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Abstract

Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches
have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end-stage kidney disease
(ESKD), which joints the scientist’s attention recently to exploit the molecular mechanism underlying hypoxia-induced renal fibrogenesis. The
scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia-inducible signalling pathways and complex
interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia-induced pathogenesis of interstitial fibro-
sis, including pathways mediated by HIF, TGF-b, Notch, PKC/ERK, PI3K/Akt, NF-jB, Ang II/ROS and microRNAs. Roles of molecules such as
IL-6, IL-18, KIM-1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia-responsive signalling pathways
and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of
CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully trans-
lated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.
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Introduction

Renal fibrosis is the common pathological hallmark of almost all
advanced kidney diseases with diverse aetiologies, and it has been
shown to be the most reliable predictor of CKD progression to end-
stage renal failure (ESRD). The mechanisms of interstitial fibrosis in
the progression of CKD were successively supposed to be related to

proteinuria, oxygen free radicals, vasoactive substances, tubular
hypertrophy, hypermetabolism and endothelial dysfunction. However,
current knowledge indicates that these putative causes could not
account for all aspects of progressive renal diseases completely. In
2000, Fine et al.[1] proposed the chronic hypoxia hypothesis, which
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suggested chronic oxygen deprivation, might explain the scar forma-
tion in the tubulointerstitial compartment. During the past few dec-
ades, this fascinating hypothesis has been vigorously validated both
in experimental animals and in humans, and a substantial body of evi-
dence supports the notion of chronic tubulointerstitial hypoxia as a
final common pathway leading to ESRD in various pathological condi-
tions [2–5]. And yet, the molecular mechanisms underlying hypoxia
driving renal fibrogenesis are not well-elucidated and numerous regu-
lators have been supposed to be implicated in the process directly
and indirectly. A comprehensive understanding of hypoxia-regulated
signalling pathways involved in the development of chronic kidney
injury will undoubtedly promote the identification of novel targets
against this final common pathway.

This review will focus on the pathological roles of chronic hypoxia
in fibrosis progression of the kidney, and specifically explore how
hypoxia promotes the fibrotic response in the interstitial compartment.
We review the multiple signalling pathways and molecules involved in
hypoxia-induced pathogenesis of interstitial fibrosis, and describe pre-
dominant roles of these intracellular cascades and their interactions,
in an attempt to unveil the underlying mechanisms of hypoxia-driven
renal fibrosis and provide a new insight into anti-fibrotic strategies to
alleviate renal fibrosis to halt or retard the CKD progression.

Hypoxia promotes tubulointerstitial
fibrosis

Oxygen tension is maintained by the balance between oxygen supply
and oxygen consumption. Chronic oxygen deprivation in CKD actually
takes place via multiple mechanisms when the balance is broken,
ranging from decreases in oxygen supply due to glomerular damage,
imbalance of vasoactive substances, peritubular capillaries rarefac-
tion, to increases in oxygen consumption. Together, these mecha-
nisms act at various points in concert to result in chronic hypoxia of
the kidney [2, 6–9]. Tubular epithelial cells (TECs) are rendered par-
ticularly prone to hypoxic injury due to its high metabolic activity and
large oxygen demand [10–12]. Following persistent injury, the epithe-
lial cells initiate inflammatory response by recruiting inflammatory
cells to the injured interstitium and secreting a variety of fibrogenic
cytokines and inflammatory factors, such as platelet-derived growth
factor (PDGF), fibroblast growth factor-2, tumour necrosis factor-
1a (TNF-1a) and interleukin-6 (IL-6), which subsequently activate
fibroblasts and TECs. Activated fibroblasts are described as myofi-
broblasts which are principally responsible for production of extracel-
lular matrix proteins (ECM) by regulating expression of ECM
modifying factors. Furthermore, the epithelial cells are stimulated to
undergo apoptosis, cell cycle arrest, and phenotypic transition as
epithelial-to-mesenchymal transition (EMT) via loss of their epithelial
feature and acquisition of mesenchymal phenotype, contributing to
tubular atrophy and ECM accumulation. Eventually, the excess depo-
sition of ECM in interstitium extends distance between the capillaries
and nearby nephrons, and then leads to endothelial dysfunction and
peritubular microvascular rarefaction, this, in turn, aggravating
hypoxia and forming a vicious circle. Together, these fibrogenic

events conjunctly result in tissue destruction [13–22]. Renal fibrogen-
esis is a complex and dynamic process involved in almost all types of
renal cells, during which myofibroblasts are considered as the
determining cells. The cellular origin of interstitial myofibroblasts has
been in dispute, with manifold contributors proposed, such as resi-
dent fibroblasts, bone marrow-derived fibrocytes, macrophage
(MMT), pericyte and endothelial cells (EndoMT), as well as epithelial
cells (EMT) [23–29]. Although lineage tracing studies have doubt the
existence of EMT and its contribution to the myofibroblasts pool,
developing evidence suggests that EMT programme seems to
undergo an incomplete process, and such a partial EMT can arrest
cell cycle and thereafter halt renal repair, which leads to tissue dys-
function. In line with this notion, inhibition of EMT has been shown to
reverse renal inflammation and fibrosis, indicating the crucial role of
EMT in the development of renal fibrosis [30–34].

