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Microstructural visual system changes in
AQP4-antibody–seropositive NMOSD

ABSTRACT

Objective: To trace microstructural changes in patients with aquaporin-4 antibody (AQP4-ab)-
seropositive neuromyelitis optica spectrum disorders (NMOSDs) by investigating the afferent
visual system in patients without clinically overt visual symptoms or visual pathway lesions.

Methods: Of 51 screened patients with NMOSD from a longitudinal observational cohort study,
we compared 6 AQP4-ab–seropositive NMOSD patients with longitudinally extensive trans-
verse myelitis (LETM) but no history of optic neuritis (ON) or other bout (NMOSD-LETM) to 19
AQP4-ab–seropositive NMOSD patients with previous ON (NMOSD-ON) and 26 healthy controls
(HCs). Foveal thickness (FT), peripapillary retinal nerve fiber layer (pRNFL) thickness, and ganglion
cell and inner plexiform layer (GCIPL) thickness were measured with optical coherence tomog-
raphy (OCT). Microstructural changes in the optic radiation (OR) were investigated using diffusion
tensor imaging (DTI). Visual function was determined by high-contrast visual acuity (VA). OCT
results were confirmed in a second independent cohort.

Results: FT was reduced in both patients with NMOSD-LETM (p5 3.52e214) and NMOSD-ON (p5

1.24e216) in comparison with HC. Probabilistic tractography showed fractional anisotropy reduc-
tion in the OR in patients with NMOSD-LETM (p 5 0.046) and NMOSD-ON (p 5 1.50e25) com-
pared with HC. Only patients with NMOSD-ON but not NMOSD-LETM showed neuroaxonal
damage in the form of pRNFL and GCIPL thinning. VA was normal in patients with NMOSD-
LETM and was not associated with OCT or DTI parameters.

Conclusions: Patients with AQP4-ab–seropositive NMOSD without a history of ON have micro-
structural changes in the afferent visual system. The localization of retinal changes around the
Müller-cell rich fovea supports a retinal astrocytopathy. Neurol Neuroimmunol Neuroinflamm

2017;4:e334; doi: 10.1212/NXI.0000000000000334

GLOSSARY
AD 5 axial diffusivity; ART 5 automatic real time; DTI 5 diffusion tensor imaging; FT 5 foveal thickness; GCIPL 5 ganglion
cell and inner plexiform layer; GEE 5 general estimate equation; HC 5 healthy control; LETM 5 longitudinally extensive
transverse myelitis; LGN 5 lateral geniculate nucleus; LPA 5 lesion prediction algorithm; LST 5 Lesion Segmentation
Toolbox; MD 5 mean diffusivity; NMOSD 5 neuromyelitis optica spectrum disorder; OCT 5 optical coherence tomography;
ON5 optic neuritis;OR5 optic radiation; pRNFL5 peripapillary retinal nerve fiber layer;RD5 radial diffusivity; ROI5 region
of interest; VA 5 visual acuity.

Neuromyelitis optica spectrum disorders (NMOSDs) are relapsing inflammatory conditions of
the CNS presenting with optic neuritis (ON) and longitudinally extensive transverse myelitis
(LETM) as key clinical features and less frequently brainstem and cerebral involvement.1

NMOSD is associated with serum antibodies to the astrocytic water channel aquaporin-4
(AQP4), which can be detected in 60%–80% of patients.2,3 The remainder may not only
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comprise patients with false-negative AQP4-
antibody tests but also true AQP4 seronega-
tives that may harbor other autoantibodies
(e.g., myelin oligodendrocyte glycoprotein)
and may thus suffer from distinct disease
entities.4,5

In contrast to MS, patients with NMOSD
virtually never present clinically with progres-
sive disease.6 However, advanced imaging and
histopathologic studies have shown conflicting
results as to whether covert tissue damage can
occur independent of attack-associated lesions
in patients with NMOSD.7–9 One possible
explanation for these discrepancies may be
the heterogeneity of previously investigated
cohorts comprising both AQP4-antibody
(AQP4-ab) positive and negative patients.
Also on clinical examination, it may be diffi-
cult to identify subtle findings beyond the

overtly affected functional system (i.e., optic
nerve or spinal cord).

