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Abstract

In this paper, we present a proof that the bitonic sort is sound using PVS, a powerful specification and verification
environment. First, we briefly introduce this well-known parallel sort. It is based on bitonic lists whose relevant
properties can be proven with PVS. To achieve our goal of constructing the proof from scratch, we start by studying
some examples of this sort. Then we try to prove properties of this algorithm. Failure in the proof of particular
lemmas provides us with information which helps to correct these lemmas. To complete this proof, we start with
general cases, continue by examining each of the exception cases, and finish when all cases have been considered.
Then we can construct the specification of the bitonic sort which can easily be translated into a traditional imperative
language.

1 Introduction

Proof of (parallel) programs can be done using different techniques and formalisms. We mention for example UNITY
[4] and TLA [11], chosen from a very long list of possibilities [15]. Some techniques are based on states, others on
behaviors or on actions, but none of them allows us to build and prove ‘correct’ all the different kinds of possible
programs (parallel or not). Some of them use high level concepts and are well-suited for high level specifications,
but in general they make unrealistic assumptions (such as unlimited process resource, or unbounded communication
rates,...).

In this paper, we try only to identify some properties concerned with steps of induction on the natural recursion
of the algorithm. Usually, proofs of this algorithm assume the property that subsequences of a bitonic sequence are
themselves bitonic. We have not casually adopted such an assumption. In our proof, we require a similar property but
we prove all such assumptions before using them. Similarly, for other problems, we advocate proceeding in the same
fully rigorous manner.

To obtain a property, we first try to elaborate an idea of it. Then we formalize the idea using PVS. At this stage,
some ideas were suppressed because they were not expressible. Also, some expressible properties were not provable
because they required undesirable hypothesis: in these cases we must reformulate a property until it can be proven.
Finally, when we have all the necessary properties, we must verify that all different non-common cases are handled.
To do this we found PVS to be a powerful tool because it detects all such cases, whereas humans are prone to missing
some of them.

In section two, we state the problem and give an example which illustrates the bitonic sort. Section three describes
the PVS system. In section four, we start by proving simple properties useful for the proof. Then we prove all the
properties required to show that this algorithm is correct. In fact, these properties are based on an induction step of this
recursive algorithm. Section five presents the specification of the bitonic sort using the formalism of PVS. In section
six we briefly present other work in this domain; and finally in section seven we conclude.

2 Problem

In this section, we explain the problem, and we present some well-accepted definitions. The bitonic sort, a fast parallel
sort [1], uses a bitonic list which can be defined as follows:
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Definition 2.1 A bitonic list is either:

� an increasing sequence followed by a decreasing sequence, or

� an increasing sequence, or

� a decreasing sequence, or

� a left circular permutation of one of the three previous cases

of 2p numbers (p � 0)

Note that the most frequent case is the first one (we shall call such a list general bitonic).

Example 2.1 The list (15, 18, 22, 36, 32, 27, 25, 17, 6, 3, 7, 9) is a left circular permutation of the list (3, 7, 9, 15, 18,
22, 36, 32, 27, 25, 17, 6).

Definition 2.2 A bitonic merge consists of merging two bitonic lists of2p�1 numbers (more precisely, in the general
case, the first list is increasing whereas the second one is decreasing) in order to have a bitonic list of2p numbers.

Example 2.2 A bitonic merge, as defined later, applied on the lists (3, 7, 9, 15, 18, 22) and (36, 32, 27, 25, 17, 6)
produces the list (3, 7, 9, 15, 17, 6, 36, 32, 27, 25, 18, 22).

Definition 2.3 A bitonic split consists of splitting a bitonic list of2p numbers into two bitonic lists of2p�1 numbers
(p > 0).

Example 2.3 A bitonic split, as defined later, applied on the list (3, 7, 9, 15, 18, 22, 36, 32, 27, 25, 17, 6) produces
the list (3, 7, 9, 15, 18, 22) and the list (36, 32, 27, 25, 17, 6).

Definition 2.4 The bitonic sort takes a sequence of numbers and makes bitonic lists with these numbers. The size of
the bitonic sequences grows step by step until we obtain one sorted sequence.

2.1 A small example of bitonic sort

With a small example, see figure 1, it is easy to see how this algorithm is applied. A sequence of2p numbers is sorted
in p steps, each stepp being composed ofp substeps. Each arrow shows, with its orientation, if we wish to have an
increasing or a decreasing sequence at the next (sub)step. Consider the increasing arrow under the first 8 numbers in
line 4. It shows that we want to sort these numbers into an increasing order. During the next substeps (lines 5 and 6),
the numbers are not sorted. It is only at the end of the step, more precisely at the begining of the next step (line 7),
that these numbers are sorted. Thus step 3 has taken 3 substeps. Each step, in the algorithm, consists of merging an
increasing list followed by a decreasing list and then splitting recursively the lists obtained.

This algorithm is a recursive one. While we have at least 2 elements in a sequence of size2p, each numberx of the
first (second) list is obtained by choosing the minimum (maximum) between numbersx andx + 2p�1 in the bitonic
list (x 2 [0::2p�1 � 1]). Then we recursively apply the same algorithm with the two obtained lists. We should note
that each half of the sequence can be sorted in parallel since comparison between elements is independent.

The first line is the sequence unsorted. At first, we consider all pairs of numbers as bitonic lists with an increasing
sequence of one element followed by a decreasing sequence of one element. With each pair, we merge both the bitonic
lists (the increasing and the decreasing one) in order to obtain alternatively an increasing list and a decreasing list, each
of 2 numbers. The second line of the figure shows the sequence after the first merge. With the pair (13, 3), we wish to
have an increasing list and with the pair (95, 5) we wish to have a decreasing list.

