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A perspective on 16S rRNA operational taxonomic unit
clustering using sequence similarity
Nam-Phuong Nguyen1, Tandy Warnow1,2,3, Mihai Pop4 and Bryan White1

The standard pipeline for 16S amplicon analysis starts by clustering sequences within a percent sequence similarity threshold
(typically 97%) into ‘Operational Taxonomic Units’ (OTUs). From each OTU, a single sequence is selected as a representative. This
representative sequence is annotated, and that annotation is applied to all remaining sequences within that OTU. This perspective
paper will discuss the known shortcomings of this standard approach using results obtained from the Human Microbiome Project.
In particular, we will show that the traditional approach of using pairwise sequence alignments to compute sequence similarity can
result in poorly clustered OTUs. As OTUs are typically annotated based upon a single representative sequence, poorly clustered
OTUs can have significant impact on downstream analyses. These results suggest that we need to move beyond simple clustering
techniques for 16S analysis.

npj Biofilms and Microbiomes (2016) 2, 16004; doi:10.1038/npjbiofilms.2016.4; published online 20 April 2016

INTRODUCTION
As the 16S rRNA gene is universally present across bacteria, is
highly conserved, and can be easily amplified using universal
primers, environmental microbial analyses are often performed
using 16S rRNA amplicon sequencing. Although the 16S rRNA
gene is highly conserved, there are nine hypervariable regions
that can be used to distinguish between different organisms. The
typical pipeline for 16S amplicon analyses starts with using
primers designed to amplify the hypervariable regions of the 16S
rRNA gene (typically the V1–V3 region or the V3–V5 region).
Sequences are clustered into bins called ‘Operational Taxonomic
Units’ (OTUs) based upon similarity. Typically, the similarity
between a pair of sequences is computed as the percentage of
sites that agree in a pairwise sequence alignment. A common
similarity threshold used is 97%, which was derived from an
empirical study that showed most strains had 97% 16S rRNA
sequence similarity.1 From the OTU cluster, a single sequence is
selected as a representative sequence. The representative
sequence is annotated using a 16S classification method,2,3 and
all sequences within the OTU inherit that same annotation. Several
pipelines have been developed to perform the entire 16S analysis
from end to end, including QIIME4 and MOTHUR.5

One of the largest benefits of OTU clustering is computational.
Typically, a 16S amplicon analysis can have millions of reads,
however, this may result in only thousands of OTUs. Downstream
analyses, such as multiple sequence alignment (MSA) or
phylogeny estimation, become more tractable when working on
the representative sequence set. Thus, clustering allows for rapid
analysis of amplicon data sets.
However, there have been many criticisms with using percent

sequence similarity to define OTUs.6–8 First, the percent sequence
similarity can overestimate the evolutionary similarity between
pairs of sequences. For example, sequence similarity computed
from pairwise alignments underestimates the number of

substitutions compared with similarity computed from MSAs.9

In addition, the percent similarity is a nonevolutionary-based
distance metric; it fails to take into account that multiple
substitutions can occur at the same site.10 These studies suggest
that the best practice for computing similarity between sequences
is to use evolutionarily corrected distances based upon a MSA;
however, typical analyses use uncorrected distances based upon
pairwise sequence alignments.
Second, the 97% 16S rRNA sequence similarity threshold used to

delineate species is only a rough approximation. For example, two
different species may have 99% similar 16S sequences (such as
Bacillus globisporus and B. psychrophilus11) or the same strain may
have multiple copies of the 16S rRNA gene that differ by 5% for
some regions (such as Escherichia coli K1212). Even using the hyper-
variable regions can still lead to ambiguity; Huse et al. found that
18% of the V3 region mapped to two or more rRNA sequences.13

This perspective paper focuses on the problems of using
sequence similarity for defining OTUs. We will discuss three
different dissimilarity metrics for quantifying the evolutionary
distance between pairs of sequences:

● Pairwise alignment sequence dissimilarity (PSD): For a pair of
sequences, an optimal pairwise alignment is computed and the
dissimilarity is defined as the percentage of sites that disagree
in the pairwise alignment. This is the traditional approach for
estimating the similarity or dissimilarity between sequences.