Against this background, we investigated
microstructural and lesion-independent CNS
tissue changes in a homogeneous cohort of
exclusively AQP4-ab–seropositive NMOSD
patients. To exclude any focal attack-related
damage, we limited our study to patients
who were only presenting with LETM but
were otherwise asymptomatic. We used 2
imaging techniques: optical coherence tomog-
raphy (OCT) to measure retinal thickness and
diffusion tensor imaging (DTI)-based proba-
bilistic tractography to analyze the optic radi-
ation (OR).

METHODS Patients. We screened 51 patients with

NMOSD participating in an ongoing prospective observational

cohort study at the NeuroCure Clinical Research Center at the

Charité—Universitätsmedizin Berlin. Six patients with a history

of LETM but no other attack (i.e., history of ON) (NMOSD-

LETM), 19 NMOSD-ON, and 26 age- and sex-matched healthy

controls (HCs) were enrolled (table 1). In a previous study

including nineteen (76%) of the 25 patients with NMOSD,

normal subcortical gray matter volumes and microstructural

changes were found.10 Inclusion criteria were a minimum age

of 18 years and a definite diagnosis of AQP4-ab–seropositive

NMOSD according to the 2015 International Consensus Diag-

nostic Criteria.11 AQP4-ab were determined by a cell-based assay

(Euroimmun, Lübeck, Germany). Patients exhibiting

ophthalmologic (e.g., glaucoma, myopia .5 dpt) or systemic

diseases (e.g., systemic lupus erythematosus), which can

potentially influence OCT or DTI results, were excluded from

the study (figure 1). Visual function was tested monocularly with

habitual correction and under photopic conditions. For high-

contrast visual acuity (VA), Early Treatment in Diabetes

Table 1 Demographic data of HCs and patients with NMOSD (mean 6 SD)

HC NMOSD-LETM NMOSD-ON

Subject, n 26 6 19

Sex, female/male 22/4 6/0 17/2

Age, y 43.6 6 15.7 43.1 6 9.83 43.7 6 12.5

Disease duration, y 3.0 6 3.7 9.5 6 8.9

EDSS, median (min–max) 3.5 (1.5–6.5) 4 (0–6)

Abbreviations: EDSS 5 Expanded Disability Status Scale; HC 5 healthy control; LETM 5

longitudinally extensive transverse myelitis; NMOSD 5 neuromyelitis optica spectrum dis-
order; NMOSD-LETM 5 NMOSD patients with a history of LETM but no history of ON;
NMOSD-ON 5 NMOSD patients with a history of ON; ON 5 optic neuritis.

Figure 1 Flowchart of cohort selection

AQP45 aquaporin-4; MOG5 myelin oligodendrocyte glycoprotein; NMOSD5 neuromyelitis optica spectrum disorder; OCT5

optical coherence tomography.
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Retinopathy Study charts were used at a 20-ft distance with an

Optec 6500 P system (Stereo Optical, Chicago, IL).12

We additionally included a confirmatory OCT cohort consist-

ing of 3 patients with AQP4-ab–seropositive NMOSD-LETM

(women/men: 3/0; age: 41.3 6 10.7 years; disease duration:

2.8 6 2.1 years), 3 patients with AQP4-ab–seropositive

NMOSD-ON (women/men: 3/0; age: 44.0 6 1.0 years; disease

duration: 2.9 6 0.8 years), and 8 HCs (women/men: 8/0; age:

42.3 6 1.7 years) following the same inclusion and exclusion

criteria from a longitudinal prospective observational cohort study

at the Department of Neurology, Klinikum rechts der Isar at the

Technical University of Munich, Germany.

Ethics statement. The local ethics committee of the Charité—

Universitätsmedizin Berlin approved this study (EA1/131/09).

OCT data from the confirmatory cohort were collected under

an ethics vote from the ethics committee at the Technical

University of Munich (166/16S). The study was conducted

in accordance with the Declaration of Helsinki in its currently

applicable version and the applicable German laws. All patients

provided written informed consent.