The next step (lines 3 and 4) consists of making bitonic sequences of 4 elements, having alternatively increasing
sequences and decreasing sequences of 2 elements. This is, in fact, achieved in 2 substeps. For each sequence, we
apply the algorithm called bitonic split (there are two versions depending on whether we wish to have an increasing
or a decreasing list).
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13 3 95 5 9 10 14 60 7 1 16 20 19 32 27 39

3 13 95 5 9 10 60 14 1 7 20 16 19 32 39 27

3 5 95 13 60 14 9 10 1 7 20 16 39 32 19 27

3 5 13 95 60 14 10 9 1 7 16 20 39 32 27 19

3 5 10 9 60 14 13 95 39 32 27 20 1 7 16 19

3 5 10 9 13 14 60 95 39 32 27 20 16 19 1 7

3 5 9 10 13 14 60 95 39 32 27 20 19 16 7 1

3 5 9 10 13 14 7 1 39 32 27 20 19 16 60 95

3 5 7 1 13 14 9 10 19 16 27 20 39 32 60 95

3 1 7 5 9 10 13 14 19 16 27 20 39 32 60 95

1 3 5 7 9 10 13 14 16 19 20 27 32 39 60 95

lines steps
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4
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7
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9
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11

Figure 1: An example of the bitonic sort

Consider, for instance, the bitonic list (3, 13, 95, 5) (these numbers are the four first numbers of the second line).
Here we wish to have an increasing sequence with the same elements. To do this, we compare element 1 and element
3 (3 = 1 + 22�1) and put respectively the minimum and maximum at indexes 1 and 3. So 3 and 95 keep the same
places. Applying the same method at indexes 2 and 4 (with numbers 13 and 5), there is a permutation, so we obtain
the sequences (3, 5) and (95, 13) (line 3). Using the recursivity of the algorithm, we obtain 2 sequences (3, 5) and (13,
95) (line 4). So the initial sequence is, as we wished, sorted.

At line 4, we have alternatively increasing and decreasing sequences of 4 numbers. Taking the eight first numbers,
we must use the bitonic merge algorithm in order to yield an increasing list of 8 numbers. The merge is made at line
5, using the same algorithm previously described. Applying the same techniques, we have at line 7, one increasing
list (of 8 numbers) followed by one decreasing list; and finally at line 11, we have the sorted sequence containing all
numbers.

2.2 How to prove the correctness of this algorithm

In this section, we make explicit some properties that we want to prove, although we have not yet described the
specification of the bitonic sort. These properties follow directly from the previous example; but we will see they are
not sufficient to verify this algorithm.

As we have seen inDefinition 2.3, it seems to be interesting to see if a bitonic split applied to a bitonic list yields
two bitonic lists. Furthermore, as we have seen in the example, we use the same algorithm forDefinition 2.2. Thus
we should be looking to see if this definition can be proven to be a theorem. Keep in mind that we have, as yet, no
ideas on how to prove these properties and can only hope that they are sufficient to verify the bitonic sort algorithm.

Concerning increasing and decreasing lists, we took into account the symmetry inherent in the problem to factor
out some complexity. It seemed easier to prove the required properties with increasing lists and use an algorithm to
reverse an increasing sequence in order to have a decreasing sequence.
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Other useful properties will be introduced in the proof, inSection 4.

3 PVS

PVS (Prototype Verification System) is a powerful specification and verification environment [6, 13]. It provides tools
to create and analyse formal specifications, and to prove theorems interactively. It has been used in various domains
such as avionics [7], verification of reactive systems [10, 14] and program design [9].

The PVS specification language is based on typed higher-order logic; it has a rich type system including construc-
tors, dependent types, abstract data types and a subtyping mechanism. These features allow us to express powerful
specifications, and its type checker helps us to avoid many semantic errors. Large specifications can be split into
different files to form a hierarchy of re-usable theories.

The PVS prover provides a set of inbuilt steps that can be used to simplify the current goal that can be discharged
automatically by the prover. The system automatically builds proof obligations called TCCs (Type Checking Condi-
tions) and it is able to prove most of them without any user intervention. Simple theorems are proved automatically
with defined tactics of PVS, but with more difficult theorems, the user must drive the proof with help of the interac-
tive prover. The PVS theorem prover is based on calculus sequent, so proving a theorem consists of proving that the
equivalent sequent is true. During a proof, the current sequent - the goal - undergoes transformations which either
completes it or generates subgoals which then have to be proven. PVS provides parameterizable commands which
give the user various ways of completing a proof.

Each sequent transformation is made with a pre-defined command of PVS. The system contains more than a
hundred commands. These commands are more or less complex. In general, we try to apply high level commands such
as induction, automatic rewrite rules, instantiation with heuristics.... With experience, we learn the capabilities of these
commands. After application of a sequence of such commands, we complete the proof with powerful simplification
and decision procedures for linear arithmetic and equality. All the commands can be combined to form proof strategies,
allowing several proof rules to be applied in one step.

4 Proof of interesting properties with PVS

In this section, we explain the process by which we proved the bitonic sort. We note that all aspects of the proof
were constructed from scratch. This should explain why this algorithm proof took approximately one man-month to
complete.

