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Abstract

Background

Enteric infections are common where public health infrastructure is lacking. This study

assesses risk factors for a range of enteric infections among children living in low-income,

unplanned communities of urban Maputo, Mozambique.

Methods & findings

We conducted a cross-sectional survey in 17 neighborhoods of Maputo to assess the preva-

lence of reported diarrheal illness and laboratory-confirmed enteric infections in children.

We collected stool from children aged 1–48 months, independent of reported symptoms, for

molecular detection of 15 common enteric pathogens by multiplex RT-PCR. We also col-

lected survey and observational data related to water, sanitation, and hygiene (WASH) char-

acteristics; other environmental factors; and social, economic, and demographic covariates.

We analyzed stool from 759 children living in 425 household clusters (compounds) repre-

senting a range of environmental conditions. We detected�1 enteric pathogens in stool

from most children (86%, 95% confidence interval (CI): 84–89%) though diarrheal symp-

toms were only reported for 16% (95% CI: 13–19%) of children with enteric infections and

13% (95% CI: 11–15%) of all children. Prevalence of any enteric infection was positively

associated with age and ranged from 71% (95% CI: 64–77%) in children 1–11 months to

96% (95% CI: 93–98%) in children 24–48 months. We found poor sanitary conditions, such

as presence of feces or soiled diapers around the compound, to be associated with higher

risk of protozoan infections. Certain latrine features, including drop-hole covers and latrine

walls, and presence of a water tap on the compound grounds were associated with a lower

risk of bacterial and protozoan infections. Any breastfeeding was also associated with

reduced risk of infection.
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Conclusions

We found a high prevalence of enteric infections, primarily among children without diarrhea,

and weak associations between bacterial and protozoan infections and environmental risk

factors including WASH. Findings suggest that environmental health interventions to limit

infections would need to be transformative given the high prevalence of enteric pathogen

shedding and poor sanitary conditions observed.

Trial registration

ClinicalTrials.gov NCT02362932

Author summary

Enteric pathogens such as bacteria, protozoa, and viruses can cause diarrhea and other

longer-term health problems. Poor sanitary conditions, including inadequate sanitation

facilities, can lead to contamination of the living environment and higher risk of exposure

to and transmission of enteric pathogens. Young children, who are vulnerable to both the

short- and long-term health effects of enteric infections, interact with their environment

in different ways than older children or adults. In order to limit enteric pathogen trans-

mission among this vulnerable group, we must understand the infection burden and the

environmental or sanitation-related factors that are associated with infection. Among a

group of children younger than four years old living in low-income neighborhoods of

Maputo, Mozambique, we found over 85% tested had�1 enteric infection. Children liv-

ing in environments visibly contaminated with feces were more likely to have an infection

than children whose living environments were not visibly contaminated. In contrast, chil-

dren living in compounds with certain latrine features, including walls and pit covers

(potential indicators of build quality), had reduced infection risk. Understanding that

these risk factors may play important roles in exposure and transmission in this setting is

key to planning effective interventions.

Introduction

Diarrheal illness is estimated to cause approximately 1.7 million deaths annually and result in

over 74 million disability-adjusted life years lost [1], primarily among children in low-and

middle-income countries where fecal contamination of the living environment is common.

Diarrheal diseases are mostly caused by enteric pathogens, including bacteria, viruses, and pro-

tozoa, shed in human and animal feces. These pathogens can be shed in high numbers by both

symptomatic and asymptomatic individuals [2]. Although the immediate and longer term

health and productivity effects for asymptomatic individuals are unclear [3], persistent asymp-

tomatic infections are associated with environmental enteric dysfunction [4–6] and other con-

ditions, including undernutrition, poor linear growth [7–13], reduced immunogenicity of oral

vaccines [14, 15], and cognitive deficits [16–18].

Enteric pathogens are transmitted via several fecal-oral pathways historically defined by the

F-diagram [19]. Consumption of contaminated food and water and interaction with fecally

contaminated environments have been implicated as dominant transmission pathways for

bacterial and protozoan enteric pathogens [20, 21]. While enteric viruses can be transmitted
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via similar routes, it is posited that person-to-person transmission is also important [22].

Improvements in WASH conditions can reduce risk of diarrheal disease by interrupting trans-

mission pathways. A recent meta-analysis observed reductions in diarrheal disease risk by an

average of 67%, 25%, and 30% for water, sanitation, and hygiene interventions, respectively

[23]. Sanitation interventions may be more likely to interrupt transmission of protozoa, bacte-

ria, and helminths which are primarily spread via indirect, environmentally mediated path-

ways than viruses which are often spread via person-to-person transmission [24].

Densely populated, urban, unplanned communities with inadequate sanitary infrastructure

represent high-risk settings for exposure to enteric pathogens, though the great majority of

sanitation-related exposure and health outcome research has been focused on rural communi-

ties where sanitation coverage is lowest and open defecation is common. In the context of the

Maputo Sanitation (MapSan) trial [25] (ClinicalTrials.gov Identifier: NCT02362932), we con-

ducted a baseline, cross-sectional survey of compounds (defined as multi-household clusters

with shared outdoor space) served by shared latrines. The aim of our study was to estimate

prevalence of selected enteric pathogens in stool samples of enrolled children from this cohort,

and to identify WASH and other risk factors for enteric infections.

Methods

Ethics statement

The head of the compound provided verbal assent for study activities before enrollment of any

children within the compound. As children were�4 years old at the time of visitation, field

enumerators obtained written informed consent from each child’s parent or guardian before

enrollment. The study protocol was approved by the Comité Nacional de Bioética para a

Saúde (CNBS), Ministério da Saúde (333/CNBS/14), the Ethics Committee of the London

School of Tropical Medicine and Hygiene (reference # 8345), and the Institutional Review

Board of the Georgia Institute of Technology (protocol # H15160). The associated MapSan

trial has been registered at ClinicalTrials.gov (NCT02362932).

Study design & health outcomes

This cross-sectional study measures enteric infections and key socio-demographic and WASH-

related risk factors among children in low-income neighborhoods of Maputo. We defined four

outcomes, based on analysis of stool for 15 common enteric pathogens, for our risk factor

assessment: (1) detection of any enteric infection, (2) detection of any bacterial infections, (3)

detection of any protozoan infections, and (4) detection of any viral infections. We also mea-

sured caregiver-reported diarrhea with 7-day recall [26] as a secondary outcome. We defined

diarrhea as�3 loose or liquid stools in a 24-hour period or any stool with blood [27].

