driving cell migration and invasion through the formation
of different types of cellular protrusions including filopodia,
lamellipodia, and invadopodia (Ridley, 2011). Recent studies
have shown that Rac-mediated actin remodeling is attributed
to increased O2

− levels (Jiang et al., 2017). Specifically, Rho
activation leads to the filopodia formation, while induction of
Rac contributes to the formation of lamellipodia (Kozma et al.,
1995; Narumiya et al., 2009; Galadari et al., 2017). Another
mechanism by which ROS may promote tumor cell invasion is by
stimulation of the proteolytic degradation of ECM components
such as glycosaminoglycan (GAG), contributing to metastatic
dissemination (Galadari et al., 2017).

Increased ROS levels can activate different pathways that
induce morphological changes associated with the EMT (Jiang
et al., 2017). For example, increased ROS generation stimulates
the acquisition of invasive properties by pancreatic cancer
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cells through the activation of NF-κB signaling. In turn,
treatment with antioxidants leads to the suppression of EMT
and attenuates metastasis (Shimojo et al., 2013). NF-κB signaling
is strongly associated with the EMT process by promoting
the expression of the main EMT-related transcription factors
Snail, Slug, Twist1, and ZEB1/2, which is also involved in the
disruption of the cell–cell junctions (Min et al., 2008; Jiang et al.,
2017). Furthermore, NF-κB activation may contribute to the
transcription of vimentin and MMPs such as MMP-2, MMP-9,
to maintain the mesenchymal phenotype and promote tumor
cell migration (Jiang et al., 2017). Another pathway involved in
EMT and regulated by ROS is the transcription factor hypoxia
inducible factor 1-alpha (HIF-1α) (Jiang et al., 2017), which is
induced under hypoxic conditions and can stimulate cancer cell
EMT by activating EMT-inducing transcription factors such as
Twist, Snail and ZEB1/2 (Joseph et al., 2015; Zhang et al., 2015).
Thus, NF-κB is activated under hypoxic conditions, and thereby,
in the presence of hypoxia, may co-regulate many of EMT-
linked transcription factors (D’Ignazio et al., 2017). Importantly,
ROS accumulation leads to the stabilization of HIF-1 due to
inhibition of the HIF-degrading enzyme prolyl hydroxylase
(Comito et al., 2011).

There is a complex interplay between the level of ROS and
the TGF-β signaling pathway exists, which is the one of the most
important pathways involved in EMT regulation. It was reported
that ROS mediate TGF-β-induced EMT in cancer (Corcoran
and Cotter, 2013; Liu and Desai, 2015). ROS may affect the
activation of TGF-β downstream effector Smad, while treatment
with the ROS scavenger N-acetyl cysteine (NAC) abolishes Smad
phosphorylation (Krstiæ et al., 2015). Additionally, ROS may
regulate TGF-β activation through different signaling pathways
as described above, including MAPK and NF-κB (Corcoran and
Cotter, 2013). Conversely, TGF-β can induce ROS production by
many alterations in mitochondrial functioning and antioxidant
protection. For example, TGF-β affects ROS levels by blocking
of ETC Complex IV and upregulation of NADPH oxidase 4
(NOX4) (Yoon et al., 2005). Further, it was revealed that TGF-
β increases ROS levels inhibiting ETC Complex III (Jain et al.,
2013). TGF-β also downregulates the synthesis of the antioxidant
glutathione (GSH) and several antioxidant enzymes contributing
to cellular redox misbalance and EMT-related processes, such
as fibrosis (Liu and Desai, 2015). Using the mitochondria-
targeted antioxidant SkQ1 was also shown that oxidative stress
is implicated in EMT induced by TGF-β. In cervical carcinoma
SiHa cells depletion of ROS leads to increase of E-cadherin
and downregulation of Snail, the main negative regulator of
E-cadherin (Shagieva et al., 2017). Similarly, pretreatment with
the ROS scavenger carotenoid astaxanthin (AST) leads to
the suppression of EMT and the production of inflammatory
cytokines by mesothelial cells (Hara et al., 2017). Thus, TGF-
β, as inducer of EMT, is likely to affect this process through
the ROS production.

Reactive oxygen species accumulation may influence
migration and metastasis of cancer cells through different
mechanisms affecting cytoskeleton remodeling, ECM
degradation and the activation of signaling pathways. However,
in conditions of strong oxidative stress, ROS suppress metastatic

dissemination, due to induction of cell death or cellular
senescence (Piskounova et al., 2015). Furthermore, elevated
ROS levels may activate antioxidant pathways (Vyas et al.,
2016). Indeed, oncogenic K- Ras-, B- Raf-, and c-Myc-mediated
pathways may downregulate ROS production through regulation
of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), one of
the main regulators of the antioxidant response (Vyas et al.,
2016). Nrf2 provides a transcriptional activation of several
genes involved in glutathione (GSH) synthesis. It promotes
tumorigenesis contributing to the cancer cell protection against
oxidative stress and chemotherapeutic agents (Rojo de la
Vega et al., 2018). Recent data have demonstrated that Nrf2
activation can stimulate cancer cell migration and metastasis
and Nrf2 deletion attenuates metastatic potential breast cancer
cells suppressing RhoA GTPases activity (Zhang et al., 2016).
Altogether, these observations demonstrate that the role of
ROS in tumor progression and metastasis remains highly
controversial. It has been suggested that tumors should maintain
the ROS at a definite level in order to sustain their growth
and metastasis without causing cytotoxicity (Vyas et al., 2016).
Moreover, for tumor promotion it also necessary to provide the
right balance between ROS production and antioxidants.