4.1 Proof of basic properties

Here we present some type definitions for use during the proof. We need an array :

Arra : TYPE = [nat->nat]
x,y,i,j,nb,nbp,low,hi:VAR nat
A,Ap: VAR Arra

The first line defines a new typeArra , an array ( we do not use the word Array because it is a key-word of PVS).
The second and the third lines define some variables (we do not use long variable names because, during proofs we
use these names several times and it is time consuming, when interacting with the prover, to write the same words
repetitively). Thusx , y , i and j are variables that we use withFORALLandEXISTS as instantiated variables of
universal quantifiers.nb is the size of the current array andnbp 1 represents half ofnb . We consider that, after
splitting, an array of sizenb gives 2 arrays of sizenbp with nbp=nb/2 . hi and low are respectively the inferior
and the superior bounds of our array.i is a pivot in the array such that: before it, elements are increasing; and after
it, elements are decreasing.j is another pivot which we will explain later.A andAp are respectively the array at the
current state and next states.

With these basic definitions we define :
1p is an abbreviation for prime, which represent the next state of the same variable.
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IncreasingList(A,low,hi) : bool =
FORALL x,y:x>=low and y<=hi and x<=y => A(x)<=A(y)

DecreasingList(A,low,hi) : bool =
FORALL x,y:x>=low and y<=hi and x<=y => A(x)>=A(y)

These definitions are formulas (or functions) for PVS. They return a boolean value. The first one, for instance, is
interpreted as : For allx andy such thatx is superior or equal tolow , such thaty is inferior or equal tohi and such
thatx is inferior or equal toy , this implies that the value ofA at indexx is inferior or equal to the value ofA at index
y .

Next we define the general case of a bitonic list (other cases will be considered later):

BitonicList(A,low,hi,i) : bool =
i>low and i<=hi and IncreasingList(A,low,i-1) and DecreasingList(A,i,hi)

So we have an inceasing list fromlow to i-1 and a decreasing list fromi to hi .

i

low

hi

low+nbp

j j+nbp

(a) i � low + nbp

i

low

hi

low+nbp

j j+nbp

(b) i � low + nbp

Figure 2: Examples of the bitonic sort

Now we can define our pivotj :

Pivot(A,low,hi,nbp,j) : bool =
j>low and j<=low+nbp-1 and A(j-1)<=A(j-1+nbp) and A(j)>=A(j+nbp) and
(FORALL x:x>=low and x<=j-1 => A(x)<=A(x+nbp)) and
(FORALL x:x>=j and x<=low+nbp-1 => A(x)>=A(x+nbp))

So j is an index betweenlow+1 and low+nbp-1 , such that it splits a general bitonic list as follows. Elements
betweenlow and j are inferior to elements betweenlow+nbp and j+nbp , and elements betweenj+nbp and
low+nbp are superior to elements betweenj+nbp andhi (see figure 2). Without the two last lines (FORALL x ...),
we could have undesirable situations such as is illustrated in figure 3.

i

low hi
j

low+nbp

j+nbp

Figure 3: Undesirable situation
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Remark 4.1 We represent an increasing (decreasing) list by an ascending (descending) segment but we do not suppose
that numbers are uniformly increasing (decreasing). These schemas are just visual abstractions of a bitonic sequence:
we don’t give any scale. For example, sequences (4,5,12,30), (4,20,28,30) and (4,10,20,30) have the same visual
abstraction.

Remark 4.2 In the previous version of this specification we omitted both the lines starting with (FORALL x ...) in the
definition ofPivot . Trying to prove the following theorems with PVS, we could not complete these theorems because
PVS did not make the natural human hypothesis thatj is a number of the increasing list. Thus, without using such a
theorem prover, our specification would have contained an implicit human hypothesis.

Now that we have definedi andj , we can prove properties on placesi andj . Here are the theorems we will use
in the proof:

TRY_0: LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j)
=>

FORALL x:x>=low and x<=j-1 => A(x)<=A(j-1)

TRY_1: LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j)
=>

FORALL x:x>=j and x<=i-1 => A(x)>=A(j)

TRY_2: LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j)
=>

FORALL x:x>=i and x<=j+nbp-1 => A(x)>=A(j+nbp-1)

TRY_3: LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j)
=>

FORALL x:x>=j+nbp and x<=hi => A(x)<=A(j+nbp)

� A[j � 1]

i

j

low

(a) TRY 0

� A[j]
i

j

low

(b) TRY 1

� A[j � 1 + nbp]

i

j

hi

(c) TRY 2

� A[j + nbp]

i

j

hi

(d) TRY 3

Figure 4: illustration of theoremsTRY 0 to TRY 3
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TRY_4: LEMMA hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and
nbp>=1 and BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j) =>
(
(FORALL x:x>=low and x<=j-1 => A(x)<=A(j-1)) and
(FORALL x:x>=j and x<=i-1 => A(x)>=A(j)) and
(FORALL x:x>=i and x<=j+nbp-1 => A(x)>=A(j+nbp-1)) and
(FORALL x:x>=j+nbp and x<=hi => A(x)<=A(j+nbp))
)

TRY_5: LEMMA hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and
nbp>=1 and BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j) and
(
(FORALL x:x>=low and x<=j-1 => A(x)<=A(j-1)) and
(FORALL x:x>=j and x<=i-1 => A(x)>=A(j)) and
(FORALL x:x>=i and x<=j+nbp-1 => A(x)>=A(j+nbp-1)) and
(FORALL x:x>=j+nbp and x<=hi => A(x)<=A(j+nbp))
)
=>