Study setting

The study sites are located in densely populated, low-income, unplanned neighborhoods of

Maputo, Mozambique. Poor sanitary conditions, inadequate infrastructure, environmental

conditions including seasonal flooding, and increasingly high population density in these

areas has led to a high burden of enteric disease and child mortality [28, 29]. In 2015, an esti-

mated 53% of the urban population in Mozambique (*4.5 million people) lacked access to

basic ‘improved’ sanitation facilities, as defined by the UNICEF/WHO Joint Monitoring Pro-

gram [30]. In Maputo, approximately 89% of households use onsite waste disposal (10% have

access to sewerage; an estimated 1% practice open defecation), and only 26% of fecal waste is

safely managed [31]. An estimated 8% of urban sanitation in Mozambique is shared, often

Environmental exposures and childhood enteric infection risk
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among the poorest households in informal neighborhoods [32]. All households in the MapSan

trial used shared sanitation facilities that were in poor condition at the time of enrollment.

Enrollment

Field teams enrolled children and collected baseline data concurrently between February 2015

and February 2016. We enrolled all children who met the following eligibility criteria: (1) the

child’s parent or guardian provided written informed consent, (2) the child was 1–48 months

of age at the time of enrollment, and (3) the child resided in compounds meeting certain inclu-

sion criteria. Compounds were eligible for enrollment if they were located within a predefined

geographic area, were in close proximity to a legal piped water supply, had a minimum num-

ber of households (2), and residents shared sanitation in poor condition and had stated

demand for improved sanitation. The larger MapSan trial involved additional criteria to select

compounds for intervention and details are presented in the supplementary information (S1

Supporting information). Our enrollment period overlapped with the September 2015 rollout

of the rotavirus A vaccination program in Mozambique. Children six weeks or younger at the

time of rollout and children born after rollout began were eligible for immunization; some

children enrolled in our study after September 2015 may have received the vaccination.

Data collection

Following enrollment, field teams collected data on socio-demographics and WASH-related

risk factors using questionnaires and direct observation. Enumerators administered three lev-

els of surveys in each compound with an enrolled child: compound-level, household-level, and

child-level. For compound-level surveys, the head of compound or the head of compound’s

spouse was the target respondent. For household- and child-level surveys, the child’s mother

was the target respondent, though another parent or guardian was eligible to complete the

questionnaire. All questionnaires were communicated in either Portuguese or the local lan-

guage, Changana, as requested by the respondent.

Surveys included socioeconomic and demographic questions such as child age and sex,

household assets, caregiver’s education level, and breastfeeding practices. We calculated house-

hold wealth using an asset-based wealth index developed for Mozambique [33]. At each level,

surveys included direct observations and questions about risk factors of enteric infection,

including characteristics of household and compound level water and sanitation, sanitary con-

dition of living spaces, presence of animals within the compound grounds, environmental con-

ditions including flooding patterns, and measures of population density and crowding. We

created a composite ‘latrine improvement score’ ranging from 0–4 with one point awarded for

the presence of each of the following latrine features: permanent superstructure, tile or

masonry slab, drop-hole cover, and ventilation pipe. Similarly, we created a “compound sani-

tary score” ranging from 0–3 with higher scores indicating poorer sanitary conditions. One

point was awarded for each of the following potential risk factors: (1) compound floods during

rainy season, (2) leaking or standing wastewater observed by latrine, and (3) feces or soiled dia-

pers observed around compound grounds. Compound-specific population density was

defined as the number of people who live in a compound divided by the area of that com-

pound. We measured the area of the compound using high resolution, orthorectified and geo-

located satellite imagery. Enumerators equipped with GPS enabled tablets would work with

compound residents to identify landmarks and define the shape of a compound on the satellite

imagery. We calculated compound area from the shapes and divided the number of compound

residents by the calculated compound area to obtain our measure of compound-specific popu-

lation density. We used rainfall data from the National Oceanic and Atmospheric

Environmental exposures and childhood enteric infection risk
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Administration’s National Centers for Environmental Information (https://www.ncdc.noaa.

gov/cdo-web/datatools/findstation) to calculate cumulative rainfall during the 30 days before

data collection.

Sample collection and laboratory analysis

We provided stool collection supplies, including diapers, plastic potties (for older children no

longer wearing diapers), and pre-labeled sterile sample bags to the caregiver of each enrolled

child. Samples were collected, irrespective of reported symptoms, the following day. If a speci-

men was not immediately available, caregivers alerted the field team by phone when available.

Following collection, samples were stored on cold packs, and transported to the medical para-

sitology laboratory at the Mozambican Ministry of Health (MISAU/INS) within six hours of

collection for storage at -80˚C. If a child produced a liquid stool, lab technicians stored a piece

of the soaked diaper material (“diaper samples”) at -80˚C upon receipt. Stool samples were

shipped on dry ice with temperature probes to the Georgia Institute of Technology where they

were stored at -80˚C until analysis.

We used the Luminex MagPix xTAG Gastrointestinal Pathogen Panel (GPP, Luminex

Corp, Austin, TX) to analyze stool samples for the presence of 15 enteric pathogens: Campylo-
bacter; Clostridium difficile, Toxin A/B; Enterotoxigenic Escherichia coli (ETEC) LT/ST; Shiga-

like toxin producing E. coli (STEC) stx1/stx2; E. coli O157, a serotype of STEC; Salmonella; Shi-
gella; Vibrio cholerae; Yersinia enterocolitica; adenovirus 40/41; norovirus GI/GII; rotavirus A;

Giardia; Cryptosporidium; and Entamoeba histolytica. The GPP is a stool-based multiplex

RT-PCR assay that has been extensively tested for direct detection of enteric infections in a

range of countries [34–43]. Per GPP protocol, we pretreated bulk stool samples with 1 mL of

ASL stool lysis buffer (Qiagen, Hilden, Germany) and performed nucleic acid extraction for

DNA and RNA using the QIAcube HT platform and the QIAamp 96 Virus QIAcube HT Kit

(Qiagen, Hilden, Germany). We eluted diaper samples in 2.5 mL of ASL stool lysis buffer. A

sterile 10-mL syringe was used to facilitate elution via agitation by taking in and expelling the

buffer 5 times. We used 1 mL of the final eluate in the pretreatment step and then proceeded

with extraction as previously described. Extracts were stored at 4˚C and analyzed by GPP

within 24 hours of extraction.

Data analysis

Sample size for the present study is based on enrollment in the larger MapSan trial. Sample

size calculations for the larger MapSan trial have been described previously [25]. To minimize

potential bias, we specified the statistical model and variables of interest before beginning the

analyses. Details for individual variables used in these analyses—including definitions, coding

schemes and proportions of missing values—are available in the supporting information (S1

Table).