Mitochondrial DNA Mutations Contribute
to the Migration and Metastasis
It is known that mtDNA mutations can contribute to tumor
initiation and progression (Vyas et al., 2016). Variations in
copy number of mtDNA are associated with tumorigenesis and
depend on tumor type (Sun et al., 2018b). Thus, decreased copy
number of mtDNA was detected in breast cancer, HCC, non-
small cell lung cancer (NSCLC) and gastric cancer (Mambo
et al., 2005). On the other hand, increased copy number of
mtDNA was found in prostate, head and neck, and colorectal
cancers (Sun et al., 2018b). Mutations and variations in mtDNA
content might be associated with regulation of the metastatic
properties of tumor cells (Ishikawa et al., 2008). Replacement
of mtDNA from a highly metastatic to a poorly metastatic
cell line led to an increase in the metastatic potential in the
recipient cell line (Ishikawa et al., 2008). mtDNA mutations
are also associated with EMT of cancer cells. Indeed, EMT
induced by TGF-β leads to an increase of mtDNA copy number
in NSCLC cells (Xu and Lu, 2015). Conversely, knockdown
of mitochondrial transcription factor A (TFAM) leads to a
decrease in mtDNA copy number, upregulation of E-cadherin
expression, and suppression of cell migration rate in esophageal
squamous cell carcinoma (Lin et al., 2012). Increased mtDNA
content in this type of tumor is associated with the higher
energy required for EMT. Furthermore, mtDNA mutations
contribute to the acquisition of an aggressive phenotype in
oncocytic thyroid tumors leading to their bioenergetic crisis
(De Luise et al., 2017). As a consequence, mitochondrial
dysfunction may lead to the activation of glycolysis (Smolková
et al., 2011). Thus, oxygen deprivation may provide positive
selective pressure for cancer cells carrying damaging mtDNA
mutations. However, another study provided the evidence that
EMT could also be induced in mtDNA-depleted cells. Indeed,
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it has been demonstrated that TGF-β–induced EMT occurs in
mitochondria-depleted cell lines leading to the stimulation of
invasive properties through activation of Raf/MAPK (Naito et al.,
2008). These data are consistent with the observation that in
human mammary epithelial cells (hMECs) a decrease in mtDNA
copy number promotes calcineurin-mediated mitochondrial
retrograde signaling, which initiates EMT (Guha et al., 2014).
Likewise, reduction of mtDNA content by suppression of
mitochondrial pyrimidine nucleotide carrier 1 (PNC1), which is
responsible for mitochondrial DNA replication, leads to EMT
induction in hMECs (Favre et al., 2010). A recent study has
revealed that increased mtDNA copy number may sustain tumor
progression and metastasis by upregulating OXPHOS function
in cancer cells that rely on mitochondrial OXPHOS. On the other
hand, in cancer cells that depend on glycolytic type of metabolism
reduction of mtDNA was shown to promote proliferation and
chemoresistance (Sun et al., 2018b). Summing up, mtDNA
mutations and variations of mtDNA copy number are associated
with EMT, increased invasiveness and metastasis in different
types of cancer. The opposite role of mtDNA content in cancer
progression and metastatic dissemination depends on metabolic
pattern of different types of cancer.

Bcl-2 AND METASTASIS

B-cell lymphoma/leukemia gene 2 (Bcl-2) family proteins are
considered to be regulators of the apoptotic mitochondrial
pathway. This family includes both anti-apoptotic Bcl-2, Bcl-XL,
Bcl-w, Mcl-1, Bcl-B, and pro-apoptotic multidomain Bax and Bak
proteins. In addition, the pro-apoptotic subfamily includes so-
called BH3-only domain proteins, such as Bim, Puma, Noxa, Bad,
Bid, and Bnip3. The ratio between these proteins with opposite
functions determines the success of apoptosis (Adams and
Cory, 2018). Upregulation of anti-apoptotic and downregulation
of pro-apoptotic proteins is a hallmark of cancer, and their
misbalance is contributed to the chemo-, immune-, and radio-
resistance of anticancer therapies (Opferman and Kothari, 2018).
However, further evidence has demonstrated that the functions
of Bcl-2 family proteins are not limited to cell death control
and tumor resistance. It has been established, that Bcl-2 family
proteins play crucial roles in the regulation of migration, invasion
and metastasis (Um, 2016) (Figure 2).

Indeed, the overexpression of Bcl-2, Bcl-XL, Bcl-w, and
Mcl-1 in different cancers, including glioma, neuroblastoma,
melanoma, squamous carcinoma, and breast, lung, and colorectal
cancer cells, leads to significant increase in their migratory and
invasive properties (Sun et al., 2011; Lee et al., 2013; Um, 2016;
Young et al., 2016; Trisciuoglio et al., 2017). On the other hand,
downregulation of these proteins attenuates invasiveness without
affecting apoptosis or tumor growth, indicating that their pro-
survival functions are not linked to regulation of cell migration
and invasion (Um, 2016). Importantly, several studies have
demonstrated that overexpression of the Bcl-2 family proteins
is not always sufficient to induce pro-invasive properties of
cancer cells, and could require the co-expression of other proteins
stimulating invasiveness, such as c-Myc (Lu and Hong, 2009),

N-Myc (Noujaim et al., 2002), or Twist1 (Sun et al., 2011). In
certain cases, the exposure to hypoxic conditions may also be
essential (Trisciuoglio et al., 2005). It has been suggested that
the pro-invasive activity of pro-survival Bcl-2 family members
appears to vary depending on the cell type and environment
(Um, 2016).

The mechanisms involved in Bcl-2 proteins-mediated
regulation of invasiveness and metastasis remain incompletely
understood. Anti-apoptotic Bcl-2 family proteins have been
shown to activate different signaling pathways controlling
migration, invasiveness and metastasis ability in cancer. Indeed,
Bcl-2 may modulate the EMT program by direct interaction
with Twist1 through the helix-loop-helix DNA binding domain
of Twist1 and two domains of Bcl-2 in hepatocellular and
oral squamous cells (Sun et al., 2011; Duan et al., 2017). In
addition, almost all anti-apoptotic Bcl-2 family members
regulate the PI3K pathway involved in metastasis progression
(Um, 2016). Interplay between Bcl-2 and the p110α subunit of
PI3K regulates human colorectal cancer cell migration through
actin polymerization and filopodia formation (Wan et al.,
2015). Likewise, in lung cancer cells, Bcl-XL increases PI3K
and p38 MAPK activities, which subsequently stimulate MMP-2
expression via Akt (Ho et al., 2010). Specifically, Bcl-w was shown
to affect migration and invasion pathways through regulation
of PI3K, EGF, Src, MMP-2, uPA, and focal adhesion kinase
(FAK) (Um, 2016). Furthermore, Bcl-w promotes migration and
invasion of glioblastoma cells through β-catenin signaling via its
translocation into the nucleus to act as transcription factor for
MMP-2 and mesenchymal marker expression (Lee et al., 2013).
Additionally, Mcl-1 supports breast cancer cell migration and
invasion via Src family kinases (SFKs) and their targets, and also
by alteration of the phosphorylation state of the cytoskeletal
protein cofilin (Young et al., 2016).