(i>=j or ( A(i)=A(i+nbp) and A(i)>=A(i-1) and j>i))

Figure 4 shows properties of theoremsTRY 0, TRY 1, TRY 2 andTRY 3. The bold line shows the set ofx and
the neighbouring label is the property of the theorem. For example, figure 4(a) shows that for allx such asx � low

andx � j � 1, thenA[x] � A[j � 1] (it is exactly as specified in lemmaTRY 0).
TheoremTRY 4 is an assembly of theoremsTRY 0, TRY 1, TRY 2 andTRY 3. We constuct a theoremTRY 6,

similar to theoremTRY 5, in which we puti<=j+nbp or (A(i-1)=A(i-nbp-1) and A(i)<=A(i-1)
and i>j+nbp in place ofi>=j or ( A(i)=A(i+nbp) and A(i)>=A(i-1) and j>i . TheoremsTRY 5
andTRY 6 make explicit the different possible places ofi andj (see figure 5).

Next we specify the minmax algorithm which plays the role of both merge and split (in 2.1 we saw that they were
equivalent).

BitonicMin(A,Ap,low,nbp) : bool =
FORALL x: x>=low and x<low+nbp => Ap(x) = min(A(x),A(x+nbp))

BitonicMax(A,Ap,low,nbp) : bool =
FORALL x: x>=low and x<low+nbp => Ap(x+nbp) = max(A(x),A(x+nbp))

4.2 Proof that the obtained lists are bitonic ones

Most of the following proofs are done inductively on the recursive algorithm. Thus we need to prove only that one step
is correct. In these cases, we suppose we have a list of sizenb and the induction gives us two lists of sizenbp=nb/2 .
The induction stops whennbp is equal to one.

Now we can try to prove that the first list obtained with the minmax algorithm, applied on a general case of a
bitonic list, is a bitonic list too. Using the theorem previously proved as an hypothesis, we want to conclude that there
exists a new valuej in the list after the minmax algorithm such thatj is the pivot of the obtained bitonic list. Figures
6 and 7 show 2 different cases obtained after application of the minmax algorithm.

First we require another formula specifying all the different relative positions ofi andj :

Place_ij(A,i,j,nbp): bool =
i>0 and j>0 and
(i>=j or (A(i)=A(i+nbp) and A(i)>=A(i-1) and j>i)) and
(i<=j+nbp or (A(i-1)=A(i-nbp-1) and A(i)<=A(i-1) and i>j+nbp ))
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i

low

hi

low+nbp

j j+nbp

(a) j <= i andi <= j + nbp

i

low

hi
low+nbp

j

j+nbp

(b) j > i

i
low

hi

low+nbp

j j+nbp

(c) j + nbp < i

Figure 5: Different places ofi andj

So the theorem is:

BIT_0 : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
(EXISTS i,j:

BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j) and
(FORALL x:x>=low and x<=j-1 => A(x)<=A(j-1)) and
(FORALL x:x>=j and x<=i-1 => A(x)>=A(j)) and
(FORALL x:x>=i and x<=j+nbp-1 => A(x)>=A(j+nbp-1)) and
(FORALL x:x>=j+nbp and x<=hi => A(x)<=A(j+nbp)) and
Place_ij(A,i,j,nbp)

) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,hi,nbp)
=>

EXISTS j:BitonicList(Ap,low,low+nbp-1,j)

In order to have a good representation of the problem, we split the sequence into 4 sets, A, B, C and D such that A
= [low,j-1], B = [j,low-1+nbp], C = [low+nbp,j-1+nbp] and D = [j+nbp,hi].

The proof of the theoremBIT 0 is long and tedious (though not difficult) since doing expansions of formulas and
instantiations to solve subgoals requires time.

We must now prove that the second list obtained with the minmax algorithm is also a bitonic sequence. Regarding
figures 6 and 7, the sequences formed by setsC andB do not seem to be bitonic sequences. InDefinition 2.1 we
saw that a bitonic sequence can be a left circular permutation of a general bitonic sequence (an increasing sequence
followed by a decreasing sequence).
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i

low

hi

low+nbp

j j+nbp

A

B
C

D A
D

C B

Figure 6: Bitonic sort withlow + nbp <= i

i

low

hi

low+nbp

j j+nbp
A

B

C

D A
D

C

B

Figure 7: Bitonic sort withlow + nbp >= i

BIT_1 : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
(EXISTS i,j:

BitonicList(A,low,hi,i) and Pivot(A,low,hi,nbp,j) and
(FORALL x:x>=low and x<=j-1 => A(x)<=A(j-1)) and
(FORALL x:x>=j and x<=i-1 => A(x)>=A(j)) and
(FORALL x:x>=i and x<=j+nbp-1 => A(x)>=A(j+nbp-1)) and
(FORALL x:x>=j+nbp and x<=hi => A(x)<=A(j+nbp)) and
s=j-low and
Place_ij(A,i,j,nbp)

) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp)
=>

EXISTS j:BitonicList2(Ap,low,low+nbp-1,j,nbp,s)

In this theorem we use new variables:

s,nx,ny:VAR nat

and new formulas:

IncreasingList2(A,low,hi,nbp,s) : bool =
FORALL x,y:x>=low and y<=hi and x<=y =>

FORALL nx,ny:
nx=IF x+s>=low+nbp THEN x+s ELSE x+s+nbp ENDIF and
ny=IF y+s>=low+nbp THEN y+s ELSE y+s+nbp ENDIF
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=>
A(nx)<=A(ny)