● MSA-based sequence dissimilarity (MSD): All sequences in the
data set are aligned into a single MSA. The dissimilarity between
a pair of sequences is defined as the percentage of non-gapped
sites that disagree in the induced pairwise alignment.

● Phylogenetic branch length distance (BLD): A maximum
likelihood (ML) tree is estimated on the MSA of the sequences.
The dissimilarity between a pair of sequences is defined as the
total branch length distance on the ML tree between a pair of
sequences.
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Both the PSD and MSD are types of p-distances, which are
distances based upon the proportion of sites that disagree
between a pair of sequences. The p-distance does not make any
corrections for multiple substitutions at the same site, for varying
rates of evolution among sites, or for substitution rate biases. Thus,
the p-distances are most useful when the amount of evolution
between sequences is low; otherwise it will underestimate
the total amount of evolution between sequences. The BLD,
on the other hand, is an evolutionary distance that estimates the
expected number of substitutions per site, and thus, more
accurately reflects the total number of evolutionary events
between pairs of sequences. Thus, although the PSD and MSD
are directly comparable (both are p-distances), the units for the
BLD are fundamentally different. However, the BLD can be used as
a metric to determine how phylogenetically diverse an OTU
can be.
Although BLD distances might better estimate the true

evolutionary distances between sequences, PSD and MSD are
more commonly used metrics. As a case study, we use a subset of
the QIIME-based analyses from the Human Microbiome Project14

(HMP), which computed OTUs using PSD based upon a 97%
sequence similarity threshold (corresponds to maximum PSD of
0.03). We take the V1V3 and V3V5 OTUs that were generated from
the HMP and compute the MSD and BLD between the
representative sequence and all remaining sequences within the

OTU (PSD was excluded as we were unable to extract the PSD
from the USEARCH results).
By examining the MSD and BLD metrics, we can compare the

compactness of an OTU that was originally computed using PSD.
By definition, all sequences within an OTU should be at most 3%
dissimilar from the representative sequence (PSDo0.03). We will
show that the compactness of the OTUs varies greatly across the
taxonomic tree, and both MSD and BLD often exceed the 0.03
threshold for an OTU.

RESULTS AND DISCUSSION
When we examined the OTUs that were generated using PSD, we
found that many OTUs had a MSD or BLD that was 40.03 (see
Figures 1 and 2). We found that 80.5% of the V3V5 OTUs had at
least one sequence that was 43% dissimilar (MSD40.03) from
the representative sequence, and 2.7% of all sequences across all
the V3V5 OTUs had a MSD 43% from the representative. In
addition, 4.7% of the V3V5 OTUs were very diverse and had an
average MSD40.03.
Interestingly, the results for the V1V3 OTUs showed that the

V1V3 OTUs were even more diverse compared with the
V3V5 OTUs. With respect to the MSD, 84.4% of the V1V3 OTUs
had at least one sequence that was 43% dissimilar from the
representative, 6.4% of all the V1V3 sequences were 43%

Mean MSA based sequence distance

Mean branch length distance

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

C
ya

no
ba

ct
er

ia
(1

7)

T
he

rm
i(4

)

Le
nt

is
ph

ae
ra

e(
6)

V
er

ru
co

m
ic

ro
bi

a(
16

)

A
ct

in
ob

ac
te

ria
(3

36
7)

B
ac

te
ro

id
et

es
(2

68
7)

P
ro

te
ob

ac
te

ria
(1

23
6)

S
pi

ro
ch

ae
te

s(
77

)

Te
ne

ric
ut

es
(1

06
)

F
us

ob
ac

te
ria

(4
58

)

F
ir

m
ic

ut
es

(4
11

2)