It has been reported that Bcl-2 family members are capable
of regulating the functioning of mitochondria, during cellular
respiration and of stimulating ROS generation in the form of
the superoxide anion radical O2

− and H2O2 (Um, 2016). Thus,
multidomain pro-apoptotic proteins Bax and Bak have been
shown to bind to the ETC Complex-I resulting in decreased
ROS production, whereas anti-apoptotic Bcl-w and Bcl-XL
interact with Bax and Bak, and abolish their binding to the
Complex-I, stimulating ROS production and PI3K-, Src-, and
EGFR-dependent cell migration and invasion (Jung et al., 2018;
Kim et al., 2018).

Analysis of patients’ clinical samples confirmed the
involvement of pro-survival Bcl-2 family members in metastasis.
Bcl-2 expression is associated with lymph node metastases of
bladder (Kiss et al., 2015) and gastric (Geng et al., 2013) cancer,
liver metastases of colorectal cancer (Ishijima et al., 1999) and
lymphovascular invasion of patients with breast cancer (Neri
et al., 2006). Upregulation of Bcl-XL was observed in lymph node
metastases and venous permeation in colorectal cancer (Jin-Song
et al., 2011), hematogenous metastases of osteosarcoma patients
(Wang et al., 2010) and lymph node metastases in oral tongue
squamous cell carcinoma (Zhang et al., 2014). Overexpression of
Bcl-w is associated with the infiltrative morphotypes of gastric
cancer (Lee et al., 2003) and is overexpressed in patients with
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FIGURE 2 | Bcl-2 family members regulate metastasis by activation/inhibition of signaling kinases, matrix-degrading enzymes, and transcriptional factors. Arrows or
blunt ends indicate activation or inhibition, respectively. Colored lines corresponds to each protein. ∗ - function depends on the tumor type. Bcl-2, B-cell lymphoma
2; Mcl-1, myeloid cell leukemia 1; Bcl-XL, B-cell lymphoma-extra large; Bcl-w, Bcl-2-like protein 2; Bnip3, BCL2/adenovirus E1B 19 kDa protein-interacting protein
3; Bax, Bcl-2-like protein 4; Bak, Bcl-2 homologous antagonist/killer; Bad, Bcl-2-associated death promoter; Puma, p53 upregulated modulator of apoptosis; Twist,
class A basic helix-loop-helix protein 38; Sp1, specificity protein 1; Snail, zinc finger protein SNAI1; Slug, zinc finger protein SNAI2. For details, see text. Figure is
created using BioRender.

lung and breast cancers (Kim et al., 2019). Mcl-1 is upregulated
among III–IV a stage of esophageal squamous cell carcinoma
patients with lymph node metastases (Xu et al., 2017).

Conversely, pro-apoptotic proteins of this family may
suppress cancer cell invasion and metastatic dissemination.
Thus, Bax and Bad expression is associated with downregulation
of MMP-2, -9, and -10 (Lee et al., 2010; Cekanova et al.,
2015). Interestingly, Bax and Bid may downregulate tumor cell
invasiveness, indirectly repressing the gene expression of c-Jun,
cyclin D1, β-catenin, and Sp1, which are known to stimulate
invasive properties and metastasis in breast cancer (Cekanova
et al., 2015). In addition, Bad, Bim, and Puma were shown to
suppress EMT, inhibiting related transcription factors, including
Snai1, Sp1, Snai2, and Slug, and subsequent upregulation of
epithelial phenotype markers (Kim et al., 2014; Cekanova et al.,
2015; Merino et al., 2015).

Another member of the Bcl-2 family implicated in cancer
cell migration, invasion and metastasis is Bnip3 (Maes et al.,

2014; Chourasia et al., 2015), which is considered to be a pro-
apoptotic Bcl-2 protein. Bnip3 also plays an important role in
autophagy and mitophagy regulation (Chourasia et al., 2015).
However, its role in cancer progression and metastasis remains
highly controversial. Thus, in human triple-negative breast
cancer (TNBC) the lack of Bnip3 results in tumor progression
and metastasis via storage of dysfunctional mitochondria and
subsequent ROS accumulation; the events that, as was discussed
earlier, lead to expression of HIF-inducible genes including
metastasis-related angiogenesis genes (Chourasia et al., 2015).
Conversely, in melanoma cells Bnip3 silencing reduces the
formation of lamellipodia and filopodia as well as cell migration
through the downregulation of integrin-associated glycoprotein
CD47, Rac1 and Cdc42 (Maes et al., 2014). Bnip3 in HCC may
suppress metastasis through the JNK/Bnip3/SERCA/CaMKII
axis, leading further to the cofilin/F-actin/lamellipodia inhibition
(Shi et al., 2018). As mentioned above, Bnip3 is involved in
autophagy, the process, which is tightly linked to EMT, migration
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and metastasis. Specifically, Bnip3-dependent autophagy via
hypoxia-induced ROS-modulated p38 MAPK and JNK activation
contributes to keratinocytes migration (Zhang et al., 2019). In
NSCLC Bnip3 supports metastasis via its modulation by aryl
hydrocarbon receptor (AhR), which has an impact on Bnip3
proteasomal degradation and subsequent autophagy disturbance.
These events result in decreased EMT progress (Tsai et al.,
2017). Thus, Bnip3, depending on cancer cell type and hypoxic
conditions, fulfills opposite functions in metastasis.

Analysis of clinical samples confirmed the participation of
Bcl-2 pro-apoptotic members in metastasis formation. Increased
expression of Bax, Bak and Puma is associated with a lack
of vascular invasion in patients with oral squamous cell
carcinoma (Coutinho-Camillo et al., 2010). Loss of Bax protein
was demonstrated in retinoblastoma specimens with massive
choroidal invasion (Singh et al., 2015). Downregulation of Bnip3
is characteristic of lymph node metastases in breast cancer (Koop
et al., 2009). Conversely, in patients with renal cell carcinomas
Bnip3 expression is correlated with lymph node metastasis
(Macher-Goeppinger et al., 2017). Methylation of Bim and Bnip3
genes is associated with metastasis and the gene methylation
rate is increased among colorectal and pancreatic cancer patients
compared to healthy individuals (Shimizu et al., 2010; Mhaidat
et al., 2017; Zhu et al., 2017). Interestingly, overexpression of
pro-apoptotic Bcl-2 family members, except Bnip3, frequently
correlates with decreased metastasis and favorable outcomes in
patients with various cancer types (Chi et al., 2016).