Signalling pathways involved in
hypoxia-induced renal fibrosis

Renal fibrosis is a multifaceted, multilayered cellular response, and
multiple signalling pathways can be activated in the hypoxic and fibro-
tic microenvironment. Based on recent literatures, the most important
signal molecules are HIF, TGF-b, Notch, PKC/ERK, PI3K/Akt, NF-jb,
Ang II/ROS, microRNAs, ADO, IL-6, IL-18 and KIM-1. Additionally, it
is apparent that these signalling pathways cooperate in the execution
of scar formation, through enhancing fibroblast proliferation, activa-
tion and matrix accumulation (Tables 1 and 2). A comprehensive
understanding of these cellular signalling pathways and crosstalks
among them in regulating hypoxia-induced tubulointerstitial fibrosis
and kidney dysfunction is indispensable and pivotal.

HIF pathway

Hypoxia-inducible factor (HIF) is a well-known master mediator of
hypoxia-adaptive responses in a variety of pathophysiological pro-
cesses in the kidney diseases [35, 36]. Structurally, HIF belongs to
basic helix–loop–helix transcription factors and consists of a hypoxi-
cally inducible a-subunit and a constitutively expressed nuclear b-
subunit, and mammalian genomes contain three genes subtypes of
HIF (HIF1-3). Under normoxia, the conserved proline residues of HIF-a
subunits are hydroxylated by HIF-prolyl hydroxylase domain contain-
ing proteins (PHDs). Then, hydroxylated HIF-a can be recognized by
von Hippel–Lindau protein (pVHL) which serves as the substrate
recognition component of the ubiquitin ligase complex, and ultimately
degraded rapidly by inducing the a-subunit to undergo E3 ubiquitina-
tion. In hypoxic condition, the enzymatic activities of PHDs are inhib-
ited, thereby the unmodified HIF-a escapes from entering the
destructive process but rather forms a functional complex with HIF-b
and its transcriptional co-activators such as CBP/p300. The complex
binds to hypoxia-responsive elements (HRE) and transcriptionally reg-
ulates numerous HIF-regulated genes, which gives rise to a number of
compensatory responses against hypoxia at both cellular and physio-
logical levels in a co-ordinated manner [36, 37].
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There is controversy regarding the effect of HIF on CKD patho-
physiology, which seems to depend on the pathological context. On
the one hand, stimulation of HIF and HIF-regulated genes by CoCl2
has been shown to exert renoprotective role in the hypoxic tubuloint-
erstitium in rats with nephritis [38] and hypertensive type 2 diabetes
[39]. A similar effect of HIF has been previously reported in cisplatin
nephrotoxicity [40]. Besides, there have been studies demonstrated
that pharmacological activation of HIF could attenuate renal injury
using the rat remnant kidney model of CKD [41–43]. On the other
hand, an inappropriate and prolonged activation of HIF is well known
to play a pivotal role in initiating and promoting renal fibrogenesis via
regulation of multiple signalling pathways in CKD [44–46] (Fig. 1).
Firstly, HIF activation can stimulate inflammatory cells proliferation
and recruitment to the site of injury in experimental models of CKD,
which plays a role in setting up the fibrous scar formation. In addition,

activated HIF binds to its pro-fibrogenic downstream genes and
induces maladaptive expression of matrix modifying factors directly in
hypoxic TECs, such as collagen I, plasminogen activator inhibitor 1
(PAI1), endothelin-1 (ET-1), connective tissue growth factor (CTGF),
matrix metallopeptidase 2 (MMP-2) and tissue inhibitor of metallopro-
teinase 1 (TIMP1), which lead to increased production of interstitial
collagen and decreased degradation of ECM. Thus, accumulating ECM
components subsequently replaces the normal nephrons and fibrosis
eventually occurs [47–49]. Apart from promoting ECM deposition, HIF
signalling is also involved in facilitating tubular EMT through modulat-
ing the expression of EMT regulators such as Snail, Slug, Zeb, SIP1,
E12, FOX and CTGF, which enable TECs to lose the expression of
epithelial signature and acquire mesenchymal signature to produce
ECM [50–54]. Among these EMT regulators, Sun et al. demonstrated
that Twist expression played a crucial role in hypoxia-regulated EMT