S
R

1(
26

)

S
yn

er
gi

st
et

es
(3

)

G
N

02
(2

)

T
M

7(
17

1)

Phylum

M
ea

n 
di

st
an

ce

Figure 1. Box plots of the mean MSA and BLD across the different phyla for the V1V3 OTUs. We report the distribution of the mean MSA-based
sequence dissimilarity and mean phylogenetic branch length distance between the representative sequence and all other sequences within
an OTU for the V1V3 OTUs. We group the distributions according to the OTUs’ phylum-level annotations. The red line delineates a distance of
0.03. We report the total number of OTUs that belong to that phylum in parenthesis.
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dissimilar from the representative, and 9.5% of all V1V3 OTUs had
an average MSD 40.03.
When we classified every read within an OTU, we found

that 12.9% of all the V3V5 OTUs and 19.8% of all the V1V3
OTUs contained sequences with annotations that differed
from the representative sequence. For OTUs that had an average
MSD of 0.03 or greater, that percentage rose to 13.5%
for the V3V5 OTUs, and 26.2% for the V1V3 OTUs. Thus, OTUs
that were more divergent were more likely to have multiple
possible annotations, especially for the reads from the V1V3
regions.
The MSD still seemed to underestimate the total amount of

evolution between sequences by an approximate factor of 3.4 for
both the V1V3 and V3V5 reads: the average MSD and BLD for the
V1V3 OTUs were 0.016 and 0.054 and the average MSD and BLD
for the V3V5 OTUs were 0.014 and 0.049. We found that 78.9% of
all V3V5 sequences and 81.2% of all V1V3 sequences had a
BLD40.03 from the representative. These observations suggest
that BLD might be more sensitive in detecting evolutionarily
divergence sequences.
Both the MSD and BLD varied greatly across the taxonomic tree

(Figures 1 and 2). For example, both the V1V3 and V3V5 OTUs for
the phylum Cyanobacteria were all very compact (mean MSD and
BLD of 0.007 and 0.023 for V1V3 and mean MSD and BLD of 0.010
and 0.025 for the V3V5). The OTUs for the candidate phylum TM7,

however, showed much greater variation and diversity in the V1V3
region: the mean MSD and BLD were 0.020 and 0.171 (more than
three times the average BLD). Interestingly, although the V3V5
OTUs from the candidate phylum TM7 showed much lower
diversity (the mean MSD and BLD were 0.016 and 0.046), the
source of this discrepancy may be caused by sampling: only 5,776
V3V5 reads belonged to OTUs annotated as candidate phylum
TM7 compared with a total 226,248 V1V3 reads.
We found that the MSD and BLD for individual reads were

weakly correlated (Pearson’s correlation coefficients of 0.10 and
0.38 for the V3V5 and V1V3 regions). When we computed the
correlation coefficients for the mean MSD and BLD for the OTUs,
the Pearson’s correlation coefficients increased (0.41 and 0.63 for
the V3V5 and V1V3 regions). We believe one of the reasons why
these metrics are not more strongly correlated is because the MSD
is a Hamming Distance (i.e., it counts raw differences), whereas the
BLD is an evolutionary metric (i.e., it counts the expected number
of substitutions per site using a phylogeny). The correlation
between MSD and BLD might be more positively correlated if the
MSD was corrected under a model of sequence evolution (i.e.,
such as a log-det distance model15–17 or a GTR distance model18).
For the remainder of this study, we present examples of

different distributions for the MSD and BLD distances for selected
V1V3 OTUs. We note that the observations about these selected
V1V3 OTUs are not unique, and that OTUs with similar diversity
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Figure 2. Box plots of the mean MSA and BLD across the different phyla for the V3V5 OTUs. We report the distribution of the mean MSA-based
sequence dissimilarity and mean phylogenetic branch length distance between the representative sequence and all other sequences within
an OTU for the V3V5 OTUs. We group the distributions according to the OTUs’ phylum-level annotations. The red line delineates a distance of
0.03. We report the total number of OTUs that belong to that phylum in parenthesis.