Thus, anti-apoptotic members of the Bcl-2 family, including
Bcl-2, Bcl-XL, Bcl-w, and Mcl-1, support the invasion and
metastasis in various types of cancer. This positive influence is
achieved through EMT, subsequent cytoskeleton rearrangement,
overexpression of MMPs and uPA, and regulation of PI3K, p38
MAPK, Akt, and ERK. In contrast to anti-apoptotic proteins,
almost all pro-apoptotic members, such as Bax, Bak, Bad, Bid,
and Puma, were characterized by suppression of the metastatic
potential of cancer cells. Despite Bnip3 being considered a
pro-apoptotic member, its influence on metastasis remains
highly controversial, likely due to its atypical BH3-domain
contributing to autophagy-dependent processes (Mazure and
Pouysségur, 2009). Bcl-2 family members play important role in
the regulation of ROS production and activity of mitochondrial
complexes leading to the activation of molecular pathways
controlling invasion and metastasis. Moreover, the Bcl-2 family
proteins affect cell migration of both malignant and normal
tissues. Analysis of patient specimens with tumors confirms the
participation of Bcl-2 family members in invasion and metastasis,
which gives a reason to consider these proteins for target therapy.

ER-MITOCHONDRIA NETWORK AND
METASTASIS

The endoplasmic reticulum (ER) is a crucial cellular Ca2+

reservoir, that coordinates Ca2+ signaling, protein synthesis and
folding and traffic of properly folded proteins to the Golgi
apparatus. Accumulation of misfolded proteins in the ER lumen
triggers unfolded protein response (UPR), which is an adaptive

signaling pathway to restore protein homeostasis (proteostasis).
If accumulation of misfolded proteins remains unresolved
activation of UPR signaling may lead to the initiation of apoptotic
cascades. Crosstalk between apoptosis and UPR is maintained
by mitochondria functioning partly due to contact sites with
ER. These so-called mitochondria-associated ER membranes
(MAMs) are key for Ca2+ transport between the ER and
mitochondria to maintain cellular homeostasis and regulate ER
stress. Moreover, MAMs form functional networks essential in
determining pro-survival/pro-death and inflammation signaling
(Malhotra and Kaufman, 2011).

As mentioned above, ER is a multifunctional organelle, the
main function of which is to control protein-folding quality.
Numerous factors may affect proper protein folding in the
ER, including oxidative stress, hypoxia, glucose deficiency,
viral infections and other physical/chemical stresses. As
a result, it leads to ER stress and subsequent UPR. In
mammals the UPR is carried out by three distinct ER-related
transmembrane proteins, including protein kinase RNA-
like ER kinase (PERK), endoribonuclease inositol-requiring
enzyme 1 alpha (IRE1α/IRE1), and activating transcription
factor 6 (ATF6) (Malhotra and Kaufman, 2011). In unstressed
cell, ER-related transmembrane proteins including PERK,
IRE1α/IRE1, and ATF6 are bound to immunoglobulin heavy
chain protein/glucose-regulated protein 78 (BiP/GRP78). Under
ER stress BiP dissociates from these proteins to trigger signaling
pathways that result in the reduction of global protein synthesis,
degradation of unfolded proteins and increase of protein-folding
capacity of the ER (Lee, 2005).

Endoplasmic reticulum plays an important role in
mitochondrial calcium signaling via the contact sites between
mitochondria and ER (MERCs). The portion of membranes
involved in these interactions defines the MAMs, which, as
mentioned above, provide Ca2+ traffic between these organelles
(Martinvalet, 2018). The transport of extracellular Ca2+ into
the cytosol occurs through the voltage-gated, ligand-gated,
and store-operated Ca2+-channels (SOCCs) including Orai
and/or transient receptor potential channels (TRPC). Orai1
and TRPC are activated through their binding to the stromal
interaction molecule 1 (STIM1), which is the ER Ca2+-sensor.
Ca2+ transport from the cytosol and its accumulation in the ER
depends on the action of ATP-driven sarco/ER Ca2+-ATPase
(SERCA) (Bower et al., 2017). Ca2+ is transported from the
ER via 1,4,5-trisphosphate (IP3) and ryanodine receptors
(IP3Rs, RyRs), after which Ca2+ invades the mitochondria
through the voltage-dependent anion channels (VDACs) on
the OMM (Báthori et al., 2006). Ca2+ then is transferred by
the mitochondrial calcium uniporter (MCU) on the IMM
(Martinvalet, 2018). Expression levels of these calcium-
signaling proteins are frequently altered in numerous types
of tumor cells (Singh et al., 2017) and most of all govern
metastasis-related processes.

As mentioned above, ER is the main cellular Ca2+-store.
Decreased Ca2+ level in the ER results in STIM1 oligomerization
and its transfer from ER to the plasma membrane where it
promotes Orai1-dependent store-operated Ca2+ entry (SOCE)
(Yang, 2018). A growing body of evidence indicates the existence
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of an interplay between mitochondria and SOCE. Indeed,
SOCE activation is accompanied by TRPC-modulated increase
in cytosolic Na+ level that in turn promotes the activation
of mitochondrial Na+/Ca2+ exchanger (NCLX) leading to
mitochondrial Na+ influx and Ca2+ efflux. Therefore, NCLX
tightly regulates mitochondrial Ca2+ level and prevents excessive
Ca2+ accumulation in mitochondria that can lead to the increase
of the mtROS level and subsequent SOCE suppression via
oxidation of redox-sensitive Cys195 of Orai1 (Ben-Kasus Nissim
et al., 2017). Besides NCLX, the activity of SOCE-related proteins
is regulated by Bcl-2. The mutations in BH1 domain of Bcl-
2 protein leads to STIM1, Orai1-3, TRPC1 overexpression
and SOCE enhancement (Chiu et al., 2018). It has been
established, that hyperactive SOCE induced by STIM1 and Orai1
overexpression correlates with increased metastasis in different
types of cancer. Intensified SOCE supports tumor cell invasion
and migration by cytoskeleton rearrangement, ECM degradation
and tumor microenvironment remodeling (Yang, 2018).