DecreasingList2(A,low,i,hi,nbp,s) : bool =
FORALL x,y:x>=i and y<=hi and x<=y =>

FORALL nx,ny:
nx=IF x+s>=low+nbp THEN x+s ELSE x+s+nbp ENDIF and
ny=IF y+s>=low+nbp THEN y+s ELSE y+s+nbp ENDIF
=>

A(nx)>=A(ny)

BitonicList2(A,low,hi,i,nbp,s) : bool =
s>=0 and s<nbp and
(

( i>low and i<=hi and
IncreasingList2(A,low,i-1,nbp,s) and
DecreasingList2(A,low,i,hi,nbp,s)

) or
DecreasingList2(A,low,low,hi,nbp,s) or
IncreasingList2(A,low,hi,nbp,s)

)

The variables is the shift of a left circular permutation,nx andny are new values ofx andy , the quantified
variables inFORALL.

The formulasIncreasingList2 and DecreasingList2 are the new definitions of an increasing and a
decreasing list in which we allow left circular permutations of their elements. Ifx plus the shifts is superior or equal
to half of the initial list (low+nbp ), then the new value ofx , nx is equal tox+s elsenx is equal tox+s+nbp . In
both these cases,nx has a value in the second half of the list since only the second list obtained can be a left circular
permutation of a bitonic list.

New definitions of increasing and decreasing lists involve a new definition of a bitonic list (BitonicList2 ). At
each (sub)step, the exact value of the shift iss=j-low .

Remark 4.3 In the previous version of the specification we omitted both the last lines in the definition ofBiton-
icList2 . Trying to prove the theoremBIT 1, we failed because we did not consider the cases where the second
obtained list could be only increasing or decreasing.

This proof is by far the most difficult because there are several different cases. We list the different cases which
we had to consider. The possible positions ofi andj gives three cases (see figure 5). Since we use a new formula
for a bitonic list (BitonicList2 ), able to handle the special case of the permutation of the second obtained list,
we have three different cases, namely an increasing list followed by a decreasing list, only an increasing list or only a
decreasing list. Both non-common cases (only increasing or decreasing) are respectively obtained wheni=j+nbp and
i=j . Both these cases are not very different from both non-common cases obtained with position ofi andj (obtained
with conditions:j>i andj+nbp<i ) but we must nevertheless prove them. In the general case of a bitonic list (not
only increasing or not only decreasing), we must prove that we have an increasing list followed by a decreasing list, so
this gives two more cases. Having an increasing or a decreasing list, there are three different cases depending on the
values ofnx andny . These cases arenx=x+s and ny=y+s , nx=x+s and ny=y+s+nbp , andnx=x+s+nbp
and ny=y+s+nbp . In total, we see that the combination of all these cases gives 54 combinations.

Another big problem for this proof is due to the fact that each terminal subgoal (for which there exists no other
dependant subgoals directly provable) contains an average of between thirty and forty formulas, three quarters being
inequations and equations. In this situation PVS is not able to prove these subgoals with simple commands so we are
constrained to telling PVS which formulas to use in order to complete the subgoals. This is quite boring but no more
so than a proof “by hand”.
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4.3 Proof that the permutation of a bitonic list is equivalent to a bitonic one with the
minmax algorithm

We have just seen that the second list obtained by the minmax algorithm is a left circular permutation of a bitonic one.
Now we must prove that applying recursively the algorithm on a bitonic list and on a left circular permutation gives
the same result. We prove that at any step of the recursion, if the shift is superior than the size of the obtained list then
the next value of the shift is decreased by the size of the list. This method is equivalent to saying that the new value of
the shift is equal to the precedent value modulo the size of the obtained list. It is obvious that by applying this method
we obtain, at the end of the recursion, the same list in both cases.

To prove this we need to define new variables:

sam,sp,spam : VAR nat
SA,SAp : VAR Arra

The variablesam is the value of the shift, since we add it to a variable and we need to apply a modulo on it, we
call it “shift after modulo”. sp andspam are respectively the values ofs andsam in the next state.SA is an array
containing the elements ofA after the shifting andSAp is the next state of this array.

We first define some simple theorems (R is a relation on the naturals):

R : var PRED[[nat,nat]]

SHIFT(A,SA,hi,low,nb,nbp,sam,s,R) : bool=
(

(hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1) and
s>=0 and s<nb and
(FORALL x: x>=low and x<=hi and sam=IF x+s>hi THEN s-nb ELSE s ENDIF

and A(x)=SA(x+sam) )
)
=>

(FORALL x:x>=low and x<low+nbp and R(A(x),A(x+nbp))
=> IF x+sam<low+nbp THEN R(SA(x+sam),SA(x+sam+nbp))

ELSE R(SA(x+sam),SA(x+sam-nbp)) ENDIF
)

SHIFT_0 : LEMMA SHIFT(A,SA,hi,low,nb,nbp,sam,s,>=)

SHIFT_1 : LEMMA SHIFT(A,SA,hi,low,nb,nbp,sam,s,<=)

SHIFT_2 : LEMMA SHIFT(A,SA,hi,low,nb,nbp,sam,s,>)

SHIFT_3 : LEMMA SHIFT(A,SA,hi,low,nb,nbp,sam,s,<)

SHIFT_PROP(A,SA,low,nbp,sam) : bool =
(FORALL x:x>=low and x<low+nbp and A(x)>=A(x+nbp)
=>

IF x+sam<low+nbp THEN SA(x+sam)>=SA(x+sam+nbp)
ELSE SA(x+sam)>=SA(x+sam-nbp) ENDIF