16S rRNA OTU clustering
N-P Nguyen et al

3

© 2016 Nanyang Technological University/Macmillan Publishers Limited npj Biofilms and Microbiomes (2016) 16004



can be found throughout both the V3V5 OTUs and the remaining
V1V3 OTUs.
Even within well-known and well-studied phyla such as

Bacteroidetes, Firmicutes, and Fusobacteria, we still see large
variations across OTUs (Figure 3). For example, both Staphylococ-
cus and Lactobacillus are two genera with many OTUs from
Firmicutes. The 280 V1V3 OTUs that belonged to Staphylococcus
were very tightly clustered: the mean MSD and BLD were 0.017
and all the OTUs within Staphylococcus carried the same
annotation as the representative sequence. The 597 V1V3 OTUs
that belonged to Lactobacillus, on the other hand, had nearly
double the average mean distances (MSD and BLD of 0.026 and
0.118), with OTU 7767 having a mean MSD of 0.050 and mean BLD
of 0.519, greatly eclipsing the average MSD and BLD distances for
the V1V3 OTUs. The 2.0% of the V1V3 OTUs from Lactobacillus
contained sequences with annotations that differed from the
representative sequence, including OTU 7767.
Other examples of poorly clustered OTUs from a well-studied

phylum are the V1V3 OTUs from the genus Sneathia (belonging to
the phylum Fusobacteria). There are a total of four V1V3 OTUs
from Sneathia, however, these OTUs had on average the highest
mean BLD compared with all other genera. Half of the Sneathia
OTUs could have different annotations, depending on which

sequence was selected as the representative. The ML trees
estimated on the four OTU alignments from Sneathia varied
greatly in shape (Figure 4). For example, the representative
sequence from OTU 1429 (the yellow sequence in Figure 4a) was
on a very long branch and seemed to cluster separately from the
majority of the remaining sequences. OTU 33700 (Figure 4b), on
the other hand, was very compact, and contained very short
branches. OTU 311 (Figure 4d) showed the most variation, with
several distinct clusters of sequences. These results are indicative
that using PSD may be missing the true diversity of the
microbiome as the OTUs are being over clustered.
To highlight the variation we saw across the taxonomic tree, we

showed the distribution of the MSD and BLD for three V1V3 OTUs:
OTU 33700 from the genus Sneathia, OTU 7767 from the genus
Lactobacillus, and OTU 10405 from the phylum TM7 (Figure 5).
These OTUs displayed very different characteristics. As previous
mentioned, OTU 33700 had low-mean pairwise distances; the
distributions of both the MSD and BLD for the OTU were very
compact and each had a single peak. OTU 7767, on the other
hand, had much broader distributions. Interestingly, while OTU
7767’s MSD distribution seemed to follow a normal distribution,
the BLD seemed more like a mixture of normal distributions.
Finally, OTU 10405’s distributions showed even more divergent
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Figure 3. Box plots of the mean MSA and BLD across the different genera within the Firmicutes, Bacteroidete, and Fusobacteria phyla for the
V1V3 OTU. We report the distribution of the mean MSA-based sequence dissimilarity and mean phylogenetic branch length distance between
the representative sequence and all other sequences within an OTU for the V1V3 OTUs. We group the distributions according to the OTUs’
genus-level annotations. The red line delineates a distance of 0.03. We report the total number of OTUs that belong to that genus in parenthesis.
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behaviors, with each distribution containing potentially
three peaks.
Although we only showed three distributions from our analyses,

similar trends can be seen across the different taxonomic groups.
We hypothesize that these large variations in distributions are
caused by the use of PSD for computing OTUs. We see that the
OTUs defined by PSD are consistent when the evolutionary
distance between sequences is low, such as for Staphylococcus.
However, when the true evolutionary distance is much larger, such
as for V1V3 OTUs from Sneathia, PSD is overestimating the
similarity between sequences. This can have profound impact for
downstream analyses. For example, Sneathia can be part of the
regular microbiota in the vaginal microbiome in human females;
however, Sneathia is also correlated with various medical
conditions including preterm labor and bacteria vaginosis.19