Table 1 Signalling pathways mediated hypoxia-induced fibrogenic responses in CKD

Signalling
pathways

Related regulators Fibrogenic effects Ref(s)

HIF Twist, Bmi1, LOXs, PAI1, ET-1, TIMP-1,
MMP-2, CTGF, VEGF, TGF-b

Fibroblast activation, inflammatory responses,
matrix modifying, collagen synthesis, EMT regulation,

[33, 34, 42, 46,
47, 56]

TGF-b Smads, TIMPs, MMPs, PHD/HIF, mTORC1,
mTORC2, AngII, CTGF, ET-1, VEGF,
ILK

Fibroblast activation, inflammatory responses,
matrix assembly, collagen synthesis,
EMT regulation, cellular apoptosis

[49, 51, 52,
55]

Notch HIF, LOXs, Snail, Hes1 Collagen synthesis, EMT regulation [48, 62, 63]

NF-jB IL-6, IL-8, TNF-a, MIP-1,
MCP-1, iNOS, Snail, HIF, CEBPD

Inflammatory responses, EMT regulation,
oxidative stress

[64–67]

PKC/ERK Egr-1, Snail, TGF-b, NF-jB Inflammatory responses, collagen synthesis,
EMT regulation, cellular apoptosis

[68, 69]

PI3K/Akt Bmi1, BVR, GSK-3b, Snail, Fibroblast activation, collagen synthesis,
EMT regulation,

[46, 73]

URG11/b-catenin TCF, Snail, Twist, Fsp1, PAI-1,
MMP-7

Fibroblast activation, inflammatory responses,
matrix assembly, EMT regulation

[80–82]

Ang II/ROS PHD/HIF, TIMP-1, ASK1, p38/JNK,
TGF-b, PDGF-B, PAI-1, NF-jB

Fibroblast activation, inflammatory responses,
oxidative stress, cellular apoptosis

[61, 86, 87]

VEGF: vascular endothelial growth factor; Fsp1: fibroblast-specific protein1; ILK: integrin-linked kinase; iNOS: inducible nitric oxide synthase;
ASK1: apoptosis signal-regulating kinase 1; JNK: c-jun N-terminal kinase.

Table 2 Molecules mediated hypoxia-induced fibrogenic responses in CKD

Molecules Related regulators Fibrogenic effects Ref(s)

miR-124,miR-34a,
miR-155

MMP2, Notch, Snail, HIF, TGF-b1 Fibroblast activation, inflammatory
responses, EMT regulation

[76, 78, 79]

IL-18 AP-1,TLRs, TNF-a, MIP-2,MCP-1STAT3 Inflammatory responses, EMT regulation,
cellular apoptosis

[89, 92]

KIM-1 IL-6, MCP-1 Inflammatory responses [93, 95]

ADO A2BR, IL-6, PAI-1 Fibroblast activation, matrix modifying,
collagen synthesis

[97–99]
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in renal fibrosis through HIF-1a-dependent signalling [55–57]. It has
been indicated by chromatin immunoprecipitation assays and elec-
trophoretic mobility shift that HIF-1 can directly bind to Twist proximal
HRE at 317–312 bp in TECs and regulate its expression. Under
hypoxic condition, HIF-1 induces Twist transcriptional activation and
expression, leading to prohibition of TECs differentiation, myofibrob-
last accumulation and EMT process in TECs, as indicated by reducing

the epithelial markers such as ZO-1 and E-cadherin while enhancing
the mesenchymal markers like vimentin and a-smooth muscle actin
(a-SMA). Thus, HIF-twist signalling exerts a functional role in EMT-
induced renal fibrosis under hypoxia condition. Furthermore, it was
reported that, Bmi1, another EMT regulator, was also essential to
Twist1-induced repression of E-cadherin contributing to cancer metas-
tasis [58]. Our recent study in kidney diseases has demonstrated that