) and
(FORALL x:x>=low and x<low+nbp and A(x)<=A(x+nbp)
=>

IF x+sam<low+nbp THEN SA(x+sam)<=SA(x+sam+nbp)
ELSE SA(x+sam)<=SA(x+sam-nbp) ENDIF
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) and
(FORALL x:x>=low and x<low+nbp and A(x)>A(x+nbp)
=>

IF x+sam<low+nbp THEN SA(x+sam)>SA(x+sam+nbp)
ELSE SA(x+sam)>SA(x+sam-nbp) ENDIF

) and
(FORALL x:x>=low and x<low+nbp and A(x)<A(x+nbp)
=>

IF x+sam<low+nbp THEN SA(x+sam)<SA(x+sam+nbp)
ELSE SA(x+sam)<SA(x+sam-nbp) ENDIF

)

The formulaSHIFT PROPis the synthesis of the four previous theorems. The formulaSHIFT is used by the
formulasSHIFT i, i 2 [0::3] which use different comparison operators (>=, <=, > and<). For instance, the theorem
SHIFT 0 means that ifA(x)=SA(x+sam) , i.e. SA is a left circular permutation ofA, and if all elements in the first
half of A are superior or equal to all elements of the second one, then we know the position of elements inSA, which
depends on the valuex+sam<low+nbp .

A
D

C

B

(a) after minmax

A
D

C

B

(b) after shifting

Figure 8: Shifting the second list, we obtain a general bitonic list

So with these properties, we can build both the following theorems. The first one deals with the first half of the
list whilst the second one deals with the second half. Both theorems are quite difficult to prove because of the several
cases involved. Figure 8 shows that by shifting the second half of the list obtained after the minmax algorithm we
obtain a general bitonic list.

SHIFT : LEMMA
(hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and s>=0 and s<nb and

(FORALL x: x>=low and x<=hi and
EXISTS sam: sam=IF x+s>hi THEN s-nb ELSE s ENDIF and A(x)=SA(x+sam)

) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp) and
BitonicMin(SA,SAp,low,nbp) and BitonicMax(SA,SAp,low,nbp)

) and
(FORALL sam: SHIFT_PROP(A,SA,low,nbp,sam)
)
=>

(FORALL sp: sp=IF s>nbp THEN s-nbp ELSE s ENDIF
=>

(FORALL x,spam:x>=low and x<low+nbp and spam=IF x+sp>=low+nbp THEN
sp-nbp ELSE sp ENDIF => Ap(x)=SAp(x+spam)
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)
)

SHIFT2 : LEMMA
(hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and s>=0 and s<nb and

(FORALL x: x>=low and x<=hi and
EXISTS sam: sam=IF x+s>hi THEN s-nb ELSE s ENDIF and A(x)=SA(x+sam)

) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp) and
BitonicMin(SA,SAp,low,nbp) and BitonicMax(SA,SAp,low,nbp)

) and
(FORALL sam: SHIFT_PROP(A,SA,low,nbp,sam)
)
=>

(FORALL sp: sp=IF s>nbp THEN s-nbp ELSE s ENDIF
=>

(FORALL x,spam:x>=low and x<low+nbp and spam=IF x+sp>=low+nbp THEN
sp-nbp ELSE sp ENDIF => Ap(x+nbp)=SAp(x+nbp+spam)

)
)

The meaning of the lemmaSHIFT2 is: if the sequenceSA is a left circular permutation of the sequenceA (the
shift being s) and if we apply the minmax algorithm on both the sequencesA andSA, then the new shift (ns ) on the
second list obtained is equal tos modulonbp andAp is a left circular permuation of the sequenceSAp.

Applying recursively the properties on sequences, the size ofs decreases and after the last step its value is zero.

Remark 4.4 Now we give an example of a mistake in one of our previous versions of the specification. Since we are
in the middle of elaborating the propertySHIFT , the final part of the previous version of this lemma was

FORALL x,spam:x>=low and x<=hi and spam = IF x+sp>low+nbp THEN
sp-nbp ELSE sp ENDIF => Ap(x)=SAp(x+spam)

in place of

FORALL x,spam:x>=low and x<low+nbp and spam=IF x+sp>=low+nbp THEN
sp-nbp ELSE sp ENDIF => Ap(x)=SAp(x+spam)

It is obvious that the previous version of this lemma could not be proved.
In the derivation of the sequent of this lemma (the previous one) we obtain, after having hidden all the other

formulas :

{-1} nbp!1 = nb!1 / 2
[-2] A!1(nbp!1 + x!1) = SA!1(nbp!1 - nb!1 + s!1 + x!1)

|-------
[1] A!1(nbp!1 + x!1) = SA!1(s!1 + x!1)

Through analysis of this result we saw that we must replacex<=hi byx<=low+nbp .

4.4 End of the proof

As we have produced only increasing sequences with this specification, we prove that reversing an increasing list
produces a decreasing list. This theorem is easy to prove:
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Reverse(A,Ap,low,hi) : bool =
(FORALL x:x>=low and x<=hi => Ap(x)=A(hi+low-x))

INC_TO_DEC_LIST : LEMMA
(hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and

(FORALL x,y: x>=low and y<=hi and x<=y => A(x)<=A(y)) and
Reverse(A,Ap,low,hi)

)
=>

(FORALL x,y: x>=low and y<=hi and x<=y => Ap(x)>=Ap(y))

Another fundamental property to prove is that all elements in the first list, obtained after the minmax algorithm,
are inferior to all the elements of the second one. This property, being applied recursively, yields a correct sort of the
array, because at the end, the array is composed of lists of length one, and each element is obviously inferior to its
successors.