We calculated unadjusted and adjusted risk ratios (RRs) and 95% confidence intervals for

outcome variables and potential risk factors using generalized estimating equations (GEEs) to

fit Poisson regression models with robust standard errors [44]. We used GEEs to account for

clustering at the compound level. Outcome variables, including any infection and infection

with bacterial, protozoan, or viral pathogens, were defined to identify differences in exposure

risks from pathogen groups with different dominant routes of transmission (e.g. person to per-

son versus environment to person). All multivariable models were adjusted for a set of five var-

iables determined a priori as contextually important covariates. These variables included child

age and sex, breastfeeding practices, caregiver’s education level, and an index of household

wealth. We also calculated RRs and aRRs for enteric infections using child age (stratified by

Environmental exposures and childhood enteric infection risk

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006956 November 12, 2018 5 / 19

https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
https://doi.org/10.1371/journal.pntd.0006956


age group: 1–11, 12–23, and 24–48 months), sex, breastfeeding practices, and caregiver’s edu-

cation as the predictors of interest. We ran separate multivariable models for each combina-

tion of risk factor and outcome and assessed multicollinearity of multivariable models using

the variance inflation factor. We assessed crude and adjusted associations between specific

enteric pathogens and diarrheal symptoms as described for the main risk factor analysis.

Our primary analysis focused on complete observations. The proportion of incomplete

observations per variable are denoted in supporting information (S1 Table). In parallel with

the complete case analysis, we ran all univariable and multivariable models on completed data

following multiple imputation (MI) of missing values [45–49]. Details of the MI process are

presented in supporting information (S2 Supporting information). Briefly, we performed MI

using chained equations (also known as fully conditional specification) to handle missing data

[47, 50]. MI models were congenial with previously discussed analysis models and included a

fixed effect to account for clustering at the compound level. Auxiliary variables were included

in the MI model if they were a priori defined as related to either an outcome or predictor, if

they were correlated with observed values of an outcome or predictor (r�0.2), or if they were

correlated with missingness of any outcome or predictor variable (r�0.2) [46]. All statistical

analyses were performed with Stata version 14.1 (StataCorp, College Station, TX).

Results

Enrollment

Field workers enrolled 519 of the 601 compounds approached regarding participation in the

MapSan study. Eighty-two (15.8%) compounds were ineligible for enrollment because they

did not have a child<48 months old at the time of visitation. From those 519 compounds,

workers enrolled 993 children in 815 households. Field teams administered child-level surveys

for 980 of the 993 (99%) enrolled children and collected stool samples from 759 (76%) (S1 Fig:

flow diagram of enrollment and data collection activities).

Sociodemographic characteristics and prevalence of risk factors among

study children

The average age of enrolled children was 23 months (Table 1). Approximately 27% (258/944)

were<12 months old, while an equal percentage (28%, 266/945) were 12–23 months old, and

the remainder (45%, 421/944) were 24–48 months old. Breastfeeding was very common

among children 1–11 months old (87%, 224/258), though 31% (82/266) of children 12–24

months were also breastfed. A little over half of child caregivers had completed primary school

(527/980). About 17% (163/975) of households met an a priori definition of crowding (>3 peo-

ple per room of living space).

Almost all study children lived in a household that had access to a latrine in the compound

(98%, 956/973) and most had access to latrines (61%, 576/950) shared by 3–5 households

(median = 4). About half of children had latrines with drop-hole covers (57%, 557/974), 37%

(361/971) had a masonry or ceramic slab or pedestal, while only 31% (305/974) had a formal

superstructure (made of bricks or cement blocks), and 14% (138/975) had a vent pipe. Sanitary

conditions of compounds were poor: 62% (606/974) of study children lived in compounds

with wastewater leaking from in or around a latrine and 47% (455/974) lived in compounds

where feces or soiled diapers were visible around the grounds. Disposal of child feces into a

latrine was common for children 24–48 months old (57%, 238/421). Feces of children between

the ages of 1–23 months, most of whom wore diapers, was less frequently disposed of in a

latrine (6.4%, 34/528). Most children lived in study compounds with animals (65%, 645/993),

Environmental exposures and childhood enteric infection risk
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with cats (55%, 550/993) most commonly observed. All study households used piped water as

their primary drinking water source and 78% (757/976) of children lived in households with

access to a drinking water tap on the compound grounds.

Prevalence of enteric infections in study children

One or more pathogens were identified in stool samples from 655 (~86%) of the 759 children

from whom a sample was collected; most (59%, 445/759) had coinfections (Table 2). Stool

samples from 66 (8.7%) children yielded four or more enteric pathogens. The prevalence of

coinfection (�2 infections) increased with age from 33% (69/208) in the youngest age group to

73% (214/293) in the oldest. Most children (76%, 579/759) had a bacterial infection, about half

(53%, 402/759) had a protozoan infection, and only 14% (107/759) of children had a viral

infection. Giardia, Shigella, ETEC, Salmonella, and norovirus were the most frequently

detected pathogens among all children, though prevalence varied with age. Prevalence of any

infection, and of bacterial and protozoan infections by themselves, increased with age and

were largely driven by the most common bacterial and protozoan infections: Shigella and Giar-
dia. Prevalence of Shigella infection increased from 9% (19/208) in children 1–11 months old

to 65% (189/293) of children aged 24–48 months. Giardia showed a similar pattern with

Table 1. Baseline measures of demographic, socioeconomic, environmental, and WASH-related exposure vari-

ables presented as # participants (%).

Total n # (%)

Latrine wall present 974 305 (31)

Drop-hole cover 974 557 (57)

Ventpipe 975 138 (14)

Pedestal or slab 971 361 (37)

Latrine improve index (range 0–4), unitless, mean (SD) 953 1.41 (1.24)

Households per latrine drop-hole 950

< = 2 171 (18)

3–5 576 (61)

>5 203 (21)

Child feces disposal in latrine 980 289 (29)

Standing water observed 974 71 (7.3)

Waste water observed 974 606 (62)

Feces observed 974 455 (47)

Compound has tendency to flood 974 601 (62)

Compound sanitary score index, unitless, mean (SD) 974 1.71 (1.06)

Drinking water tap on compound grounds 976 757 (78)

Any animal present 993 645 (65)

Dog present 993 76 (7.7)

Ducks or chickens present 993 131 (13)

Cat present 993 550 (55)

Household floor is covered 975 917 (94)

>3 Persons per room (household crowding) 975 163 (17)

Child Age (days), mean (SD) 967 662 (390)

Child sex, female 967 500 (52)

Any breastfed 980 316 (32)

Caregiver completed primary education 980 527 (54)