Fig. 1 A schematic of tubulointerstitial fibrosis mediated by hypoxia-inducible signalling pathways. (A) Under hypoxia condition, HIF signalling pro-
motes renal fibrogenesis by activation of inflammatory responses, ECM, and up-regulation of expression of EMT regulators to enhance tubular EMT,

such as Twist, Bmi1, LOXs. (B) Additionally, other signalling pathways mediated by TGF-b, Notch, PKC/ERK, PI3K/Akt, NF-jB, Ang II/ROS, ADO,

microRNAs, IL-6, IL-18, KIM-1 and their downstream signals are also involved in hypoxia-induced renal fibrosis, through their specific roles, respec-

tively. EMT, epithelial-to-mesenchymal transition; ECM, extracellular matrix; Mfs, myofibroblasts;PAI, plasminogen activator inhibitor 1; ET-1,
endothelin-1; CTGF, connective tissue growth factor; TIMP1, tissue inhibitor of metalloproteinase 1; TNF-1a, tumour necrosis factor-1a; PDGF, plate-
let-derived growth factor; IL-6, interleukin-6; FGF, fibroblast growth factor-2; MCP-1, monocyte chemotactic protein-1.
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[59] Bmi1 was involved in hypoxia-triggered EMT in TECs and renal
fibrosis, and the region of Bmi1 promoter not only contained the
potential HIF-1a-binding site but also the Twist-binding site. Thus,
HIF-1 and Twist cooperatively promoted Bmi1 transcriptional activa-
tion under low oxygen, then increased the expression of Bmi1 and
induced the stabilization of its downstream target genes Snail and E-
cadherin by modulating PI3K/Akt pathway, which facilitated EMT pro-
cess and might explain the underlying mechanisms of chronic hypox-
ia-induced renal injury by enriching the HIF-Twist signalling.
Additionally, it is well known that hypoxia can promote migration of
tumour cells via HIF-1-dependent induction of its target gene lysyl oxi-
dases (LOXs) to down-regulate E-cadherin expression [60, 61]. Exper-
imental studies in kidney showed that HIF-1 might drive renal fibrosis
in part through up-regulation of LOXs expression [62]. The HIF-
mediated up-regulation of LOXs induces the expression of ECM modi-
fying factors and enhances tubular EMT in vivo and vitro. Further-
more, genetic HIF-1 ablation can ameliorate tubulointerstitial fibrosis
by reducing extracellular matrix deposition and decreasing inflamma-
tory cell infiltration, which is consistent with the effects caused by
pharmacological inhibition of LOXs. Besides, recent reports have also
indicated that the LOX-like 2 may interact with the transcriptional
repressor Snail to facilitate EMT[63]. Thus, it seems that LOXs emerge
as the significant mediators in pro-fibrotic HIF signalling pathway in
renal epithelial cells, via up-regulating the expression of ECM modify-
ing factors and facilitating Snail1 activation and EMT.

In addition to hypoxic activation, it worth noting that, other factors
also induce fibrogenic effects in CKD via oxygen-independent

activation of HIF-1 pathway, including, for example, angiotensin II
(Ang II), epidermal growth factor, TNF-1a, interleukin-1, nitric oxide
and reactive oxygen species (ROS) [64]. Furthermore, aside from its
distinct fibrogenic effects, HIF signalling pathway itself might not be
sufficient to promote fibrillogenesis without other cues; the crosstalks
between HIF signalling pathway and other intracellular signalling path-
ways involved in the pathogenesis of CKD progression might be nec-
essary to amplify the pathological fibrogenic response (see below,
Fig. 2).

TGF-b pathway

Transforming growth factor-b (TGF-b) is the most ubiquitous pro-
fibrotic cytokine in progressive renal fibrosis, which signals through
Smad-dependent and non-Smad pathways and leads to multiple
downstream biological effects [65–67]. In kidney fibroblasts, the
expression of TGF-b and Smad genes are increased in response to
hypoxia, and subsequently activated TGF-b-Smads can directly stimu-
late myofibroblast to produce ECM proteins by increasing collagen
gene expression and TIMPs but inhibiting MMPs. Meanwhile, TGF-b
can synergize with HIF to synthesis certain collagens. Some research-
ers proposed the pro-fibrotic effect of the interaction between HIF
and TGF-b1/SMAD2/3 signalling pathway in chronic nephropathy
[68]. Falguni Das et al.[69] demonstrated the involvement of
mTORC1 in HIF-1 expression for collagen I production in response to
TGF-b. They showed that treatment of TGF-b induced increased