FirstInfSecond(A,low,hi,nbp) : bool =
FORALL x : x>=low and x<low+nbp
=>

FORALL y : y>=low+nbp and y<=hi
=>

A(x)<=A(y)

FIRST_INF_SECOND : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1 and
(EXISTS i,j:BitonicList(A,low,hi,i) and

Pivot(A,low,hi,nbp,j) and
(FORALL x:x>=low and x<=j-1 => A(x)<=A(j-1)) and
(FORALL x:x>=j+nbp and x<=hi => A(x)<=A(j+nbp)) and
(FORALL x : x>=j and x<low+nbp => A(x)>=A(j-1)) and
(FORALL y : y>=low+nbp and y<=j+nbp => A(y)>=A(j+nbp))

) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp)
=>

FirstInfSecond(Ap,low,hi,nbp)

With this theorem we specify that if we have a bitonic list with suitable pivotsi andj and if we apply the minmax
algorithm on the sequence then all elementsx in the first list obtained are inferior to all elementsy of the second one.

Now there are some special cases, not yet handled, which we should consider.

OTHER_CASE : THEOREM
hi>low and nbp>=1
=>

( not (EXISTS j:j>low and j<=low+nbp-1 and
A(j-1)<=A(j-1+nbp) and A(j)>=A(j+nbp)
)
<=>
(FORALL j: j<=low or j>low+nbp-1 or A(j-1)>A(j-1+nbp) or A(j)<A(j+nbp))

)

In most of all this previous proofs, we explicitly state thatj>low and j<=low+nbp-1 , so if this condition
is not satisfied, this means thatA(j-1)>A(j-1+nbp) or A(j)<A(j+nbp) . We obtain this property with the
theoremOTHERCASE.
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Thus, with both cases (A(j-1)>A(j-1+nbp) or A(j)<A(j+nbp) ), we must prove properties similar to
those seen in the normal case (wherej>low and j<=low+nbp-1 ), i.e. we must prove that applying the minmax
algorithm we obtain bitonic sequences in which all elements of the first obtained list are inferior to all elements of the
second one.

The theoremPROPNOJ 0 is used to conclude that if we have a bitonic list and if all elements indexed byx in
the first half of the sequence are superior to all elements indexed byx+nbp in the second half then for allx andy ,
indexes of the second half, such thatx is inferior or equal toy then we haveA(x) superior or equal toA(y) . We use
this property, in the following theorem, to prove that in the case whereA(j-1)>A(j-1+nbp) , we obtain a bitonic
list (theoremBIT NOJ) in which we have the inferior property (theoremINF NOJ).

PROP_NOJ_0 : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1
=>

BitonicList(A,low,hi,i) and
(FORALL x: x>=low and x<low+nbp => A(x)>A(x+nbp))
=>

(FORALL x,y:x>=low+nbp and x<=y and y<=hi => A(x)>=A(y))

BIT_NOJ_0 : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1
=>

BitonicList(A,low,hi,i) and
(FORALL x: x>=low and x<low+nbp => A(x)>A(x+nbp)) and
(FORALL x,y:x>=low+nbp and x<=y and y<=hi => A(x)>=A(y)) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp)
=>

DecreasingList(Ap,low,low+nbp-1) and
((EXISTS i:BitonicList(Ap,low+nbp,hi,i)) or IncreasingList(Ap,low+nbp,hi))

INF_NOJ_0 : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1
=>

BitonicList(A,low,hi,i) and
(FORALL x: x>=low and x<low+nbp => A(x)>A(x+nbp)) and
(FORALL x,y:x>=low+nbp and x<=y and y<=hi => A(x)>=A(y)) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp)
=>

FirstInfSecond(Ap,low,hi,nbp)

Similar theoremsPROPNOJ 1, BIT NOJ 1 andINF NOJ 1 are obtained by including respectively the following
expressions:

FORALL x: x>=low and x<low+nbp => A(x)>A(x+nbp))
FORALL x,y:x>=low+nbp and x<=y and y<=hi => A(x)>=A(y)
IncreasingList andDecreasingList

in place of the following expressions :
FORALL x: x>=low and x<low+nbp => A(x)<A(x+nbp))
FORALL x,y:x>=low and x<=y and y<=low+nbp => A(x)>=A(y)
DecreasingList andIncreasingList .

And finally, we should prove the same theorem when we have respectively only an increasing list (theorems
BIT INC andINF INC) and only a decreasing list (theoremsBIT DECandINF DEC).
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BIT_INC : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1
=>

IncreasingList(A,low,hi) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp)
=>

IncreasingList(Ap,low,low+nbp-1) and IncreasingList(Ap,low+nbp,hi)

INF_INC : LEMMA
hi>low and low>0 and nbp=nb/2 and nb=hi-low+1 and nbp>=1
=>

IncreasingList(A,low,hi) and
BitonicMin(A,Ap,low,nbp) and BitonicMax(A,Ap,low,nbp)
=>

FirstInfSecond(Ap,low,hi,nbp)

To obtain theoremsBIT DECand INF DEC, we just have to putIncreasingList in place ofDecreas-
ingList .

Now we summarize the proof we have done.

� Having a bitonic list2p and applying our algorithm, we obtain two bitonic lists of size2p�1 (a general bitonic
list and a left circular permutation of a general bitonic list).