Optical coherence tomography. All retinal examinations were

performed using a Heidelberg Engineering Spectralis spectral

domain OCT (Heidelberg Engineering, Heidelberg, Germany)

with automatic real-time (ART) function for image averaging.

The peripapillary retinal nerve fiber layer (pRNFL) was

measured with activated eye tracker using 3.4-mm ring scans

around the optic nerve head (12°, 1,536 A-scans 16 # ART #

100). The combined ganglion cell and inner plexiform layer

(GCIPL) volume was measured using a 6-mm diameter

cylinder around the fovea from a macular volume scan (25° 3

30°, 61 vertical B-scans, 768 A-scans per B-scan, ART 5 15).13

Segmentation of pRNFL and GCIPL was performed

semiautomatically using software provided by the OCT

manufacturer (Eye Explorer 1.9.10.0 with viewing module

6.0.9.0; Heidelberg Engineering). All measurements were

checked for segmentation errors and corrected if necessary by

an experienced rater. Foveal thickness (FT) was measured as

the mean thickness of a 1-mm diameter cylinder around the

fovea from each collected macular scan. We report our

quantitative OCT data in line with the APOSTEL

recommendations.14

Magnet resonance imaging. All MRI data were acquired on

the same 3T scanner (MAGNETOM Trio Siemens, Erlangen,

Germany) using a single-shot echo planar, DTI sequence

(repetition time [TR]/echo time [TE] 5 7,500/86 ms; field-of-

view [FOV]5 2403 240 mm2; matrix 963 96, slice thickness

2.3 mm, 64 noncollinear directions, b-value 5 1,000 s/mm2), as

well as a volumetric high-resolution fluid-attenuated inversion

recovery sequence (3D FLAIR) (TR/TE/TI 5 6,000/388/

2,100 ms; FOV 5 256 3 256 mm2, slice thickness 1.0 mm).

3D FLAIR images of patients with NMOSD-LETM were

checked and verified for OR lesions by a board-certified

radiologist. Whole-brain segmentation and quantification of

lesions of FLAIR images were performed using lesion

prediction algorithm in the Lesion Segmentation Toolbox

(LST) for MATLAB 2013a (MathWorks, Inc., Natick, MA).15

Probabilistic tractography. Diffusion tensors on the DTI im-

ages were fitted by a linear-least square approach. MRtrix package

0.2 (J-D Tournier; Brain Research Institute, Melbourne,

Australia) was used to perform probabilistic tractography from

seed to target mask.16 Fiber orientation distribution was

estimated with constrained spherical deconvolution and

mapped with a maximum harmonic order of 6. The OR

reconstruction pipeline was modified from the Martinez-Heras

et al.17 and Lim et al.18 pipeline. The Juelich probabilistic atlas

was used to generate binary masks of lateral geniculate nucleus

(LGN) as the seed region of interest (ROI) and primary visual

cortex (V1) as the target ROI. For binary exclusion masks,

a midline sagittal exclusion plane, a termination coronal plane

20 mm posterior to the temporal pole, and a gray matter

segmentation mask were created in the 3D coordinate system

of the Montreal Neurological Institute (MNI-152). These were

subsequently registered to individual DTI space, serving as

a binary exclusion ROI for tractography. Ten thousand

Table 2 OCT and DTI results from HC and NMOSD subgroups (mean 6 SD)

HCs NMOSD-LETM NMOSD-ON

NMOSD-LETM vs HC NMOSD-ON vs LETM NMOSD-ON vs HC

B SE p Value B SE p Value B SE p Value

FT, mm 280 6 21 260 6 18 262 6 18 220.38 8.233 1.5e22 0.952 7.890 9.0e21 220.32 5.540 2.4e24

pRNFL, mm 97.1 6 7.4 105.0 6 6.9 71.7 6 22.8 28.28 2.968 5.3e23 233.03 5.066 7.0e211 225.6 4.045 2.4e210

GCIPL, mm3 1.87 6 0.15 1.93 6 0.11 1.54 6 0.30 0.061 0.049 2.1e21 20.389 0.071 3.9e28 20.333 0.062 8.3e28

FA 0.57 6 0.04 0.54 6 0.03 0.53 6 0.04 20.029 0.015 4.6e22 20.014 0.015 3.2e21 20.046 0.011 1.5e25