Wealth index (unitless), mean (SD) 976 43.7 (10.2)

https://doi.org/10.1371/journal.pntd.0006956.t001
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prevalence increasing from 14% (29/208) among 1–11 month-olds to 75% (219/293) preva-

lence in 24–48 month-olds. Prevalence of viral infections, largely driven by norovirus GI/GII,

was highest among the youngest children (17%, 36/208) and lowest among the oldest children

(11%, 33/293). Prevalence of rotavirus was low among all age groups (1–2%). Prevalence of

enteric infections was similar among boys and girls with the exception of viral infections

which tended to be more frequent in girls (17%, 64/370) than boys (11%, 41/370). Only 13%

(126/980) of children were reported to have had diarrhea in the previous week. Reported diar-

rhea was higher among boys (16%, 74/464) than girls (10%, 50/498) and peaked in children

aged 12–23 months (20%, 52/266). Norovirus was the only infection associated with higher

risk of reported diarrhea (adjusted RR (aRR): 1.76, 95% CI: 1.03–3.02 adjusted for child age

and sex, caregiver education, breastfeeding practices, and household wealth (S2 Table), aRR

1.75, 95% CI: 1.00–3.1 when also adjusted for presence of all other measured pathogens).

Risk of any enteric infection in unadjusted and adjusted models

Risk factors for enteric infection were assessed using generalized estimating equations in unad-

justed models and models adjusted for age and sex of child, socioeconomic status, caregiver’s

Table 2. Prevalence and 95% confidence intervals of enteric infections in children<4 years of age measured at baseline.

All, n = 759 Female, n = 370 Male, n = 367 1–11 months,

n = 208

12–23 months,

n = 225

24–48 months,

n = 293

Any Infection (�1

infections)

0.86 (0.84–0.89) 0.88 (0.84–0.91) 0.85 (0.81–0.89) 0.71 (0.64–0.77) 0.87 (0.82–0.91) 0.96 (0.93–0.98)

Any Viral Infection 0.14 (0.12–0.17) 0.17 (0.14–0.22) 0.11 (0.08–0.15) 0.17 (0.12–0.23) 0.15 (0.11–0.20) 0.11 (0.08–0.15)

Any Bacterial Infection 0.76 (0.73–0.79) 0.78 (0.74–0.82) 0.74 (0.69–0.78) 0.65 (0.58–0.72) 0.74 (0.68–0.80) 0.84 (0.79–0.88)

Any Protozoan Infection 0.53 (0.49–0.57) 0.52 (0.47–0.57) 0.54 (0.49–0.60) 0.18 (0.13–0.24) 0.53 (0.47–0.60) 0.76 (0.71–0.81)

Number of coinfections

�2 infections 0.59 (0.55–0.62) 0.62 (0.56–0.67) 0.55 (0.50–0.60) 0.33 (0.27–0.40) 0.60 (0.53–0.66) 0.73 (0.68–0.78)

�3 infections 0.27 (0.24–0.31) 0.29 (0.24–0.34) 0.25 (0.21–0.30) 0.13 (0.09–0.19) 0.33 (0.27–0.39) 0.32 (0.27–0.38)

�4 infections 0.09 (0.07–0.11) 0.10 (0.07–0.14) 0.08 (0.05–0.11) 0.04 (0.02–0.08) 0.14 (0.10–0.19) 0.08 (0.05–0.12)

Bacteria

Shigella 0.44 (0.40–0.48) 0.44 (0.39–0.49) 0.43 (0.38–0.48) 0.09 (0.06–0.14) 0.44 (0.38–0.51) 0.65 (0.59–0.70)

ETEC LT/ST 0.30 (0.27–0.34) 0.32 (0.27–0.37) 0.28 (0.24–0.33) 0.23 (0.18–0.29) 0.37 (0.31–0.44) 0.30 (0.25–0.35)

Salmonella 0.21 (0.18–0.24) 0.22 (0.18–0.26) 0.19 (0.15–0.24) 0.29 (0.23–0.36) 0.20 (0.16–0.26) 0.16 (0.12–0.20)

Campylobacter 0.08 (0.06–0.10) 0.08 (0.06–0.12) 0.08 (0.05–0.11) 0.10 (0.06–0.15) 0.09 (0.06–0.13) 0.05 (0.03–0.09)

Clostridium difficile, Toxin

A/B

0.05 (0.03–0.06) 0.05 (0.03–0.08) 0.05 (0.03–0.07) 0.11 (0.07–0.16) 0.04 (0.02–0.08) 0.01 (0.00–0.02)

Escherichia coli O157 0.04 (0.03–0.06) 0.05 (0.03–0.08) 0.03 (0.01–0.05) 0.03 (0.01–0.06) 0.04 (0.02–0.08) 0.05 (0.03–0.08)

STEC stx1/stx2 0.02 (0.01–0.03) 0.02 (0.01–0.05) 0.01 (0.00–0.03) 0.01 (0.00–0.04) 0.03 (0.01–0.06) 0.01 (0.00–0.03)

Yersinia enterocolitica 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.00 (0.00–0.01)

Vibrio cholerae 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.00 (0.00–0.01)

Protozoa

Giardia 0.51 (0.48–0.55) 0.51 (0.46–0.56) 0.52 (0.47–0.58) 0.14 (0.10–0.19) 0.53 (0.46–0.60) 0.75 (0.69–0.80)

Cryptosporidium 0.03 (0.02–0.05) 0.03 (0.01–0.05) 0.04 (0.02–0.06) 0.05 (0.02–0.09) 0.04 (0.02–0.08) 0.02 (0.01–0.04)

Entamoeba histolytica 0.01 (0.00–0.01) 0.00 (0.00–0.01) 0.01 (0.00–0.02) 0.00 (0.00–0.03) 0.00 (0.00–0.02) 0.01 (0.00–0.03)

Virus

Norovirus GI/GII 0.10 (0.08–0.13) 0.13 (0.09–0.17) 0.08 (0.06–0.12) 0.13 (0.09–0.18) 0.11 (0.07–0.16) 0.08 (0.05–0.12)

Adenovirus 40/41 0.03 (0.02–0.04) 0.05 (0.03–0.07) 0.01 (0.00–0.03) 0.03 (0.01–0.07) 0.03 (0.01–0.06) 0.03 (0.01–0.05)

Rotavirus A 0.01 (0.01–0.02) 0.01 (0.00–0.03) 0.01 (0.00–0.03) 0.01 (0.00–0.04) 0.02 (0.01–0.05) 0.01 (0.00–0.02)

Self-Reported Diarrhea 0.13 (0.11–0.15)

n = 980

0.10 (0.08–0.13)

n = 498

0.16 (0.13–0.20)

n = 464

0.14 (0.10–0.19)

n = 258

0.20 (0.15–0.25)

n = 266

0.09 (0.06–0.12)

n = 421

https://doi.org/10.1371/journal.pntd.0006956.t002
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education, and any breastfeeding. Among complete cases (Table 3), presence of a latrine super-

structure was associated with 7% reduced risk of any enteric infection in the unadjusted model