Fig. 2 An Overview of signalling pathways(A) and their interactions(B) involved in hypoxia-induced renal fibrosis. All these signals act at various
levels in concert to amplify the pathogenesis of fibrogenic response and CKD progression. HIF, hypoxia-inducible factor; LOXs, lysyl oxidases; CTGF,

connective tissue growth factor; Egr-1, early growth response-1; BVR, biliverdin reductase; URG11, up-regulated gene 11; KIM-1, kidney injury

molecule-1; BVR, Biliverdin reductase; ADO, adenosine; IL-6, interleukin-6; ROS, reactive oxygen species; TGF-b, transforming growth factor-b; Ang
II, Angiotensin II; mTOR, mammalian target of rapamycin; PHD, prolyl hydroxylase domain protein; CEBPD, CCAAT/enhancer-binding protein d.
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mTORC1 activity in TECs, which enhanced the expression of HIF1 and
subsequently increased collagen I gene transcription. Furthermore,
both mTORC1 and mTORC2 signalling can mediate TGF-b1-induced
interstitial fibrosis directly though the activation of fibroblast [70–72].
Han et al. [73] found that TGF-b1 could decrease the expression of
PHD2 via an Smad2/3-dependent mechanism, accordingly leading to
HIF-1a stabilization and up-regulation the expression of fibrogenic
genes such as collagen I and PAI expression in RECs. However, over-
expression of PHD2 transgene decreased HIF-1a expression and
inhibited TGF-b1-regulated EMT, indicating the contribution of PHD2/
HIF-1a signalling pathway to the TGF-b1-induced EMT and renal
fibrogenesis. Furthermore, hypoxia and TGF-b1 synergistically induce
dysregulated expression of vascular endothelial growth factor and
endothelin in the injured tubules, resulting in an insufficient angio-
genic response and aggravation of tubulointerstitial hypoxia. Simi-
larly, connective tissue growth factor-b (CTGF), a pro-fibrogenic
factor commonly induced by TGF-b1, is also up-regulated by hypoxic
stimulation in the development of tubulointerstitial fibrosis. HIF can
directly target CTGF at the transcriptional level, activated CTGF then
induce its downstream signalling pathways to facilitate renal fibrosis
and EMT, such as ERK signalling, NF-jB pathway and Wnt signalling
[74–76]. However, CTGF is proposed to play a nephroprotective role
of transient hypoxia as HIF-1a reduces the CTGF expression in short-
term hypoxia of human proximal TECs [77]. Furthermore, TGF-
b-mediated induction of CTGF can be inhibited under hypoxic condi-
tions. Additionally, there exist multiple interactions between TGF-b
and Ang II under hypoxic environment. As a promoter of fibrogenesis,
Ang II can increase transcription and synthesis of TGF-b directly and
indirectly, further contributing to apoptosis and EMT. Many of the
fibrogenic effects of Ang II are mainly mediated by the induction of
TGF-b and its downstream regulators of inflammation, apoptosis, and
ECM synthesis, such as CTGF, PAI-1 and ILK, which also can be
directly induced by Ang II and mediate EMT and matrix assembly
[78–80].

Notch pathway

It is well-established that Notch signalling plays an active role in EMT-
induced organ fibrosis and cancer progression under hypoxia
[63, 81]. Notch pathway contains four receptors (Notch1-4) and two
types of ligands, Jagged and Delta. When cells experience pathophys-
iological stresses, the extracellular domain of Notch receptor is bound
to Notch ligand, which triggers two proteinase complexes to prote-
olytically cleave the notch intracellular domain (NIC), released NIC
translocates into the nucleus and interacts with transcription cofac-
tors [82]. In kidney fibrosis, Notch regulates the hypoxia-induced
EMT mainly by two distinct but synergistic mechanisms. First,
hypoxia activates epithelial Notch pathway directly by up-regulating
the levels of NIC and its ligand expression, which leads to increased
expression of fibronectin, collagen and induction in the key EMT regu-
lator Snail followed by reduction in E-cadherin expression. In con-
trast, the inhibition of Notch activation in TECs can reduce the degree
of renal fibrosis. And second, Notch signalling indirectly controls
Snail 1 expression by potentiating crosstalk with hypoxia signalling

[81]. The role of Lox in HIF signalling was discussed above. It
appears that Notch participates in this process as well by potentiating
HIF-1 binding to the LOX promoter and elevates the hypoxia-induced
up-regulation of LOX, which also activates the expression of Snail 1.
Additionally, upon induction of the hypoxic response, cytoplasmic
HIF-1a enhances the release of NIC by increasing the activity of the
proteinase complex (c-secretase), and finally induces the activation
of the common target gene like Hes1 [83].