MD 0.83 6 0.07 0.90 6 0.06 0.87 6 0.05 0.050 0.032 1.2e21 20.020 0.026 4.5e21 0.003 0.016 3.7e22

AD 1.43 6 0.08 1.49 6 0.09 1.43 6 0.06 0.044 0.040 2.7e21 20.048 0.036 1.8e21 20.003 0.020 8.7e21

RD 0.53 6 0.08 0.61 6 0.06 0.59 6 0.06 0.054 0.031 8.3e22 20.006 0.026 8.2e21 0.053 0.018 2.7e23

Confirmatory cohort

FT, mm 286 6 10 257 6 4 246 6 4 227.89 3.72 6.6e214 211.36 2.62 1.4e25 240.62 4.60 ,2.0e216

pRNFL, mm 98.2 6 4.6 114.0 6 7.2 66.70 6 14.9 15.68 2.77 1.5e28 246.51 5.15 ,2.0e216 232.04 4.98 1.3e210

GCIPL, mm3 2.04 6 0.09 2.07 6 0.07 1.37 6 0.14 0.04 0.05 5.1e21 20.70 0.05 ,2.0e216 20.69 0.03 ,2.0e216

Abbreviations: AD 5 axial diffusivity; B 5 estimate; FA 5 fractional anisotropy; FT 5 foveal thickness; GCIPL 5 ganglion cell and inner plexiform layer
volume; HC 5 healthy control; LETM 5 longitudinally extensive transverse myelitis; MD 5 mean diffusivity; NMOSD 5 neuromyelitis optica spectrum
disorder; NMOSD-LETM 5 NMOSD patients with a history of LETM but no history of ON; NMOSD-ON 5 NMOSD patients with a history of ON; OCT 5

optical coherence tomography; ON 5 optic neuritis; pRNFL 5 peripapillary retinal nerve fiber layer thickness; RD 5 radial diffusivity.
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unidirectional streamlines from the LGN to V1 were generated

(fractional anisotropy (FA) threshold: 0.1; curvature threshold:

25%; step size: 0.2 mm) for each OR. Streamlines were

thresholded for 25% of the maximum value. Resulting fibers

were transferred to the Vistalab environment (vistalab.stanford.

edu/, Vistalab, Stanford University, Stanford, CA) to compute

tract profiles of weighted mean DTI values of FA, mean

diffusivity (MD), radial diffusivity (RD), and axial diffusivity at

50 equally spaced positions. We used the middle 30 of the 50

positions for statistical analysis for the exclusion of potential

confounders from the LGN to V1 and to have a pure OR

volume only.

Statistical analysis. Group differences were tested with a x2 test

for sex and a Wilcoxon-Mann-Whitney U test for age. Group

differences in OCT, DTI, and VA were evaluated by general

estimate equation (GEE) models accounting for within-subject

intereye dependencies and correcting for age and sex.

Relationships between structural and functional parameters

were analyzed using GEE models and correcting for age and

sex. Combined p values of exploratory and confirmatory cohort

results were calculated by Fisher combined probability test. All

tests were performed with R version 3.1.2 with packages psych,

geepack, and ggplot2. Graphical representations were created

with R and Graphpad Prism 6.0 (Graphpad Software, San

Diego, CA). For all calculations, statistical significance was

established at p , 0.05.

RESULTS OCT analysis. The fovea is a region rich in
AQP4-positive Müller cells, and foveal thinning has
previously been reported in eyes from patients with
NMOSD without ON.19 We found that FT in eyes
from patients with NMOSD-LETM was lower than
that in HC, as was FT in patients with NMOSD-ON
patients. Remarkably, FT in eyes from patients
with NMOSD-LETM never experiencing visual
symptoms was comparable to FT in eyes from
patients with NMOSD-ON (table 2 and figure 2).