Sarco/ER Ca2+-ATPase is a well-known regulator of Ca2+

stores in the ER and maintains the level of Ca2+ uptake and
leak properties. Furthermore, SERCA inactivation associated
with Yap deficiency has been shown to inhibit HCC metastasis
through the cofilin/F-actin/lamellipodium pathway (Shi et al.,
2018). Additionally, the downregulation of SERCA leads to a
significant decrease in Ca2+ level in migrating cells that in turn
inhibits cell migration and tracheogenesis (Bower et al., 2017).
Other proteins localized to MAMs are VDAC and IP3R, the
action of which is dependent on Bcl-2 family proteins and, in
addition to their role in apoptosis, partly regulate Ca2+ signaling
via their complex with MAM proteins (Monaco et al., 2015;
Bittremieux et al., 2019). Anti-apoptotic family members Bcl-2,
Bcl-XL, and Mcl-1 bind to VDACs and suppress mitochondrial
Ca2+ transport that in turn supports cell migration and invasion
(Huang et al., 2013, 2014; Fouqué et al., 2016). Both Bcl-2 and
Bcl-XL interact with VDAC1 through BH4 domain; however,
Bcl-XL BH4 is more effective than Bcl-2-BH4 in targeting
VDAC1 activity (Monaco et al., 2015). Dissociation between
these anti-apoptotic Bcl-2 family members and VDACs results
in decreased migration of TNBC (Fouqué et al., 2016) and
NSCLC cells (Huang et al., 2014). Bcl-2 family proteins could
also interact with IP3R suppressing Ca2+-release. Like VDACs,
Bcl-2 binds IP3R through its BH4 domain inhibiting its activity.
Besides Bcl-2, other anti-apoptotic family members, including
Bcl-XL and Mcl-1, are able to influence IP3R activity and
Ca2+ signaling, but their role in mitochondria-associated ER
membrane-related calcium signaling still remains controversial
(Eckenrode et al., 2010; Monaco et al., 2012). Also like VDACs,
IP3R may regulate cell migration separately from its complex
with Bcl-2 family members. It has been revealed, that inhibition
of ryanodine receptor subtype IP3R3 and subsequent decrease in
Ca2+ release results in suppression of the invasion and migration
of glioblastoma cell lines and metastasis in glioblastoma mouse
model (Kang et al., 2010). Overexpression of IP3R3, but not of
IP3R1 and IP3R2, leads to stimulation of the migration properties
of breast cancer cells sustaining Ca2+ signaling (Mound et al.,
2017). Thus, IP3R could regulate cancer cell migration and
metastasis through modifying calcium ER level.

Another MAM-related protein is Sig1R (stress-activated
chaperone sigma-1 receptor). When ER stress is not activated,
Sig1R cooperates with MAMs chaperone BiP/GRP78, whereas
under activation of IP3Rs Sig1R dissociates from chaperone
BiP and binds to IP3R3, leading to its stabilization at the
MAM and increasing Ca2+ flux to the mitochondria (De Pinto
and Palmieri, 1992; Naon and Scorrano, 2014). The expression
level of MAM-associated Sig1R is increased in metastatic
breast and colorectal cancer cells as compared to normal
tissues (Gueguinou et al., 2017). Consistently with the above-
mentioned MAM-related proteins, MCU also affects migration,
invasion and metastasis. Silencing of this uniporter results in
decreased mitochondrial Ca2+ level and ROS production, as
well as migratory and invasiveness capacities. These findings
are in good agreement with in vivo experiment. MCU gene
deletion reduces tumor metastasis in TNBC MDA-MB-231
xenografts via HIF-1-dependent gene expression (Tosatto et al.,
2016). Yu et al. (2017) demonstrated similar results in breast
cancer MCF-7 cells by MCU overexpression, which leads to
enhanced migratory and invasiveness potential in vitro and lung
metastasis mouse model in vivo. Furthermore, overexpressed
MCU was found in specimens from breast cancer patients with
metastases. Thus, MCU expression correlates with migration
and invasion of cancer cells, as well as with tumor metastasis,
which has been proved by both in vitro and in vivo studies.
Besides MAM-anchored proteins, UPR regulators, including
PERK, IRE1 and BiP/GRP78, all influence the migration and
metastasis. PERK as a key UPR sensor, also participates in
MAM signaling (Verfaillie et al., 2012). A growing amount of
evidence proves that UPR signaling and EMT reprogramming
mutually activate each other. In gastric cancer cells knockdown
of UPR-related proteins such as PERK, ATF4, and ATF6,
decrease TGF-β expression and abrogates EMT under severe
hypoxia (Shen et al., 2015). The inverse pattern in this UPR-
EMT axis has been demonstrated in both in vivo and in vitro
models of breast cancer: cells undergoing EMT have a branched
ER structure and activated PERK–eIF2α link of the UPR,
which helps cells to metastasize. Analysis of specimens from
patients with breast, gastric, colon and lung metastatic tumors
revealed correlations between expression of EMT and PERK–
eIF2α genes (Feng et al., 2014). Additionally, ATF4, ATF6,
another ER-transmembrane protein IRE1 and its-related X-box
binding protein-1 (XBP1) play a role in metastatic progression.
IRE1α regulates actin cytoskeleton rearrangement and influences
the cell migration via filamin A in MEFs, fly, and zebrafish
models (Urra et al., 2018). IRE1-XBP1 pathway is regulated
by lysyl oxidase-like 2 (LOXL2) overexpression, and activates
EMT via Snai1/2, ZEB2 and TCF3 transcription factors in
breast carcinoma cells (Cuevas et al., 2017). Notably, XBP1
expression is significantly upregulated in tumor and lymph node
metastases compared to normal tissues from patients with oral
squamous cell carcinoma, and downregulated XBP1 expression
results in decreased cell invasion capacity (Sun et al., 2018c).
Thus, proteins of three distinct UPR branches, including PERK,
ATF4, ATF6, IRE1, XBP1, and BiP/GRP78, contribute to cancer
cell invasive properties and metastatic dissemination regulating
MAM signaling (Figure 3).
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FIGURE 3 | Schematic representation of the link between ER-mitochondria network and motility of cancer cells. Arrows or blunt ends indicate activation or inhibition,
respectively. Blue arrows indicate direction of Ca2+ current. Yellow circles – Ca2+. MAM, mitochondria-associated ER membrane; Orai1, calcium release-activated
calcium channel protein 1; TRPC, transient receptor potential cation channel; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; STIM1, stromal interaction
molecule 1; IP3R, inositol trisphosphate receptor; RyR, ryanodine receptor; IRE1, serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1;
XBP1, X-box binding protein 1; PERK, protein kinase RNA-like endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2; ATF4, activating
transcription factor 4; NCLX, mitochondrial Na+/Ca2+ exchanger; BiP, binding immunoglobulin protein; SigR1, sigma receptor 1; Mfn2, mitofusin2; VDAC,
voltage-dependent anion-selective channel; MCU, mitochondrial calcium uniporter. For details, see text. Figure is created using BioRender.