NF-jB pathway

Inflammatory response after sustaining hypoxic injury is considered
as a driving force in the development of kidney fibrosis as it initiates
the fibrogenic stage. Nuclear factor-jB (NF-jB) pathway mediates
inflammatory response primarily, is activated in hypoxic epithelia cells
and promotes fibrosis in liver, brain and kidney tissues through regu-
lating its target inflammatory cytokines, adhesion molecules and pro-
inflammatory enzymes [84, 85]. NF-jB also controls the expression
of EMT inducers (Snail1) and enhances EMT of mammary epithelial
cells [86]. Under hypoxia, NF-jB emerges as a transcriptional regula-
tor for HIF-1a and leads to its protein accumulation [87]. For exam-
ple, CCAAT/enhancer-binding protein d (CEBPD), an inflammatory
factor, is enhanced in TECs under both acute and chronic hypoxic
conditions through NF-jB-dependent pathways. Yamaguchi and col-
leagues [88, 89] suggest that NF-kB pathway provides a significant
link between hypoxic signalling and inflammation in RECs by reinforc-
ing CEBPD-mediated HIF pathways; that is, hypoxia and/or inflamma-
tion lead to increased NF-jB and CEBPD activity, CEBPD then binds
to the promoter in HIF-1a and regulates HIF-1a signalling by tran-
scriptionally increasing its expression level, which in turn contributes
to inflammatory cell infiltration and inflammatory cytokines produc-
tion in the tubulointerstitial area. Thus, the NF-kB/CEBPD/HIF-1
pathway plays a novel role in hypoxic renal injury.

PKC/ERK/Egr-1 pathway

Early growth response-1 (Egr-1) is identified as a vital mediator of
fibroblast proliferation and inflammation triggered by various irritants.
Aberrant Egr-1 expression or function is associated with scaring pro-
cess in a variety of human diseases, such as pulmonary fibrosis,
emphysema and systemic sclerosis [90, 91]. Egr-1 has also been
found to be a hypoxia-responsive transcription factor, and its expres-
sion was increased in the rat model of kidney fibrosis. Our previous
study provided evidence for active Egr-1 signalling in the hypoxia-
triggered EMT and fibrosis in human TECs [92]. Egr-1 activity is
mainly determined by the regulation of its biosynthesis. Both in vivo
and in vitro studies implied that hypoxic conditions induced the
biosynthesis of Egr-1 via the PKC/ERK pathway and that Egr-1 further
promoted the renal fibrosis partially through the activation of Snail,
which regulated EMT programme by repression of E-cadherin,
mucin-1, claudins and occludins. While targeting Egr-1 expression or
suppression of ERK1/2 activity can reduce cellular apoptosis and
interstitial fibrosis in unilateral ureteric obstruction (UUO) rat kidneys.
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Furthermore, Egr-1 can directly induce the expression of collagen
gene, matrix remodelling factors and fibrogenic cytokines TGF-b and
NF-jB, while Egr-1 deficiency alleviates TGF-b- and NF-jB-induced
renal fibrosis and inflammation in TECs [93]. Thus, the PKC/ERK/
Egr-1 pathway plays a key role in the hypoxia-regulated EMT
and ECM. In addition, adrenomedullin, activated in human TECs
cultured under hypoxic conditions, was shown to be involved in this
signalling mechanism as it might inhibit hypoxia-induced EMT by
increasing the expression of E-cadherin and ZO-1 and decreasing
a-SMA and vimentin expression resulted from inhibition of the
activation of ERK [94].

PI3K/Akt pathway

It is well known that EMT in renal TECs and renal fibrosis induced by
hypoxia is closely related to the activation of the PI3K/Akt pathway, as
inhibition of PI3K activation attenuated ECM accumulation while the
inhibition of Akt resulted in decrease of myofibroblast markers in
obstructive nephropathy [95, 96]. It is found that some transactivated
EMT regulators such as Bmi1 and Biliverdin reductase (BVR) partici-
pate in hypoxia-induced tubulointerstitial fibrosis through PI3K/Akt-
dependent pathway [59, 97]. BVR has recently been considered as a
serine/threonine/tyrosine kinase that might activate phosphatidylinos-
itol 3-kinase (PI3K) and Akt [98]. First, BVR expression is up-
regulated in hypoxic renal tubular cells and remnant kidney, which
leads to phosphorylation of Akt. The increase level of Akt phosphory-
lation then induces change in phosphorylation of GSK-3b and up-reg-
ulation of Snail, a downstream target protein of Akt, which can induce
activation of fibroblast and accumulation of matrix production in the
obstructed kidneys. Furthermore, GSK-3b also activates b-catenin
signalling and further enhances the expression of several fibrotic
genes [99]. In addition, the relationship between Bmi1 and activation
of the PI3K/Akt pathway has been studied recently [100]. It is demon-
strated that Bmi1 mediates hypoxia-induced EMT in TECs partly via
modulation of the PI3K/Akt/GSK-3b pathway and stabilization of
Snail.