Figure 2 OCT results

Boxplots of mean OCT values with values of individual eyes (jitter) in HC (left, white), NMOSD-LETM (middle, light blue), NMOSD-ON (right, dark blue), and for
each confirmatory cohort (without color) for (A) FT values (mm); (B) pRNFL thickness (mm); (C) GCIPL volume (mm3); (D) FT in a representative macular scan of
right eye from an HC; (E) FT changes in a representative macular scan of right eye from a patient with NMOSD-LETM. FT 5 foveal thickness; GCIPL 5

combined ganglion cell and inner plexiform layer volume; HC 5 healthy control; LETM 5 longitudinally extensive transverse myelitis; NMOSD-LETM 5

NMOSD patients with a history of LETM but no history of ON; NMOSD-ON 5 NMOSD patients with a history of ON; OCT 5 optical coherence tomography;
ON 5 optic neuritis; pRNFL 5 peripapillary retinal nerve fiber layer thickness.
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The FT reduction reflected a change in foveal
shape, from an open V-shape in eyes from HCs to
a wide U-shape in eyes from patients with NMOSD
(figure 2, D–E).

In eyes from patients with NMOSD-LETM,
pRNFL and GCIPL as markers of retinal neuroaxonal
degeneration were not reduced but pRNFL instead
increased in comparison with HC (table 1 and figure
2). By contrast and as expected, eyes with previous
ON in the NMOSD-ON group presented with
severe pRNFL and GCIPL loss, indicating ON-
dependent neuroaxonal damage.20,21 All OCT results
were confirmed in a second independent cohort (fig-
ure 2). Statistical combination of p values from the
initial and confirmatory cohorts produced immense
FT and pRNFL differences between NMOSD-
LETM and HC (FT p 5 3.52e214, pRNFL p 5

1.93e29, and GCIP n.s.) as well as NMOSD-ON
and HC (FT p 5 1.24e216, pRNFL p 5 1.43e218,
and GCIP p 5 8.87e222), supporting a high

likelihood of true-positive results, despite the low
sample size in either cohort.

MRI analysis.Microstructural white matter changes in
the OR were analyzed using DTI-based probabilistic
tractography. Patients with NMOSD-LETM
presented with FA reduction in comparison with
HC (p 5 0.046), which suggests structural changes
in the OR of patients with NMOSD-LETM (table 2
and figures 3 and 4). Patients with NMOSD-ON
expectedly showed pathologic changes in
comparison with HCs (FA: p 5 1.5e25; MD: p 5

0.037; and RD: p 5 0.003).
To ascertain that patients with NMOSD-LETM

were indeed asymptomatic with respect to their visual
system, we analyzed lesion distribution and volume
on brain MRI. Whole-brain lesion volume did not
differ between NMOSD-ON (0.95 6 1.23 mL)
and NMOSD-LETM (0.95 6 1.30 mL; p .

0.999). Two patients with NMOSD-LETM had

Figure 3 DTI results 1

(A) Tract presentation of OR from LGN to V1 for averaged weight-mean DTI values of 50 segments in HC (white), NMOSD-
LETM (light blue), and NMOSD-ON (dark blue) for FA (mean6SEM). (B) Boxplot of mean FA values for middle 3/5 of the OR in
HC (left, white), NMOSD-LETM (middle, light blue), and NMOSD-ON (right, dark blue). (C) Example of resulting fibers from
tractography analysis. DTI 5 diffusion tensor imaging; FA 5 fractional anisotropy; HC 5 healthy control; LETM 5 longitu-
dinally extensive transverse myelitis; LGN 5 lateral geniculate nucleus; NMOSD 5 neuromyelitis optica spectrum disorder;
NMOSD-LETM 5 NMOSD patients with a history of LETM but no history of ON; NMOSD-ON 5 NMOSD patients with
a history of ON; ON 5 optic neuritis; OR 5 optic radiation; V1 5 primary visual cortex.
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unspecific small dot-like lesions in the OR unilater-
ally. All confirmatory patients with NMOSD-LETM
presented without any lesions in the OR. In patients
with NMOSD-LETM, OR FA did not correlate with
FT (r 5 0.066, p 5 0.800), pRNFL (r 5 20.204,
p 5 0.500), or GCIPL (r 5 0.261, p 5 0.400),
suggesting a structurally independent alteration with-
out dependency on the observed foveal changes or
covert retinal neuroaxonal damage. In patients
with NMOSD-ON, reduced OR FA correlated with

reduced GCIP (r 5 0.361, p 5 0.030), but not with
FT (r 5 0.210, p 5 0.200).