METABOLISM AND METASTASIS

Altered metabolic activity is one of the hallmarks of cancer.
Cancer cells change their metabolism in order to satisfy
increasing of bioenergetic and biosynthetic demand and
maintain tumor growth (DeBerardinis and Chandel, 2016).
Unlike normal cells, which generate much of their ATP
via mitochondrial-dependent OXPHOS, cancer cells often
demonstrate upregulation of glycolysis even under conditions
when oxygen concentration is not limited (Lehuédé et al., 2016;
Teoh and Lunt, 2018). This phenomenon was observed in the
1920s by Otto Warburg, who demonstrated that tumor tissues
metabolize approximately ten-fold more glucose to lactate in a
given time than do normal tissues, which led him to conclude
that cancer cells rely on glycolysis more than do healthy cells.
Enhanced aerobic glycolysis has been detected in many types of
cancer and is correlated with worse clinical outcome (Yu et al.,
2019). However, further studies have demonstrated that cancer

cells may also engage mitochondrial respiration in addition to
glycolysis (Jia et al., 2018). Indeed, breast cancer cells produce
most of their ATP through mitochondrial oxidation (Park et al.,
2016). Similarly, glioma cell lines are strongly dependent on
mitochondrial OXPHOS for ATP production (Griguer et al.,
2005). Moreover, cancer cells may display distinct metabolic
characteristics depending on the tissue of origin (Elia et al., 2015).
Thus, lung, liver and colorectal cancers, and leukemias depend on
glycolysis, whereas, melanomas, lymphomas, and glioblastomas
are characterized as oxidative tumors (Elia et al., 2015; Obre and
Rossignol, 2015; Lehuédé et al., 2016). Tumor cells can also switch
from one type of metabolism to another under glucose-limiting
conditions as observed in cervical cancer, breast carcinoma,
hepatoma and pancreatic cancer cells (Rossignol et al., 2004;
Beckner et al., 2005; Jose et al., 2011; Smolková et al., 2010).
A growing number of studies provide the evidence that cancer
cell migration is associated with significant metabolic alterations
supporting metastatic dissemination (Morandi et al., 2017; Teoh
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and Lunt, 2018). Thus, it was reported that increased motility
of cancer cells requires the shift toward utilization of glycolytic
pathways (Shiraishi et al., 2015). Glycolytic genes activation
has been detected in different tumors and is often associated
with malignant and aggressive phenotypes (Jose et al., 2011).
For example, expression of hexokinase 2 (HK2), the embryonic
isoform of hexokinase, the enzyme which defines the start of
glycolysis, is associated with increased risk of recurrence, and
adverse clinical outcome for breast cancer, pancreatic cancer, and
neuroblastoma patients (Teoh and Lunt, 2018). Further studies
have demonstrated that glycolytic enzymes also contribute to the
metastatic progression of cancer cells (Teoh and Lunt, 2018). For
example, pyruvate kinase isozyme M2 (PKM2), which mediates
the final rate-limiting step of glycolysis, promotes aggressive
phenotype and metastasis in different types of tumors (Zhou
et al., 2012; Yu et al., 2015; Teoh and Lunt, 2018). This enzyme
also acts as a transcriptional coactivator of HIF-1α in cancer cells,
thus promoting glycolysis and inducing EMT (Xu et al., 2012;
Morandi et al., 2017). Furthermore, EMT stimulation induced by
TGF-β leads to the nuclear translocation of PKM2 in colon cancer
cells, where it interacts with TGIF2 and other transcription
factors, promoting EMT and supporting the malignant properties
of tumor cells (Hamabe et al., 2014). Phosphohexose isomerase
(PHI) is another glycolytic enzyme that involved in stimulation
of invasion and metastatic dissemination through extracellular
autocrine motility factor (AMF) (Watanabe et al., 1996). The
overexpression of PHI leads to the increased invasion and
metastasis of colon cancer cells (Tsutsumi, 2009). Additionally,
PHI/AMF overexpression has been reported to promote the
EMT activation through the NF-κB pathway and increased
expression of EMT markers such as Snai1 and ZEB1/2 (Ahmad
et al., 2011). In keeping with these observations, high PHI
levels in the serum correlate positively with metastases of
colorectal and esophageal squamous cells, and lung tumors
(Nakamori et al., 1994; Takanami et al., 1998). Conversely,
downregulation of glycolytic enzymes including PKM2 and PHI,
inhibit the proliferation and migration of cancer cells (Zhou et al.,
2012; Teoh and Lunt, 2018). Inhibition of glycolysis attenuates
cell motility even while mitochondrial ATP synthesis remains
intact, and inhibition of mitochondrial respiration reduces cell
motility only minimally compared to inhibition of glycolysis
(Shiraishi et al., 2015).

Glycolysis regulates different stages of metastatic
dissemination, contributing to the different stages of the
metastatic cascade. Thus, prostate cancer cells undergoing EMT
and acquiring mesenchymal features exhibit higher glycolytic
activity than their epithelial counterparts. High glycolysis rate
is associated with increased cytoskeletal rearrangement and
cell migration. In turn, inhibition of glycolysis suppresses the
migration properties of prostate cancer cells (Shiraishi et al.,
2015). In addition, an interrelation between EMT induced by
TGF-β, activation of the glycolytic pathway, and repression of
mitochondrial function was demonstrated (Morandi et al., 2017).
In breast cancer, loss of fructose-1,6-bisphosphatase together
with the loss of E-cadherin promotes cancer stem cell (CSC)-like
features and cancer cell dissemination by enhancing β-catenin
signaling and the EMT program. These events are concomitant

with the induction of glycolysis, increase in glucose uptake, and
inhibition of oxygen consumption (Dong et al., 2013).