� All the elements in the first bitonic list obtained are inferior to all the elements in the second one.

� A left circular permutation of a bitonic list is equivalent, at the end of a recursion of the minmax algorithm, to a
bitonic one.

Thus starting with a list of size one and making, at each step, sequences of size two times bigger (alternatively
increasing and decreasing), we obtain at the end of the algorithm an increasing list of size2p.Thus, using all these
theorems, we can ensure that the following specification is correct.

5 Specification of the bitonic sort algorithm in PVS

Now that we have proved all the properties that the specification should ensure, we can give the specification of the sort
algorithm. To build this specification, we must examine how this algorithm executes. It starts by creating alternatively
increasing and decreasing lists of size 2. Then at each stepp, it builds alternatively increasing and decreasing lists of
size2p. Each stepp being composed ofp substeps. Thus we need to have a recursive function to merge, at each step
p, an increasing and a decreasing list of size2p�1, in order to build either an increasing or decreasing list. But as we
have seen, the algorithm requiresp substeps to do this task. Thus the merge function needs to call a function which
splits recursively a list of size2p into two lists of size2p�1. These functions are respectively calledBitonicMerge
andBitonicSplit .

The functionBitonicMerge , is called at the begining of the algorithm withn cur = 2. This value is the size
of the first lists built by the algorithm. Then at each recursion, the value ofn cur is multiplied by 2, until it reachs
the value ofnb . Alternatively we build an increasing list and a decreasing list using the functionReverse .

The functionBitonicSplit simply splits a list into two lists using theBitonicMin and BitonicMax
functions.

bitonic_sort_algo : THEORY

BEGIN
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Arra : TYPE = [nat->nat]
n,x,y,nb,nbp,n_cur,n_curp,low,hi,b,m:VAR nat
A,Ap,App,Appp : VAR Arra

BitonicMin(A,Ap,low,nbp) : bool =
FORALL x: x>=low and x<low+nbp => Ap(x) = min(A(x),A(x+nbp))

BitonicMax(A,Ap,low,nbp) : bool =
FORALL x: x>=low and x<low+nbp =>

Ap(x+nbp) = max(A(x),A(x+nbp))

BitonicSplit(A,App,low,hi,nb) : RECURSIVE bool =
IF nb=1 THEN A=App
ELSE

EXISTS Ap,nbp : nbp=nb/2 and BitonicMin(A,Ap,low,nbp) and
BitonicMax(A,Ap,low,nbp) and
BitonicSplit(Ap,App,low,hi-nbp,nbp) and
BitonicSplit(Ap,App,low+nbp,hi,nbp)

ENDIF
MEASURE nb

Reverse(A,Ap,low,hi) : bool = (FORALL x:x>=low and x<=hi =>
Ap(x)=A(hi+low-x))

BitonicMerge(A,Appp,low,hi,nb,n_cur) : RECURSIVE bool =
IF n_cur>nb THEN A=Appp
ELSE

EXISTS Ap,App,n_curp:
(FORALL b : b>=1 and b<=nb/n_cur IMPLIES

BitonicSplit(A,Ap,low+(b-1)*n_cur,low+b*n_cur-1,n_cur)
and IF EXISTS m: b=2*m+1 THEN App=Ap

ELSE Reverse(Ap,App,low+(b-1)*n_cur,low+b*n_cur-1)
ENDIF

)
and n_curp=n_cur*2 and BitonicMerge(App,Appp,low,hi,nb,n_curp)

ENDIF
MEASURE nb-n_cur

END bitonic_sort_algo

If, for example, we would want to sort the array of figure 1, we would useBitonicSort(A,Ap,1,16,
16,2) with A initialized with unsorted numbers.

6 Related works

Related work on the bitonic sort provides different approaches to proving the correctness of the algorithm. Batcher
in [1] gives a sketch of proof of the iterative rule for bitonic sorters, all cases previously described are not handled.
Gamboa in [8] uses Powerlists, defined by Misra in [12], to prove that the bitonic sort is equivalent to the Batcher sort.
Although this proof is not direct, since it uses the proof of the Batcher sort, it is built using the ACL2 theorem prover.
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Bilardi and Nicolau in [2] give some properties of bitonic sequences, but they use properties proven by other people;
for example, they use the fact that a subsequence of a bitonic list is bitonic.

Concerning properties of programs, several work has already been done. In UNITY [3], Chandy and Misra defined
a general framework in which stating programs, properties and mapping shows how formal techniques could be put
together in a uniform notation. The concept of refinement is a very crucial point in the UNITY philosophy: informally,
a text refines another text when ‘what is holding’ for the first text is ‘still holding’ for the second text.

7 Conclusion

We prove that the bitonic sort algorithm is sound using only basic knowledge of this algorithm. In fact we start by
studying this well known algorithm, and describing (formally) its main properties. Then we proved these properties to
be correct: PVS was a great help for this. Most of the properties used during the proof were not identified before the
proof begin. In fact, we formulated draft versions of the properties, and it is only through trying to prove them that we
were able to achieve correct definitions. Developing the proof of an algorithm in parallel with the specification of the
algorithm is a novel, yet powerful, approched to software development.

This work is an illustration of program properties that can be proven with help of an interactive theorem prover. In
[5], we explain a methodology we develop to parallelize a sequential application and prove that this parallelization is
sound using post-conditions of the sequential program. We apply this method on a Monte Carlo simulation developed
by our Physicist colleagues. We intend to test our approach on many more algorithms.
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