Functional measurements. VA ([logMAR]: 20.02 6

0.10) was normal in all patients with NMOSD-
LETM. As expected, patients with NMOSD-ON
had worse mean VA of all eyes ([logMAR]: 0.22 6

0.37; p 5 0.002). In patients with NMOSD-LETM
and NMOSD-ON, VA did not correlate with
FT (NMOSD-LETM: r 5 20.312, p 5 0.300;

Figure 4 DTI results 2

(A.a–C.a) Boxplots of mean DTI values for middle 3/5 of the OR and (A.b–C.b) Tract presentation of OR from the LGN to V1
for averaged weight-mean DTI values of 50 segments in HC (white), NMOSD-LETM (light blue), and NMOSD-ON (dark blue)
for (A) MD, (B) AD, and (C) RD (mean 6 SEM for all). AD 5 axial diffusivity; DTI 5 diffusion tensor imaging; FA 5 fractional
anisotropy; HC5 healthy control; LETM5 longitudinally extensive transverse myelitis; LGN5 lateral geniculate nucleus; MD5

mean diffusivity; NMOSD 5 neuromyelitis optica spectrum disorder; NMOSD-LETM 5 NMOSD patients with a history of
LETM but no history of ON; NMOSD-ON5 NMOSD patients with a history of ON; ON5 optic neuritis; OR5 optic radiation;
RD 5 radial diffusivity; V1 5 primary visual cortex.
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NMOSD-ON: r 5 0.082, p 5 0.700) and OR FA
(NMOSD-LETM: VA: r 5 20.445, p 5 0.100;
NMOSD-ON: r 5 0.073, p 5 0.700).

DISCUSSION Patients with AQP4-ab–positive
NMOSD without a history of ON and with nor-
mal visual function and otherwise normal neuro-
axonal retinal measurements (pRNFL, GCIPL)
have foveal thinning and reduced OR fractional
anisotropy, suggesting microstructural changes in
the afferent visual pathway in the absence of
clinical attacks of ON.

In NMOSD, 55% of all first clinical events are
ONs,22 which in conjunction with subsequent attacks
cause damage to the optic nerve with resultant visual
impairment.20,21,23–25 However, subclinical tissue al-
terations in NMOSD affecting the afferent visual sys-
tem have been controversially discussed.19–21 For
example, while one study reported axonal damage
in eyes that never experienced ON,19 another study
did not find any signs of neuroaxonal damage in eyes
without ON in patients with NMOSD.21

Our study now clearly demonstrates structural ret-
inal and OR changes outside attack-related lesions.26

The parafoveal area is characterized by a high density
of retinal astrocytic Müller cells, which express AQP4
andmay thus serve as retinal targets inNMOSD.19,27–29

Müller cells regulate the retinal water balance and
have a relevant role in neurotransmitter and photo-
pigment recycling, as well as in energy and lipid
metabolism.27 Müller cell dysfunction or degenera-
tion could thus lead to impaired retinal function
including changes in water homeostasis. Of interest,
both the initial cohort and the confirmatory cohort
showed a mild increase of pRNFL thickness, which
could indicate tissue swelling. These findings are sup-
ported by animal studies showing retraction of astro-
cytic end feet in some and astrocyte death in other
cases, suggesting a primary astrocytopathy in
NMOSD also outside acute lesions.30–32 The changes
we identified in the OR in this study furthermore
indicate that a presumptive astrocytopathy may not
be confined to the retina.10,23,25 This is in line with
astrocytic end feet changes reported in biopsies from
LETM spinal cord lesions and spinal cord atrophy in
AQP4-ab–positive patients without previous myeli-
tis.9,33 Whether these changes lead to subtle clinical
manifestations should be further investigated using
more sensitive functional measures such as visual
evoked potentials or low-contrast VA. If confirmed,
this would be in line with a preferential affection of
the visual system, even without apparent clinical
symptoms in NMOSD.

