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Abstract
In recent decades, due to the effect of climate change and the interference of human 
activities, the species habitat index has fallen by 2%. Studying on the geographical 
distribution pattern and predicting the potential geographical distribution of species 
are of great significance for developing scientific and effective biodiversity conserva-
tion strategies. Plenty of rare and endangered species that need immediate conser-
vation are distributed in Northwest Yunnan. In this regard, this research is conducted 
in the purpose of predicting the potential geographical distribution of 25 rare and 
endangered plant species in Northwest Yunnan and analyzing the explanation capa-
bilities of various environmental factors on the potential geographical distribution 
patterns of these species. Initially, the ecological niche model MaxEnt was employed 
to predict the potential geographical distribution of target species. Following that, 
the superposition method was applied to obtain the potential geographical distribu-
tion pattern of species richness on the spatial scale of the ecological niche model 
with a resolution of 0.05° × 0.05°. Ultimately, geographically weighted regression 
(GWR) model was adopted to investigate the explanation capabilities of various 
environmental parameters on the potential distribution patterns. The research re-
sults showed that the average value of the area under the receiver operating curve 
(AUC) of each species was between 0.80 and 1.00, which indicated that the simula-
tion accuracy of the MaxEnt model for each species was good or excellent. On the 
whole, the potential distribution area for each species was relatively concentrated 
and mainly distributed in the central-western, central-eastern and northern regions 
of Northwest Yunnan. In addition, the potential distribution areas of these species 
were between 826.33 km2 and 44,963.53 km2. In addition, the annual precipitation 
(Bio12), precipitation of coldest quarter (Bio19), and population density (Pop) made 
a greater contribution to the species distribution model, and their contribution val-
ues were 25.92%, 15.86%, and 17.95%, respectively. Moreover, the goodness-of-fit 
R2 and AIC value of the water model were 0.88 and 7,703.82, respectively, which 
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1  | INTRODUC TION

The geographical distribution pattern of species and utilizing spe-
cies distribution models (SDMs) to predict the potential geograph-
ical distribution of species are one of the hot research issues in the 
fields of biogeography and biodiversity conservation (Gaston, 2000; 
Ning et al., 2020; Tripathi et al., 2019a; Zhang & Ma, 2008). Studying 
on the geographical distribution pattern and predicting the poten-
tial geographical distribution of species are of great significance for 
developing effective biodiversity conservation strategies (Lazo-
Cancino et al., 2020; Zhang et al., 2019), preventing and managing 
the spread of invasive alien species diffusion (Fernandes et al., 2019), 
and assessing the impact of climate change on species distribution 
(Lazo-Cancino et al., 2020), and they are also an effective means of 
protecting and managing some rare and endangered species.

It is stated by the Living Planet Report 2020 (https://www.wwf.
org.uk/press​-relea​se/livin​g-plane​t-repor​t-2020) that, from 2000 to 
2018, the species habitat index (i.e., a single metric that conveys 
change in suitable habitat available to all species over time) has fallen 
by 2%, which indicated that the available habitats of species have 
shown a strong and general downward trend. Northwest Yunnan 
of China is one part of the global biodiversity hot spots (Myers 
et al., 2000; Ye, Chen, et al., 2020; Ye, Zhang, et al., 2020). Plenty 
of rare, endangered, threatened, and endemic species that need im-
mediate conservation are distributed in this area (Yang et al., 2017). 
In recent decades, due to the interference of human activities (e.g., 
mining and collecting herbs) and the influence of the external natural 
environment, especially climate change, the populations and distri-
bution area of some rare, endangered, and threatened species have 
been decreasing (Yu et al., 2014). Therefore, Northwest Yunnan has 
become an ideal region to discuss the distribution pattern of species 
diversity and simulate the distribution of potential suitable habitats. 
In addition, some species have the characteristics of geographical 
isolation and narrow distribution (Wang et al., 2013); as a result, their 
survival and development are faced with severe threats. Therefore, 
it is urgent to protect these rare and endangered species and their 
suitable habitats in this area. In order to take reasonably and effec-
tively protect actions, the geographical distribution of these species 
must be identified first. However, at present, it is still a tough issue 
to figure out the potential geographical distribution and main limited 

environmental factors for these rare and endangered species in 
Northwest Yunnan.