Although it is known that metastasis requires activation
of the glycolytic program, recent studies demonstrate an
equal importance of OXPHOS for metastatic dissemination
(Porporato et al., 2018). For example, the strong correlation
between expression of PGC-1a (peroxisome proliferator-
activated receptor gamma coactivator-1a), a key regulator of
mitochondrial biogenesis and OXPHOS, and invasive properties
was observed in breast cancer cells (LeBleu et al., 2014). PGC-1a
supports migration of cancer cells, stimulating mitochondrial
biogenesis and respiration, whereas downregulation of PGC-
1a decreases the frequency of metastasis. Elevated OXPHOS
activity is also linked to the high metastatic potential in mouse
melanoma and human cervical cancer cells (Porporato et al.,
2014). In turn, prostate cancer cells exhibit a mixed phenotype,
where both glycolysis and OXPHOS are required for energy
metabolism at different stages of disease progression (Costello
and Franklin, 2005). This hybrid metabolic state, also called
metabolic plasticity, can sustain tumor cell survival under
different micro-environmental conditions, while at the same
time supporting tumor metastasis and therapy-resistance.
Thus, a hybrid metabolic phenotype, characterized by high
HIF-1/AMPK activities and high glycolysis/OXPHOS (glucose
oxidation and FAO) activities, allows cancer cells to acquire
metabolic plasticity and utilize different types of nutrients (Jia
et al., 2019). Furthermore, it permits the cells to produce energy
efficiently through multiple metabolic pathways and meanwhile
synthesize biomass for rapid proliferation using by-products
from glycolysis. A hybrid metabolic phenotype maintains the
cellular ROS at a moderate level so that cancer cells can benefit
from ROS signaling and avoid DNA damage due to excessive
ROS (Vyas et al., 2016).

Finally, different metabolic profiles may dictate metastatic
fitness to distinct organ sites (Lehuédé et al., 2016). It has been
shown that metastatic breast cancer cells may display different
metabolic pathways depending on the site of metastasis. Hence,
breast cancer cells obtained from bone and lung metastases rely
on OXPHOS, whereas liver-metastatic breast cancer cells engage
a glycolytic type of metabolism (Dupuy et al., 2015).

In consequence, metabolic pathways of migrating cancer
cells appear to be inter-connected and characterized by
plasticity depending on different factors, i.e., tumor type,
microenvironment, site of metastasis formation, etc. A better
understanding of this metabolic plasticity will permit the design
of specific therapy approaches in order to target metastatic cancer
cells more efficiently.

THERAPEUTIC TARGETING
METASTASIS

Metastasis is associated with poor outcome of cancer patients
(Porporato et al., 2014). Existing therapeutic approaches are
often ineffective or provide limited clinical benefit. Hence,
mitochondria play an important role in metastatic dissemination,
the targeting mitochondria might represent an attractive
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approach for the development of new strategies for treatment of
metastatic cancers.

Metastatic tumors have been shown to reprogram their
metabolism in order to successfully metastasize (Lehuédé
et al., 2016). Accordingly, significant efforts have been made
to target cancer cell metabolism in different tumors for the
prevention of metastasis progression. For example, the anti-
diabetic drug metformin has been shown to possess anticancer
properties in different types of cancer (Rattan et al., 2011;
Schexnayder et al., 2018; Thakur et al., 2018). Metformin is a
Complex I inhibitor, providing cancer metabolism suppression
through downregulation of mitochondrial glycerophosphate
dehydrogenase (mGPDH) and OXPHOS inhibition, leading to
decreased metastasis levels in a thyroid cancer mouse model
(Thakur et al., 2018). Metformin also attenuates the growth of
lung metastatic nodules in an ovarian cancer mouse model by
inhibiting the mTOR signaling pathway (Rattan et al., 2011). At
low concentrations metformin inhibits breast cancer invasion
and metastasis by suppressing ROS production, suggesting the
use of metformin as a chemopreventive agent to block cancer
cell invasiveness (Schexnayder et al., 2018). Although, the
precise mechanisms of action of metformin are still debated,
a number of clinical studies have confirmed its antitumor
properties (Pollak, 2012). At present metformin is used during
the treatment of different cancer types in order compound to
inhibit hypoglycemia non-target effect of various chemotherapy
drugs (da Veiga Moreira et al., 2019). Further clinical studies are
required to clarify its anti-metastatic properties.

Glycolysis inhibition has been shown to suppress metastasis
in several types of cancer (Caino and Altieri, 2016). For
example, HKII inhibitor lonidamine (TH-070), a derivative
of indazole-3-carboxylic acid, provided significant effectiveness
in preclinical studies when the drug was administered in
combination with paclitaxel and cisplatin (Sborov et al., 2015;
Caino and Altieri, 2016). However, despite promising early stage
results, further phase II and phase III trials targeting lung cancer
with lonidamine have shown its limited efficacy and hepatic
toxicity (Cervantes-Madrid et al., 2015). Importantly, a more
recent study demonstrated that the use of modified lonidamine
is significantly more efficacious in inhibiting mitochondrial
bioenergetics in lung cancer cells, leading to suppression of lung
cancer progression and metastasis. Mitochondrial-lonidamine
activates the generation of ROS in lung cancer cells, which leads
to the inactivation of the Akt/mTOR/p70S6K signaling pathways
and autophagic cell death (Cheng et al., 2019). Glycolysis can
be targeted by 2-deoxyglucose (2-DG), a non-metabolizable
glucose analog, which is also pursued in the clinic. However,
dose-escalation phase I trials in patients with castrate-resistant
prostate cancer and other advanced solid tumors resulted
in asymptomatic QTc prolongation that limited further drug
evaluation (Sborov et al., 2015). Since tumors may shift from
glycolysis to OXPHOS, or even engage hybrid metabolisms,
several studies have proposed the dual inhibition of cancer
metabolism using metformin and 2-DG (Cheong et al., 2011; Jia
et al., 2019). Indeed, combined treatment with metformin and
2-DG led to the significant suppression of tumor growth and
metastasis in preclinical models (Cheong et al., 2011).

Mitochondrial ROS have been reported to function as
signaling molecules implicated in the regulation of tumor growth
and metastasis (Porporato et al., 2014). The different mechanisms
by which ROS contribute to tumor growth and metastatic
dissemination were discussed above. Thus, targeting mtROS
seems to be an attractive approach for cancer therapy. However,
contrary to the expected results, the use of antioxidants for
anticancer treatment led to increased risk of cancer (Klein
et al., 2011; Sullivan and Chandel, 2014). Furthermore, the
treatment with NAC was shown to enhance the metastatic
dissemination of human melanoma cells, providing evidence
that oxidative stress may, in certain circumstances, stimulate
metastasis (Piskounova et al., 2015). The cause of the failure of
treatment with antioxidants could be their lack of specificity.
They also may regulate many different processes involved in
tumor growth and metastasis (Sullivan and Chandel, 2014).
On the other hand, it has been shown that inhibition of ROS
with antioxidants that target precisely mitochondrial oxidative
stress may stop metastatic spread. Scavenging with MitoTempo,
specific mitochondrial antioxidant, significantly reduced cancer
cell invasion and prevented metastasis (Porporato et al., 2014).
Thus, ROS targeting appears to be more complex than believed
before and requires further detailed investigation.