Grouping Sneathia sequences with 97% similarity based upon
PSD may result in inaccurate clinical diagnosis as pathogenic
strains may be missed due to over clustering.
One interesting observation is that the candidate phylum TM7

showed the largest diversity for the V1V3 OTUs. This suggests that
perhaps we need to take into account the properties of the
sequences, such as where the sequences belong in the taxonomic
tree, in selecting a threshold. Indeed, many new methods
have been developed to cluster sequences using variable
thresholds.20–23 Other techniques like oligotyping and minimum
entropy decomposition might aid in OTU analyses by examining
the variation within an OTU.12,24 More comprehensive studies
comparing these different approaches are needed, however,

in order to move the community toward using more sophisticated
methods to obtain improved OTU clustering.
These results highlight the importance of using accurate metrics

for estimating the similarity between sequences. The original
QIIME study used optimal pairwise sequence alignments to
compute the percent similarity (i.e., the PSD) that was used to
generate the OTUs. However, we saw that using PSD resulted in
poorly clustered OTUs, even though all the PSD within an OTU
were above the 97% similarity threshold. When we use sequence
dissimilarity distances based upon a MSA (i.e., the MSD), we find
that 480% of the OTUs actually contained sequences that were
below the sequence similarity threshold. However, the MSD still
underestimates the total amount of evolution as the phylogenetic
branch length distance was on average more than three times
that of the MSA-based sequence dissimilarity distance. This
suggests that we need to shift toward using evolutionary-based
distance metrics in order to build OTU bins that contain sequences
that are evolutionarily similar to the representative sequences.
Another alternative to sequence similarity-based clustering

is phylogeny-based OTU clustering.25 Rather than grouping
sequences based upon sequence similarity, we can use placement
algorithms26–28 to insert the reads into a reference tree and then
cluster sequences using phylogenetic distances between the
reads. Phylogeny-based OTU binning would take into account a
model of sequence evolution and might lead to more accurate
clusters.
More concerning are the results from annotating every read in

the data set. One-tenth to one-fifth of the OTUs (depending on

OTU 1429 OTU 33700

OTU 442 OTU 311

Figure 4. ML trees for the V1V3 OTUs classified as the genus Sneathia. We show the ML trees estimated on the V1V3 OTU alignments that
belong to the genus Sneathia. The OTUs are (a) OTU 1429, (b) OTU 33700, (c) OTU 442, and (d) OTU 311. The representative sequence for each
OTU is highlighted in yellow. All trees are drawn on the same scale.
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the region used) could have different annotations depending on
which sequence was selected as the representative sequence.
As OTUs are commonly used to estimate the diversity of a
microbial sample, two analyses of the same data set can lead to
different conclusions. For example, the abundance estimations for
a particular community could be biased depending on which
sequences were selected as the representative sequences, as well
as which region was amplified.
Perhaps these results suggest that we should move beyond

using OTUs. OTUs, as currently used in most analyses, are an
artificial construct that makes our analyses computationally easier.
However, being easy to run does not equate to being accurate.
If we are only interested in comparing clusters of sequences, then
perhaps current OTU clustering methods are sufficient. If we are
interested in taxonomic identification, then we should strive
toward using methods that classify every read rather than only
looking at representative sequences.
This perspective paper presents a cautionary tale for OTU

clustering analyses. We saw that PSD, the commonly used metric
for computing sequence dissimilarity distances, resulted in poorly
clustered data, and that using a more accurate sequence-based
metric like MSD could detect cases in which the similarity between
sequences was being overestimated. However, we also saw that
the MSD was still underestimating the evolutionary distances

between sequences. We saw that the poorly clustered OTUs
grouped divergent sequences, and that the classification of an
OTU could vary depending on which sequence was selected as
the representative member. We as a community need to begin
discussing the problems with using OTUs. Only then can we
shift the paradigm from using the traditional, but potentially
misleading methods, to more accurate and phylogeny-based
methods.