(risk ratio (RR): 0.93, 95% CI: 0.86–1.00), though the association was attenuated in adjusted

models (RR: 0.95, 95% CI: 0.89–1.02). Presence of visible feces or used diapers in the com-

pound was a risk factor in both unadjusted and adjusted models (aRR: 1.07, 95% CI: 1.01–

1.14). Compound-specific population density was also associated with higher risk of�1

enteric infection; children living in the most densely populated quintile of compounds had a

10% higher risk (aRR: 1.10, 95% CI: 1.00–1.21) of any enteric infection compared with chil-

dren in the least densely populated compounds. Among a priori covariates adjusted for in

models, any breastfeeding was associated with a 13% reduced risk of any infection in adjusted

models. Child age was positively associated with enteric infection; children in the oldest age

group were 1.21 times more likely to have an enteric infection than children in the youngest

age category.

Risk factors for the any infection were also assessed by multiple imputation (S3 Table) and

results were consistent with complete case analysis (Table 3).

Risk of bacterial infection in unadjusted and adjusted models

Risk factors for any bacterial infection were assessed as previously described. Among complete

cases (Table 3), presence of a drop-hole cover in the latrine was associated with reduced risk of

any bacterial infection (aRR: 0.90, 95% CI: 0.83–0.99). Among a priori covariates, any breast-

feeding was associated with 19% reduced risk of bacterial infection in the unadjusted model

but was not associated with bacterial infection risk in the adjusted model. Despite increasing

prevalence of any bacterial infection with age, we found no association between age and bacte-

rial infection in adjusted models. Results from multiple imputation models were consistent

with models limited to complete cases (S3 Table).

Risk of protozoan infection in unadjusted and adjusted models

Among complete cases (Table 3), presence of a latrine superstructure was associated with 20%

reduced risk of any protozoan infection in the unadjusted model but was only marginally asso-

ciated with reduced risk in the adjusted model (aRR: 0.86, 95% CI: 0.74–1.01). In adjusted

models, presence of visible feces or used diapers was associated with higher risk of protozoan

infection (aRR: 1.16, 95% CI: 1.01–1.32). Household crowding, as well as presence of a drink-

ing water tap on the compound grounds, were associated with reduced risk of protozoan infec-

tion in adjusted models only (aRR: 0.85, 95% CI: 0.73–0.98 and aRR: 0.82, 0.68–0.99).

Among a priori covariates included in all models, any breastfeeding was associated with

reduced risk of protozoan infection in both unadjusted and adjusted models (aRR: 0.49, 95%

CI: 0.36–0.66). Caregiver completion of primary school was associated with 17% reduced risk

of protozoan infection in the unadjusted model but was only marginally associated in the

adjusted model (aRR: 0.89, 95% CI: 0.79–1.01). Age was a risk factor for protozoan infection;

children in the 12–23 month and 24–48 month age groups had a 2.41 (1.64–3.57) and 3.20

(2.14–4.80) times higher risk of protozoan infection, respectively, than children aged 0–11

months (Table 3).

Among multiple imputation models, most results were in agreement with those in models

limited to only complete cases (S3 Table). The presence of visible feces or used diapers around

the compound grounds was not associated with increased risk of protozoan infection in unad-

justed or adjusted multiple imputation models.
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Table 3. Crude and adjusted risk ratios and 95% confidence intervals for associations of WASH-related risk factors and four measures of enteric infection: Any

enteric infection, any bacterial infection, any protozoan infection, and any viral infection. Multivariable models are adjusted for child age and sex, caregiver education,

household wealth, and breastfeeding practices.

Any Enteric Infection Any Bacterial Infection Any Protozoan Infection Any Viral Infection n

RR aRR RR aRR RR aRR RR aRR UV MV

Latrine superstructure 0.93 (0.86–

1.00)�
0.95 (0.89–

1.02)

0.95 (0.86–

1.04)

0.96 (0.87–

1.06)

0.80 (0.67–

0.94)�
0.86 (0.74–

1.01)

0.85 (0.56–

1.29)

0.89 (0.58–

1.35)

747 704

Drop-hole cover present 0.95 (0.89–

1.00)

0.96 (0.90–

1.01)

0.90 (0.82–

0.98)�
0.90 (0.83–

0.99)�
0.93 (0.81–

1.07)

0.96 (0.85–

1.09)

1.00 (0.69–

1.47)

0.92 (0.62–

1.36)

740 712

Ventpipe present 1.00 (0.92–

1.08)

1.01 (0.93–

1.10)

0.98 (0.86–

1.12)

0.98 (0.85–

1.12)

0.94 (0.74–

1.18)

0.98 (0.80–

1.21)

1.06 (0.64–

1.78)

1.17 (0.72–

1.89)

741 713

Pedestal or slab present 0.96 (0.90–

1.03)

0.97 (0.91–

1.03)

1.01 (0.92–

1.10)

1.00 (0.91–

1.09)

0.94 (0.79–

1.10)

0.92 (0.80–

1.07)

1.03 (0.70–

1.50)

0.93 (0.63–

1.37)

737 709

Latrine improvement score 0.97 (0.95–

1.00)�
0.98 (0.96–

1.00)

0.97 (0.94–

1.01)

0.97 (0.94–

1.01)

0.94 (0.88–

1.00)�
0.96 (0.90–

1.01)

0.99 (0.86–

1.14)

0.96 (0.83–

1.12)

726 698

HHs sharing latrine 728 685

HH< = 2 Reference Reference Reference Reference Reference Reference Reference Reference

3–5 HH 0.95 (0.89–

1.03)

0.96 (0.90–

1.03)

0.95 (0.86–

1.05)

0.97 (0.88–

1.07)

0.96 (0.80–

1.16)

0.99 (0.83–

1.18)

1.00 (0.61–

1.62)

0.98 (0.59–

1.62)

> 5 HH 0.93 (0.85–

1.02)

0.97 (0.89–

1.05)

0.89 (0.78–

1.02)

0.93 (0.81–

1.06)

0.97 (0.77–

1.21)

1.11 (0.90–

1.37)

0.95 (0.51–

1.77)

0.97 (0.51–

1.84)

Disposal of child feces in

latrine

1.16 (1.10–

1.22)�
1.01 (0.96–

1.06)

1.17 (1.07–

1.26)�
1.03 (0.93–

1.13)

1.76 (1.55–

1.99)�
1.08 (0.94–

1.23)

0.78 (0.50–

1.22)