Another therapeutic agent that has shown promising results
in preclinical studies is an inhibitor of mitochondrial heat
shock protein 90 (Hsp90) Gamitrinib (Kang et al., 2011).
This compound induces mitochondrial dysfunction, providing
depolarization of inner membrane potential that in turn
regulates the release of cytochrome c. In mouse model of
prostate cancer, Gamitrinib administration inhibited tumor
growth and metastasis affecting mitochondria (Kang et al.,
2011). Furthermore, targeting Hsp90 with Gamitrinib suppresses
cancer cell migration and metastasis preventing metabolic
reprogramming and increasing AMPK phosphorylation (Caino
et al., 2013), Gamitrinib is also effective in combination therapies
with inhibitors of both TRAIL and PI3K (Siegelin et al., 2011;
Ghosh et al., 2015).

Since the expression of Bcl-2 family proteins has been
detected in metastases of different tumors, another possible
approach for cancer therapy may be focused on targeting Bcl-
2 family members. BH3-mimetics are promising therapeutic
drugs that mimic endogenous Bcl-2 family member antagonists,
thereby target some of them and abrogating their anti-apoptotic
functions. Initially, BH3-mimetics displayed encouraged results
in hematological malignancies including lymphoma lymphocytic
leukemia, acute myeloid leukemia, small lymphocytic lymphoma
and mantle-cell lymphoma (Cang et al., 2015; Mullard, 2016;
DiNardo et al., 2018; Tam et al., 2018). Thus, first-generation
BH3-mimetics such as ABT-737 and its orally available derivative
navitoclax (ABT-263), which are inhibitors of Bcl-2 and Bcl-W,
have shown clinical efficacy (Billard, 2013). However, in several
cases the treatment with these agents was limited by severe
thrombocytopenia (Mullard, 2016). Clinical studies of ABT-199
in chronic lymphocytic leukemia and non-Hodgkin’s lymphoma
have shown impressive antitumor efficacy, with higher response
rates than navitoclax and without thrombocytopenia (Besbes
et al., 2015). Several clinical trials have also demonstrated

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 December 2019 | Volume 7 | Article 355

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00355 December 18, 2019 Time: 16:2 # 12

Denisenko et al. A Link Between Mitochondria and Metastasis

the efficacy of BH3-mimetics in solid tumors (Boisvert-Adamo
et al., 2009; McKee et al., 2013; Mukherjee et al., 2018). In
particular Mcl-1 has emerged as a promising target for the
treatment of melanoma (Boisvert-Adamo et al., 2009; McKee
et al., 2013). Additionally, a novel gossypol derivative and
BH3-mimetic ch282-5 (2-aminoethanesulfonic acid sodium-
gossypolone) induced colon cancer cell death in vitro and
in vivo. Ch282-5 treatment activated mitochondria-dependent
apoptotic pathway accompanied by mitophagy disruption and
mTOR pathway activation. Furthermore, Ch282-5 provided
suppression of colon cancer cell migration, invasion and
liver metastasis (Wang et al., 2016). Notably, Bcl-2 family
members were shown to interact with Drp1 and treatment with
BH3-mimetic A-1210477 led to Drp1-dependent mitochondria
fragmentation, whereas Drp1 silencing significantly reduced
apoptosis induced by BH3-mimetic in lung, cervical, and breast
cancer cell lines (Milani et al., 2018). Conversely, inhibition of
Drp1 in combination with BH3-mimetic treatment significantly
enhanced apoptotic response in melanoma cells (Mukherjee
et al., 2018). Additionally, inhibition of Drp1 by Mdivi-1
increased the cytotoxic effect of combination treatment with
A-1210477 and ABT-263 in different melanoma cell lines
(Mukherjee et al., 2018).

Another interesting approach to target metastatic cancers is
the regulation of mitochondrial K+/H+ exchange. Salinomycin
is an antibiotic from the polyether ionophores group widely
used in agriculture (Managò et al., 2015). Recently, it has
been revealed that it possesses anticancer properties in different
types of cancer (Klose et al., 2019; Tang et al., 2011).
Salinomycin may target chemoresistant tumor cells, inhibiting
Wnt/β-catenin and Sonic Hedgehog signaling pathways (Managò
et al., 2015). Furthermore, it suppresses the migration of
colorectal, breast, lung and colon cancer cell lines as well
the invasion of nasopharyngeal carcinoma and bladder cancer
cells in vitro (Kopp et al., 2014; Wu et al., 2014; Qu
et al., 2015; Klose et al., 2016). Consistently, in vivo studies
proved that salinomycin may reduce metastasis formation in
mammary tumor mouse model, bladder tumor rat model and
intravenous mouse tumor model (Gupta et al., 2009; Kopp
et al., 2014; Qu et al., 2015). Importantly, salinomycin is able
to suppress the late stages of autophagy contributing to the
ROS generation and mitochondria dysfunction (Klose et al.,
2019). This might explain the mechanism by which salinomycin
targets mitochondrial K+/H+ exchange and prevents migration,
invasion and metastasis.

Summarizing, mitochondria contribute to tumor progression
and metastasis through different mechanisms including redox
signaling, mitochondrial biogenesis, regulating Bcl-2 family
members, metabolic reprogramming and mitochondrial K+/H+
exchange. The better understanding of these mechanisms and the
possible interplay between them may provide new therapeutic
approaches to target metastatic diseases.

CONCLUSION

Mitochondria are very important and complex organelles that
affect tumorigenesis and metastatic dissemination through
different mechanisms including regulation of metabolism, redox
status, signaling and cell death pathways. Recent evidence
has demonstrated the existence of complex interplay between
mitochondria-related functions and mitochondrial dynamics.
Thus, dysregulated mitochondrial turnover contributes to
tumorigenesis and metastases. However, the mechanisms
connecting mitochondrial dynamics to the development of
metastasis remain poorly understood. In addition, the flexibility
of mitochondria that allow cancer cells to adapt to the
changing microenvironment and stresses should be considered
in order to combat cancer successfully. Consequently, a better
understanding of the processes regulated by mitochondria and
their complex interplay with mitochondrial biogenesis may offer
new promising therapeutic strategies for cancer treatment.
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