MATERIALS AND METHODS
16S data sets
The sequence data sets used in this study were obtained from the
Human Microbiome Project QIIME Community Profiling website
(http://hmpdacc.org/HMQCP/). This webpage includes the QIIME
analyses on all the 16S V1V3 and V3V5 samples from the NCBI SRA
projects SRP002395: Human Microbiome Project 16S rRNA Clinical
Production Phase I and SRP002012: Human Microbiome Project
454 Clinical Production Pilot. From the webpage, we downloaded
the QIIME-binned OTUs (binned at 97% sequence similarity using
USEARCH,29 the final OTU annotation table, and the representative
sequences for each OTU. The details for generating the OTUs are
provided on the HMP QIIME Community Profiling webpage.30
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Phylogenetic analysis
We downloaded all high-quality full-length 16S sequences taken
from type isolates from the RDP database.31 A reference alignment
was estimated on the RDP sequences using PASTA version 1.6.3.32

We produced a reference tree by using the NCBI taxonomy on the
reference sequences as a constraint tree and refined the NCBI
taxonomy into a binary tree using RAxML version 8.1.3 (ref. 33) on
the PASTA alignment.
We selected all OTUs with at least 100 sequences (29,020 OTUs

in total; 12,326 V1V3 OTUs and 16,694 V3V5 OTUs) and aligned
each OTU to the reference alignment using UPP 2.0,34 a fast and
accurate method for aligning fragmentary sequences to an
existing reference alignment. For each OTU alignment, we
computed the MSD of the representative sequence to all other
sequences within the OTU. Note that the MSD was computed on
the UPP alignment generated by aligning all the OTU sequences
to the 16S reference alignment rather than estimating a de novo
MSA for each OTU. This technique of reference-based MSA allows
us to align millions of reads independently of each other and
makes it trivial to parallelize the alignment step.
We estimated an ML tree on the OTU alignment using FastTree-

2 version 2.1.7,35 a fast and accurate method for estimating ML
trees on very large MSAs. We computed the BLD between the
representative sequence and all other sequences within the OTU
using the ML tree.
The perl script used to compute the MSD for a given alignment

and the R script used to compute the BLD for a given tree are
available at https://github.com/namphuon/phylo.

16S annotation
We followed the protocol used in the HMP QIIME pipeline to
annotate the 16S sequences. We ran RDP classifier version 2.231

using the greengenes36 training input files provided by QIIME
(ftp://greengenes.microbio.me/greengenes_release/gg_13_5/
gg_13_5_otus.tar.gz). We report the percentage of OTUs that had
a sequence that is classified differently from the representative
sequence. A query sequence has a differing classification if it is
under classified (i.e., representative sequence classified at genus
level and the query sequence is classified at the family level), over
classified (i.e., representative sequence classified at family level
and the query sequence is classified at the genus level), or
conflicting (i.e., the representative sequence is classified as genus
A and the query sequence is classified as genus B).

Commands
● PASTA—run pasta.py -i o input file4
● RAxML—raxmlHPC-PTHREADS -m GTRGAMMA -T 8 -p 1111 -g

ounrefined taxonomic tree4 -s opasta alignment4 -n refine
● UPP—python run upp.py -f o input file4 -o ooutput prefix4

-m dna -t opasta tree4 -a opasta alignment4 -A 100
● FastTree—fasttree -gtr -gamma -nt o input alignment4 4

ooutput tree4
● RDP classifier—assign taxonomy.py -i o input otu4 -r gg 97

otus 4feb2011.fasta -t green- genes tax rdp train.txt -o ooutput
file4 -m rdp
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