The maximum entropy (MaxEnt) model is a species distribution 
model based on the environmental factors matching method and is 
often used to predict the potential geographical distribution of spe-
cies (Phillips et al., 2006; Phillips & Dudík, 2008; Zhang et al., 2019). 
The MaxEnt model employs the data of species distribution locations 
and environmental variables to jointly simulate the potential geo-
graphical distribution of species and has many advantages over other 
species distribution models, for example, easy operation and use, high 
simulation accuracy, and good performance with incomplete datasets 
(Li et al., 2020). Currently, the MaxEnt is the most widely used spe-
cies distribution model (Gong et al., 2015; Merow et al., 2013; Ning 
et al., 2018). The research results of Hernandez et al. (2006) and Deb 
et al. (2017) both showed that in the case of few geographical loca-
tions (<10), even as low as 4 or 5, the MaxEnt model can still produce 
effective prediction results with high accuracy. At present, the model 
has been applied to simulate and predict the potential geographi-
cal distribution of endemic species (e.g., Impatiens hainanensis; Ning 
et al., 2020), national protected species (e.g., Phellodendron amurense; 
Huang et al., 2018), and many other key species.

It is helpful to improve the scientific understanding of the spa-
tial relationship between species and environment by understanding 
the impact of different types of environmental factors on the po-
tential geographical distribution of species. The spatial distribution 
pattern of species diversity is related to variations in environmental 
factors (e.g., latitude, elevation, and climate) (Tripathi et al., 2019a). 
However, the relationship between them often has spatial nonsta-
tionarity (i.e., relationship between independent and dependent vari-
ables will change with geographical location) (Gouveia et al., 2013). 
Geographically weighted regression (GWR) model, which is an ex-
tension of traditional regression model (e.g., ordinary least squares, 
OLS) (Ștefănescu et  al.,  2017; Tripathi et  al.,  2019a, 2019b; Xue 
et  al.,  2020), has become one of the crucial spatial heterogeneity 
modeling tools (Lu et al., 2020). In recent years, many domestic and 
foreign scholars have carried out in-depth and extensive research in 
various fields by using GWR model, including social environmental 
factors and regional economy, regional house prices and pollution 
(McCord et al., 2018; Xu et al., 2019), the impacts of environmental 
heterogeneity and land-use change on wild animal distribution (Liu 

indicated the water factor largely influenced the potential distribution of these spe-
cies. These results would contribute to a more comprehensive understanding of the 
potential geographical distribution pattern and the distribution of suitable habitats of 
some rare and endangered plant species in Northwest Yunnan and would be helpful 
for implementing long-term conservation and reintroduction for these species.
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biodiversity conservation, environmental explanations, geographically weighted regression, 
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et al., 2019; Wang et al., 2020; Xue et al., 2020), and vegetation ac-
tivity and climate change (Gao et al., 2019). However, there are few 
studies that in combination MaxEnt with GWR models to analyze 
the potential geographical distribution and explore environmental 
explanations for some rare and endangered plant species, especially 
in biodiversity hot spot areas.

In this study, we analyzed the potential geographical distribution 
and environmental explanations of 25 rare and endangered plant 
species in Northwest Yunnan through combined modeling. Initially, 
the MaxEnt model was adopted to predict the potential geograph-
ical distribution of each species on the grid map with a resolution 
of 0.05° × 0.05° (Ye, Zhang, et al., 2020). Then, the potential geo-
graphical distribution of each species was overlaid which produced 
the potential geographical distribution pattern of species richness 
on the spatial scale of the ecological niche model with a resolution of 
0.05° × 0.05°. Ultimately, GWR model was employed to investigate 
the explanation capabilities of various environmental factors on the 
potential geographical distribution patterns of these target species, 
and the main restrictive environmental factors were gained as a re-
sult. These research results would contribute to a more comprehen-
sive understanding of the potential geographical distribution pattern 
of some rare and endangered plant species in Northwest Yunnan 
and would provide a scientific basis for the conservation and man-
agement of suitable habitat for many other key species in this region.