URG11–b-catenin pathway

Up-regulated gene 11 (URG11), a new HBx-up-regulated gene, was
initially found to be involved in hepatocellular carcinoma metastasis
via regulation the transcription of b-catenin. Our previous work [101,
102] showed that URG11 also participated in the hypoxia-induced
EMT and renal fibrosis and its overexpression was correlated with
kidney failure prognosis. Chronic hypoxia stimulated URG11 expres-
sion in UUO model, which, in turn, suppressed the expression of
E-cadherin, then activated b-catenin and enhanced its nuclear accu-
mulation. In nuclear, b-catenin bond to T cell factor (TCF) and stimu-
lated the transcription of fibrosis-related genes, such as Snail, Twist,
Fsp1, PAI-1, MMP-7 and fibronectin, which executed their fibrotic
actions by activation of inflammatory cells and myofibroblasts, pro-
moting EMT and ECM assembly [103].

Ang II/ROS pathway

Angiotensin II is recognized as one of the factors causing hypoxia in
tubulointerstitium via both structural and functional changes of per-
itubular microvascular system, including decrease in blood flow of
peritubular capillaries and inefficient use of oxygen due to oxidative
stress [104], which is defined as a dysregulation of antioxidant mech-
anisms and overproduction of ROS. In turn, chronic renal hypoxia
can activate Ang II and induce significant oxidative stress by sup-
pressing the expression of antioxidant such as Cu/Zn-SOD or up-reg-
ulating the ROS production such as NADPH oxidase [105]. Ang II
plays a significant role in the pathophysiology of renal inflammation
and fibrosis though enhancing tubular apoptosis and EMT [106]. It
has also been demonstrated that ROS/PHD/HIF-1 mediates Ang II-
induced pro-fibrotic effect in CKD independent of hypoxia [79, 107].
Ang II suppressed HIF-prolyl hydroxylases activities by increasing
reactive oxygen species production (H2O2), thereby stimulating HIF-1
accumulation, and consequently inducing TIMP-1 and collagen I/III
production in renal cells. HIF-1a may also play a role in AngII-
mediated RTEs transdifferentiation. In addition, ANG II and oxidative
stress also induce apoptosis signal-regulating kinase 1 (ASK1) in pri-
mary tubular cells under hypoxic stress, which then activates p38/
JNK signalling and promotes the development of renal inflammation,
apoptosis and fibrosis, through up-regulation of collagen I and IV and
pro-fibrotic factors such as TGF-b1, PDGF-B and PAI-1 [108]. Both
oxidative stress and Ang II can activate NF-jB pathway and subse-
quently contribute to renal inflammatory injury in UUO [109]. More-
over, prolonged hypoxia and oxidative stress are well known to
induce endoplasmic reticulum (ER) stress and activate the unfolded
protein response (UPR), thereby leading to cell apoptosis and tubular
inflammation [110, 111]. Collectively, the connections among HIF-1,
hypoxia, ANG II and ROS highlight the role of metabolic and apopto-
sis pathways in the progressive chronic renal diseases.

miRNAs

It is evident that hypoxia regulates the biogenesis and activity of
microRNAs (miRNAs), which are short non-coding RNAs that regu-
late gene expression through post-transcriptional mechanisms [112].
Numerous researches have demonstrated the vital role of miRNAs in
the development of renal fibrosis and EMT. For instance, miR-124, an
anti-fibrotic factor, was shown to be associated with hypoxia-depen-
dent MMP2 expression in renal tubular cells. Stephanie Zell
et al.[113] showed that hypoxia induced a twofold up-regulation of
MMP2 expression and fivefold down-regulation of miR-124 compared
to normoxia in TECs. Furthermore, they demonstrated in vitro that
overexpression of miR-124 reduces MMP2 protein level, restoring
the hypoxia-induced enhanced RPTEC migration. MMP-2 increased
migration/proliferation of TECs and enhanced macrophage infiltration
by mediating TBM degradation, contributing to the induction of EMT
markers and the development of renal fibrosis [114]. Similarly, the
regulation of miR-34a expression was involved in hypoxia-induced
tubular EMT by targeting Notch signalling [115]. Hypoxia reduced the
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miR-34a expression in HK2 cells, which in turn decreased expression
of E-cadherin and improved expression of a-SMA and vimentin, thus
enhanced EMT process. In contrast, MiR-155 was correlated with
hypoxia-associated renal fibrosis as a pro-fibrotic cytokine. Hypoxia
induced high expression of miR-155 and promoted fibrosis in
proximal tubule cells. Functional experiments further indicated that
miR-155 was positively modulated by HIF-1a under hypoxia and the
down-regulation of miR-155 was observed in hypoxic renal tubular
cells along with HIF-1a knockdown. Up-regulated miR-155 was able
to promote the enhancement of a-SMA expression and reduction of
E-cadherin expression. What is more, the data also demonstrated that
miR-155 is also capable of promoting renal fibrosis by regulating
TGF-b1 [116].