0.93 (0.56–

1.55)

746 714

Standing water in compound 0.99 (0.90–

1.10)

0.99 (0.89–

1.10)

0.97 (0.81–

1.16)

0.96 (0.80–

1.16)

1.13 (0.94–

1.36)

1.08 (0.86–

1.34)

0.71 (0.35–

1.42)

0.75 (0.38–

1.48)

747 704

Wastewater in compound 1.05 (0.99–

1.12)

1.05 (0.99–

1.12)

1.06 (0.97–

1.16)

1.06 (0.97–

1.16)

1.09 (0.93–

1.27)

1.15 (0.99–

1.32)

1.10 (0.75–

1.63)

1.12 (0.75–

1.68)

747 704

Visible feces or used diapers 1.08 (1.01–

1.14)�
1.07 (1.01–

1.14)�
1.07 (0.98–

1.16)

1.08 (0.99–

1.17)

1.12 (0.97–

1.29)

1.16 (1.01–

1.32)�
0.85 (0.58–

1.24)

0.95 (0.65–

1.39)

747 704

Compound floods when it

rains

0.98 (0.92–

1.04)

0.99 (0.93–

1.05)

0.96 (0.88–

1.05)

0.98 (0.90–

1.07)

0.92 (0.80–

1.07)

0.92 (0.81–

1.06)

1.15 (0.78–

1.69)

1.23 (0.82–

1.84)

747 704

Compound sanitary score 1.02 (0.99–

1.05)

1.02 (1.00–

1.06)

1.02 (0.98–

1.06)

1.02 (0.98–

1.07)

1.03 (0.96–

1.10)

1.04 (0.98–

1.11)

1.01 (0.86–

1.19)

1.06 (0.89–

1.25)

747 704

Drinking water tap on

compound grounds

0.97 (0.91–

1.03)

0.97 (0.91–

1.03)

0.97 (0.88–

1.06)

0.97 (0.88–

1.07)

0.88 (0.74–

1.03)

0.85 (0.73–

0.98)�
0.77 (0.51–

1.17)

0.89 (0.58–

1.36)

742 714

Any animal in compound 1.02 (0.95–

1.08)

1.02 (0.95–

1.08)

1.03 (0.94–

1.12)

1.04 (0.95–

1.13)

0.98 (0.84–

1.13)

0.95 (0.82–

1.08)

1.41 (0.92–

2.18)

1.46 (0.93–

2.31)

759 714

Dogs in compound 0.98 (0.89–

1.08)

0.98 (0.89–

1.08)

1.09 (0.98–

1.22)

1.10 (0.98–

1.22)

0.83 (0.60–

1.15)

0.82 (0.61–

1.10)

1.25 (0.65–

2.43)

1.24 (0.68–

2.25)

759 714

Chickens or ducks in

compound

1.02 (0.94–

1.10)

0.99 (0.92–

1.08)

1.00 (0.89–

1.13)

1.00 (0.89–

1.13)

1.05 (0.87–

1.28)

0.97 (0.83–

1.15)

0.93 (0.53–

1.64)

0.94 (0.54–

1.64)

759 714

Cats in compound 1.03 (0.97–

1.09)

1.03 (0.97–

1.09)

1.03 (0.95–

1.12)

1.04 (0.95–

1.13)

1.00 (0.87–

1.15)

0.95 (0.86–

1.08)

1.33 (0.89–

1.98)

1.35 (0.90–

2.03)

759 714

HH floor is covered 0.94 (0.84–

1.04)

0.97 (0.88–

1.08)

0.96 (0.82–

1.13)

1.02 (0.86–

1.21)

0.84 (0.64–

1.10)

0.85 (0.70–

1.03)

0.58 (0.34–

1.00)�
0.59 (0.31–

1.09)

741 713

Household crowding, > 3

persons/room

1.00 (0.93–

1.08)

0.98 (0.91–

1.06)

1.04 (0.94–

1.16)

1.02 (0.91–

1.14)

0.88 (0.72–

1.07)

0.82 (0.68–

0.99)�
1.48 (0.98–

2.26)

1.52 (0.95–

2.43)

741 713

Compound specific

population density

740 695

1 (least dense) Reference Reference Reference Reference Reference Reference Reference Reference

2 1.08 (0.97–

1.120)

1.07 (0.96–

1.18)

1.05 (0.82–

1.21)

1.05 (0.91–

1.21)

1.07 (0.85–

1.34)

1.09 (0.89–

1.34)

1.42 (0.78–

2.60)

1.39 (0.73–

2.64)

3 1.06 (0.95–

1.17)

1.04 (0.94–

1.16)

1.13 (0.99–

1.28)

1.13 (0.98–

1.29)

1.00 (0.79–

1.27)

1.01 (0.81–

1.26)

0.04 (0.54–

2.02)

1.11 (0.57–

2.16)

(Continued)
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Risk of viral infection in unadjusted and adjusted models

Viral infections were not associated with any of the risk factors assessed in adjusted complete

case analysis (Table 3). Household crowding (presence of>3 persons per room) was only mar-

ginally associated with risk of any viral infection in adjusted models (aRR: 1.55, 95% CI: 0.95–

2.43). Among a priori covariates, sex was a predictor of viral infection, with girls at higher risk

of infection than boys (aRR: 1.65, 95% CI: 1.17–2.31). Children in the oldest age group (24–48

months) had 52% reduced risk of any viral infection compared with the youngest age group

(1–11 months).

Results from multiple imputation models were consistent with results from models limited

to only complete cases (S3 Table). Among risk factors in multiple imputation models, house-

hold crowding was a risk factor in the unadjusted model (RR: 1.55, 95% CI: 1.04–2.32), but not

in the adjusted model. Sex remained a risk factor for viral infection in both unadjusted and

adjusted MI models.