Reduction of FT in patients with NMOSD with-
out overt clinical evidence of optic nerve involvement
(normal VA, normal pRNFL, and GCIPL values) was

comparable with that of patients with previous ON.
To assure that we were only detecting AQP4-ab–
associated pathologies, we rigorously excluded
potential confounders. Most importantly, we only
included a homogeneous group of AQP4-ab–
seropositive patients who are expected to display
a well-defined astrocytopathy phenotype.34 Patients
were only eligible if they presented with LETM and
no history of ON, visual symptoms, or other typical
NMOSD-associated bouts. Since our patients with
NMOSD-LETM did not show pRNFL and GCIPL
thinning, a previous subclinical ON is highly
unlikely. However, a potential pRNFL swelling
might have masked a mild subclinical neurodegener-
ation, but the effects would likely be small and would
not be able to explain the observed changes, which are
comparable to eyes after severe ON.21 In light of
a recent animal study,32 it is conceivable that
AQP4-specific T cells also contribute to foveal astro-
cytopathy. However, disease-independent factors in
NMOSD, such as prematurity and environmental
conditions,35 may also play a role in foveal thinning.

Previous studies investigating retinal changes in
patients with NMOSD regularly included measure-
ments from unaffected fellow eyes from patients with
unilateral ON. This is problematic since ON in
NMOSD often involves the optic chiasm, and
carry-over effects by chiasmic involvement of symp-
tomatically unilateral ON have been reported in up
to 64% of patients with AQP4-ab–positive
NMOSD.22 This sets our study apart from a pre-
vious study reporting FT reduction in eyes without
previous ON in a cohort of patients with NMOSD,
which could have been alternatively explained by
both non-AQP4 pathologies and chiasmic carry-over
effects.19 Furthermore, none of the patients with
NMOSD-LETM had NMOSD-related attacks other
than LETM, minimizing the potential of attack- or
lesion-related tissue alteration as the cause of the
observed changes. Attack-related tissue alteration
could have been the case in a recent study reporting
spinal cord atrophy in AQP4-ab–positive NMOSD
patients with ON.9 Of interest, despite all patients in
the NMOSD-LETM group reporting and showing
no symptoms of visual dysfunction, a few patients
showed small lesions near the OR. Measurements
from these patients were not outliers but well posi-
tioned within the data distribution of the whole
cohort (not shown).

One important limitation of our study, which we
share with the majority of other studies published in
NMOSD, is the small sample size. We were able to
confirm our results, however, in a second indepen-
dent cohort. Furthermore, our study cannot answer
whether the reported changes are attack related or
attack independent (e.g., due to circulating

Neurology: Neuroimmunology & Neuroinflammation 7



antibodies). That at least some occult changes might
be caused during acute attacks was suggested by
a study reporting a correlation of brain volumes and
perfusion change with the number of ON attacks in
patients with NMOSD.36

We found microstructural changes in the afferent
visual system in visually asymptomatic patients with
AQP4-ab–positive NMOSD-LETM, which were
most apparent in the fovea, a region rich in AQP-
expressing Müller cells. Localization and extent of
these changes are suggestive of an astrocytopathy with-
out apparent neuroaxonal damage. Identifying occult
brain changes in patients with NMOSD is important
for a number of reasons. These occult changes could be
relevant for symptoms that are not directly related to
attacks, e.g., cognitive dysfunction, fatigue, and depres-
sion37–39 and could predispose to full attacks causing
severe astrocytic damage, demyelination, and neuro-
axonal damage. As such, occult CNS including retinal
changes in NMOSD may be an important diagnostic
and target. Retinal imaging of NMOSD-specific
changes could aid in early differential diagnosis of
NMOSD and help to identify patients in need of an
NMOSD-specific therapy. Although highly specific,
antibody testing takes too much time during an initial
attack of a de novo NMOSD patient, making acute
attack-related therapeutic diversification currently dif-
ficult. Future research should thus focus on the sensi-
tivity and specificity of the retinal findings in NMOSD
also in contrast to relevant differential diagnoses such
as myelin oligodendrocyte glycoprotein antibody
(MOG-ab)-associated encephalomyelopathy or MS.40

Finally, retinal assessment could aid as therapy
response marker during novel drug development.
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