Other molecules

Several other molecules have been reported to affect the progression
of hypoxia-induced renal fibrosis. Kidney injury molecule-1 (KIM-1), a
transmembrane tubular protein initially found in response to acute
ischaemic and toxic kidney injury, has been correlated with the patho-
genesis of tubulointerstitial inflammation and fibrosis in the chronic
injury in CKD. Evidence from both animal models and human diseases
showed that sustained hypoxic stimulation could markedly up-regulate
the expression of KIM-1 in TECs and sequentially stimulate epithelial
cells to secrete cytokines such as IL-6 and monocyte chemotactic
protein-1 (MCP-1), which attract inflammatory cells to the tubulointer-
stitial hypoxic region and enhance inflammatory effects of prolonged
hypoxia on tubular cells followed by fibrotic responses [117–119].

IL-18 is an inflammatory cytokine involved in the pathogenesis of
renal ischaemia–reperfusion injury and fibrosis [120, 121]. Increasing
evidence demonstrates that Toll-like receptors (TLRs) play a role via
mediating both pro-inflammatory and pro-fibrotic pathways in IL-
18-induced renal fibrosis [122]. In UUO model, the downstream
pro-fibrotic effects of IL-18 in TECs are mediated, in part, through
alterations in TLR4 expression/signalling. IL-18 up-regulates TLR4
expression via activation of activating protein-1 (AP-1). TLR4 stimula-
tion induces cellular changes consistent with EMT, such as high
levels of a-SMA expression and low levels of E-cadherin expression.
Furthermore, TLR4 expression is increased in the proximal tubular
cells following hypoxia and activates other pro-inflammatory cytokine
and chemokine expression (TNF-a, IL-1, IL-6, IL-8, IL-1b, MIP-2 and
MCP-1) [123, 124]. In addition, STAT3 has also been demonstrated
to mediate IL-18-induced pro-fibrotic response and apoptosis in
obstructed kidneys [125].

Adenosine (ADO) is a hypoxia-induced signalling molecule binding
to its receptors (ARs) on cell surface. Hypoxic milieu causes extracel-
lular ADO accumulation by repression of the equilibrative nucleoside
transporters (ENTs), channels responsible for ADO uptake to be

cleared, which can be also regressed by high glucose in the diabetic
kidney [126, 127]. In UUO model, prolonged hypoxia occurs and then
enhances ADO concentration, leading to activation of the receptor
A2BR, which plays a fibrotic role by increased induction of IL-6. IL-6
signalling serves as a pro-fibrotic mediator facilitating collagen pro-
duction in the ADO -induced renal injury, such as pro-
collagenI and PAI-1, resulting in the deposition of ECM components
[128, 129]. In line with these observations, increasing ADO level under
hypoxia has recently been found to play a role in triggering renal
fibroblast activation and proliferation. Thus, ADO signalling contributes
to promotion of ECM accumulation and renal interstitial fibrosis [130].

Conclusion and perspective

This article attempts to comprehensively evaluate the available evi-
dence on the role of hypoxia in the renal fibrogenesis with special
focus on the functions and crosstalks of the signalling pathways
involved in the pathogenesis of hypoxia-induced renal fibrogenesis
firstly. It appears that most signalling pathways converge on the
EMT, inflammatory responses and extracellular matrix turnover. As
the mechanism underlying scaring process remains vast and more
complicated than we are aware of, it is uncertain which one is
playing a leading role under chronic hypoxia. However, considering
the fact that substantial interactions among two or more signalling
pathways synergistically facilitate interstitial fibrosis, it seems that
targeting multiple signalling pathways may be a logical strategy to
ameliorate interstitial fibrosis. Many anti-fibrotic agents appear to
work in animal models, such as prolyl hydroxylase inhibitor, anti-
TGF-b antibody, Ang II type-1 receptor inhibitor, aldosterone inhibi-
tor and recombinant human BMP-7 [131]. However, the most diffi-
cult challenge ahead is to translate these promising strategies into
clinical trials. Hypoxia is likely to be the key pathogenic mechanism
in CKD and later ESRD. Targeting hypoxia-mediated processes
likely hold promise in devising novel interventional strategies to
retard or halt unwanted renal fibrosis and improve clinical outcome
in patients with CKD.
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