Discussion

We observed a high prevalence of enteric infection, including coinfections, among study chil-

dren yet most children lacked diarrheal symptoms. The prevalence of enteric infection, but

not reported diarrhea, increased with age though pathogen-specific age-related patterns var-

ied. We found some independent WASH or environmental risk factors to be associated with

enteric infection, though magnitudes of specific associations were often small. In this setting

where burden of disease was high and sanitary conditions were poor, pathogen acquisition,

Table 3. (Continued)

Any Enteric Infection Any Bacterial Infection Any Protozoan Infection Any Viral Infection n

RR aRR RR aRR RR aRR RR aRR UV MV

4 1.07 (0.96–

1.19)

1.05 (0.94–

1.17)

1.04 (0.90–

1.20)

1.03 (0.88–

1.20)

1.07 (0.85–

1.35)

1.04 (0.83–

1.29)

1.41 (0.73–

2.71)

1.35 (0.67–

2.73)

5 (most dense) 1.11 (1.01–

1.23)�
1.10 (1.00–

1.21)�
1.06 (0.93–

1.22)

1.06 (0.92–

1.23)

1.01 (0.80–

1.28)

1.13 (0.93–

1.39)

1.56 (0.83–

2.91)

1.44 (0.74–

2.78)

Cumulative rainfall last 30

days, terciles

759 714

1 (least rain) Reference Reference Reference Reference Reference Reference Reference Reference

2 0.98 (0.92–

1.05)

0.98 (0.92–

1.05)

0.93 (0.84–

1.02)

0.92 (0.83–

1.02)

1.00 (0.84–

1.19)

0.95 (0.81–

1.10)

1.06 (0.68–

1.66)

1.09 (0.69–

1.72)

3 (most rain) 0.95 (0.88–

1.02)

0.94 (0.88–

1.02)

0.95 (0.86–

1.06)

0.94 (0.84–

1.04)

1.04 (0.88–

1.23)

0.99 (0.85–

1.16)

1.22 (0.77–

1.95)

1.35 (0.85–

2.14)

Child age 726 698

1–11 months Reference Reference Reference Reference Reference Reference Reference Reference

12–23 months 1.21 (1.10–

1.34)�
1.12 (1.00–

1.26)

1.12 (0.99–

1.27)

1.02 (0.87–

1.19)

2.89 (2.08–

4.03)�
2.41 (1.64–

3.57)�
0.83 (0.53–

1.30)

0.62 (0.35–

1.10)

24–48 months 1.34 (1.22–

1.47)�
1.21 (1.07–

1.36)�
1.28 (1.14–

1.44)�
1.14 (0.97–

1.34)

4.20 (3.07–

5.75)�
3.20 (2.14–

4.80)�
0.63 (0.41–

0.98)�
0.48 (0.25–

0.93)�

Child sex, female 1.04 (0.98–

1.10)

1.04 (0.99–

1.10)

1.06 (0.98–

1.16)

1.07 (0.99–

1.16)

0.95 (0.83–

1.09)

0.98 (0.86–

1.11)

1.53 (1.09–

2.14)�
1.65 (1.17–

2.31)�
737 714

Any breastfeeding 0.78 (0.72–

0.85)�
0.87 (0.79–

0.96)�
0.81 (0.73–

0.89)�
0.93 (0.82–

1.05)

0.34 (0.27–

0.43)�
0.49 (0.36–

0.66)�
1.11 (0.76–

1.61)

0.81 (0.47–

1.37)

742 714

Caregiver completed primary

school

0.95 (0.90–

1.01)

0.97 (0.92–

1.03)

1.00 (0.92–

1.09)

1.03 (0.95–

1.13)

0.83 (0.72–

0.95)�
0.89 (0.79–

1.01)

1.17 (0.83–

1.65)

1.18 (0.82–

1.70)

746 714

�p<0.05

https://doi.org/10.1371/journal.pntd.0006956.t003
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symptomology, and the duration of carriage (colonization), may be driven by multiple interde-

pendent risk and protective factors, including acquired immunity.

These results are consistent with findings from other studies of enteric infection in

resource-constrained but predominantly rural settings in Africa and elsewhere. The Global

Enteric Multicenter Study (GEMS) site in the rural district of Manhiça, Mozambique identi-

fied one or more enteric pathogens in 85% of stools from children with moderate-to-severe

diarrhea (MSD) and 76% of stools from control children (without diarrhea in the 7 days pre-

ceding enrollment) [51]. Similar trends were observed in the Etiology, Risk Factors, and Inter-

actions of Enteric Infections and Malnutrition and the Consequences for Child Health and

Development Project (MAL-ED) study sites where 77% diarrheal and 65% of non-diarrheal

stool samples were positive for�1 enteric pathogen [52]. Studies using the GPP for enteric

pathogen detection in similar settings in Ghana and Côte d’Ivoire have also found high preva-

lence of enteric infection among both symptomatic and asymptomatic children [34, 35].

Compared with enteric infection, the prevalence of caregiver-reported diarrhea was low.

We observed a decrease in caregiver-reported diarrhea in children aged 24–48 months com-

pared with the younger age strata, similar to the pattern observed for viral infections.

Decreases in reported diarrhea follows a trend observed in historic data of hospital admissions

for acute diarrheal episodes among young children in Mozambique [51]. Though we could not

formally calculate attributable fractions for etiologic agents of reported diarrhea with these

data, we note that norovirus GI/GII was the only enteric pathogen associated with reported

diarrhea. This is consistent with findings from the MAL-ED study sites where norovirus GII

had one of the highest attributable fractions of diarrhea in children <2 years old [52]. In con-

trast with reported diarrhea and viral infection, prevalence of bacterial and protozoan infec-

tions tended to increase with age, though patterns varied by pathogen. The high prevalence

observed here, especially in older children, could be due to the poor clearance and accumula-

tion of persistent enteric infections over time [53] or could be a result of a high rate of reinfec-

tion due to frequent pathogen exposure [54]. As children age and become increasingly mobile

they interact with their environment more, potentially leading to high exposures to fecal con-

tamination and increased enteric infection [55].

While the overall prevalence of enteric pathogens was similarly high among our study and

sites in GEMS and MAL-ED, there were differences in the frequency of detection of specific

enteric pathogens. Giardia (51%), Shigella (44%), ETEC (30%), Salmonella (21%) and norovi-

rus GI/GII (10%) were the most frequently detected pathogens in this cohort of children. Giar-
dia, rotavirus, Cryptosporidium, E. histolytica, and enteroaggregative E. coli (EAEC) were the

most common pathogens detected among cases and controls at the GEMS-Manhiça site, just

80 kilometers north of our study sites [51]. Across all MAL-ED sites, the most frequently

detected pathogens in diarrheal and non-diarrheal stools were Campylobacter, Giardia, EAEC,

and norovirus GII [52]. Notably, even though our data collection occurred largely before the

rollout of the rotavirus vaccine in Mozambique in September 2015, we detected almost no

rotavirus in our study population. This is in stark contrast to findings from the GEMS-Man-

hiça site where rotavirus was deemed one of the principal causative agents of MSD and was

detected in up to 18% of controls [51]. To further interrogate this difference, we tested the 8

rotavirus GPP-positive specimens and 84 randomly selected rotavirus GPP-negative speci-

mens for the presence of rotavirus using the Premier Rotaclone (Meridian Bioscience, Cincin-

nati, OH, USA) in-vitro diagnostic fecal antigen enzyme-linked immunosorbent assay

(ELISA) [56]. Using the ELISA results as the reference, we calculated the GPP to have 100%

sensitivity and 100% specificity for detection of rotavirus A antigen in our fecal specimens.

The variations in detection frequencies of enteric pathogens across these studies could be due

to differences in detection methods or may suggest that pathogen profiles vary across even
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limited geographical distances. Molecular reanalysis of the GEMS specimens yielded higher

detection frequencies of many bacterial pathogens than the original culture-based methods

[57]. However, the GEMS reanalysis did not substantially change detection of Cryptosporidium
or rotavirus, highlighting potential geographic differences.

Results from this risk factor analysis are consistent with previous studies identifying the

build quality or physical characteristics of latrines as factors for increased risk of infection

exposure [58]; we found presence of a superstructure or a drop-hole cover to be associated

with decreased infection risk. We did not identify any association between enteric infection

prevalence and the presence of a cleanable slab, however, consistent with previous work from

Tanzania [59]. Associations between the physical characteristics of a latrine and enteric infec-

tions were observed only for risk of bacterial and protozoan infections. Household crowding

was also associated with a reduced risk of protozoan infection, further evidence that transmis-

sion of enteric bacterial and protozoan pathogens is likely to be largely environmentally medi-

ated [20, 21, 24]. We did not identify any WASH or environmental variables associated with

risk of viral enteric infection. This is consistent with our prior assumption that person-to-per-

son transmission is likely the predominant pathway for viral infection in this setting [25] as

has been observed elsewhere under similar conditions [20].

Consistent with previous work, any breastfeeding appeared protective for enteric infection

risk in our analysis [60–65]. Adjusted estimates of association show that this observation is pri-

marily driven by protection from Giardia infection (RR = 0.50, 95% CI 0.37–0.67); a similar

correlation was also observed in the MAL-ED study [63]. Any breastfeeding limits enteric

pathogen transmission by eliminating exposure via direct consumption of contaminated food

or water.

Maputo, like many cities of sub-Sahara Africa, is rapidly urbanizing [66]. Urbanization may

result in higher risk of direct (person-to-person) or indirect (environmentally-mediated)

transmission of enteric infection, especially in low-income, unplanned neighborhoods where

WASH infrastructure is lacking [67, 68]. Recent studies of population density and enteric

infection risk have found mixed results, though most were based in rural areas or less dense

urban settings [69–71]. In our study, we observed an association between higher compound-

level population density and higher risk of enteric infections.

There are important limitations to this study that qualify our results. First, our a priori
selection of specific pathogen targets and our methods for stool sample analysis present key

constraints to interpretation. The GPP tests for 15 of the most common enteric pathogens

including bacteria, viruses, and protozoa, but this is a sub-set of all enteric infections and

therefore an incomplete accounting of current infections. For example, the GPP does not

detect EAEC, a pathogen commonly detected in young children in both MAL-ED and the

GEMS-Manhiça site [51, 52] and associated with malnutrition [64]. Metagenomics or other

primer-independent approaches may have yielded information on additional targets of

public health significance. Although detection of pathogens in stool samples was observed

to be closely associated with age–suggesting persistent infections or frequent reinfection–

we cannot make conclusions about either duration of infections or shedding or about the

potential for rapid clearance and reinfection based on a single stool specimen. Detection of

an enteric pathogen in stool can represent symptomatic or asymptomatic infection, patho-

gen carriage due to colonization of the gut, or simply passage due to recent exposure. Fur-

ther, certain pathogens may be shed for weeks after clinical symptoms of infection have

abated, and the onset or absence of symptoms following infection can depend on factors

related to the environment, host, or pathogen strain of interest [53]. The GPP was designed

to aid in diagnosis of enteric infections and the relatively high limits of detection (2.2x102–

3.75x106 CFU or copies/mL stool) [72] largely exceed the known infectious doses for target
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pathogens. This suggests that enteric pathogen detections via the GPP may primarily repre-

sent active infection (symptomatic or asymptomatic) or long or short term colonization of

the intestinal tract. Although detection of enteric pathogens in feces is an unambiguous

indication of past exposure and a clear indication that fecal waste from such individuals rep-

resents downstream exposure risks, absence of a particular pathogen in stool by the meth-

ods we used does not indicate absence of previous exposure to that pathogen. Because the

detection limit of the assay we used is relatively high, a negative assay may not necessarily

mean that the pathogen is absent in stool. Cross-sectional, end-point RT-PCR analysis of

stool samples alone cannot reveal information on time since exposure, etiology of symp-

tomatic infections, intensity of infections, health implications of infections, or infectivity of

pathogens shed in stool. Enteric infections are on the causal pathway between exposures

and all downstream health impacts of WASH, including diarrheal disease and environmen-

tal enteric dysfunction, but they should be considered an intermediate outcome of uncer-

tain clinical significance.

Second, the study population and the study setting, though diverse across some variables,

was characterized by a limited range of WASH conditions. All participating households had

access to shared sanitation without safe excreta management–a key criterion used in determin-

ing eligibility for the MapSan trial–and so exposures were likely to be high across our study

sites. This lack of heterogeneity of WASH conditions may have limited our ability to observe

variation in risk attributable to specific exposures.

Third, certain inclusion criteria may limit the generalizability of our findings. Because our

study only included children living in households sharing sanitation in densely populated

urban neighborhoods, our results may not represent risks for children in rural areas or in

households using private sanitation.

Fourth, our analysis is constrained by missing data for variables, including the out-

come. A secondary analysis used multiple imputation (S2 Supporting information and

S3 Table) to handle missing values, and these methods are accompanied by different

assumptions and limitations. We note, however, that results from the complete case mod-

els and estimates from multiple imputation were largely consistent. Finally, our modeling

strategy did not include adjustment for multiple comparisons. While it is possible that

some of our findings are spurious and due to type I error [73, 74], all variables in this

analysis have strong foundations in the literature or plausibility as risk factors for enteric

infection.

Overall, we found high prevalence of enteric infection and comparatively low prevalence of

reported diarrhea among children <4 years old living in informal neighborhoods of Maputo,

Mozambique. Most infections were observed in reportedly asymptomatic children. Prevalence

of bacterial and protozoan infection increased with child age and is likely due to variations in

exposure profiles as children become more mobile. Certain sanitation facility characteristics

were associated with decreased risks of enteric infection, though the magnitude of these associ-

ations was small. The importance of effective sanitation increases where prevalence of enteric

infections is high: fecal wastes in such settings present elevated exposure risks, potentially driv-

ing burdens of infection and disease higher. Strategies to interrupt this cycle of infection and

exposure risk should limit the possibility of exposure to excreta, including through multiple

pathways of transmission.

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily rep-

resent the official position of the U.S. Centers for Disease Control and Prevention.
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