2  | MATERIAL S AND METHODS

2.1 | Study area and species data

Northwest Yunnan is one part of the global biodiversity hot spots, 
which located in the mountains of southwest China, and lies to the 
northwestern part of Yunnan Province (Figure 1). The area is situ-
ated in the transition zone between the Qinghai–Tibetan Plateau 
and the Yunnan–Guizhou Plateau. As one of the three centers of 
origin and distribution of endemic species in China, the Northwest 
Yunnan region is located in the uplift and fold zone of the Himalayas 
in the Quaternary.

The geological history of this area is young, the movement is ac-
tive, and the species differentiation is strong. A large number of en-
demic species have evolved and formed many endemic populations 
(He et  al.,  2020). In addition, the spatial variation of environmen-
tal factors makes the distribution pattern of species diversity more 
complicated. Massive variations in terrain and climate in Northwest 
Yunnan result in a rich and diverse special habitat environment, 
which provide habitats for special species, especially for rare and 
endangered species (Ye, Zhang, et al., 2020). In particular, alpine eco-
system and plateau lake ecosystem that provide habitats for a large 
number of rare and endangered species (Tao et al., 2016). The spe-
cial terrain, diverse climate, and active geological history make this 
area become one of the most concentrated and abundant regions of 
biodiversity in China (Feng et al., 2010; Xue & Wu, 2016; Ye, Chen, 
et al., 2020).

In this study, we first integrated seven attributes and used them 
as criteria for comprehensively selecting rare and endangered plant 
species that need to be focused on and protected in Northwest 
Yunnan. After that, we selected 114 plant species, these species 
should (1) belong to rare and endangered plant species (refer to 
the IUCN threatened grade); (2) belong to the national protected 
plant species [refer to the National Key Protected Wild Plants List 
(the first), and the National Key Protected Wild Plants List (the sec-
ond)]; and (3) at least have one of these attributes [refer to ende-
mism, Plant Species with Extremely Small Populations (PSESP), The 
Convention on International Trade in Endangered Species of Wild 
Fauna and Flora (CITES), and The List of Key Protected Wild Plants 
in Yunnan Province (the first)] (Ye, Zhang, et  al.,  2020). Then, we 
collected georeferenced records for 114 species from two sources: 
the main digital herbarium in China and field survey (2010–2020) 
data for nearly a decade. By combining and accumulating data from 
these two sources, a total of 941 records of occurrence data were 
obtained. Finally, a total of 25 species (including 314 distribution re-
cords; Figure S1) from 114 key higher plant species (comprises 941 
georeferenced records; Figure S1) were selected (see selection stan-
dards below). The selection was based on the combination of the 
following standards: (1) occurrence records: aiming at the continu-
ous improvement of the MaxEnt model prediction accuracy, hence 
the number of species distribution records should not less than four 
(Deb et  al.,  2017); (2) simulation accuracy: MaxEnt model should 
have good or excellent simulation accuracy for included species 
(for more details, see section 2.4.1); and (3) spatial autocorrelation: 
There is no obvious spatial autocorrelation between occurrence data 
(Moran's I = 0.18, p >  .05). The information used to construct the 
dataset (e.g., taxonomic level, threatened level, and georeferenced 
records) was obtained from field survey in nearly a decade and main 
virtual herbarium in China. For example, we get the taxonomic level 
and threatened level mainly from Flora of China (http://www.iplant.
cn/frps) and Information System of Chinese Rare and Endangered 
Plants (ISCREP) (http://www.iplant.cn/rep/), respectively. In ad-
dition, we collected species distribution data through the Chinese 
Virtual Herbarium (http://www.cvh.ac.cn/) and Herbarium, Kunming 
Institute of Botany, CAS (http://www.kun.ac.cn/).

2.2 | Environmental variables

Based on previous studies (Liu et  al.,  2019; Nieto et  al.,  2015; 
Ștefănescu et al., 2017; Zhang et al., 2019), 24 environmental vari-
ables were selected which may affect species distribution to model 
the current potential geographical distribution patterns (Table  1). 
These variables were divided into five groups according to their cat-
egories. After that, 24 environmental factors were resampled and 
reprojected to an equal-area grid system with the same spatial reso-
lution (0.05° × 0.05°) as species richness (Wang et al., 2018). Then, 
the ArcGIS 10.4 software (Esri; Redlands, California, USA) was em-
ployed to extract the raster data of environmental variables. In this 
study, the geographical coordinate system we used was WGS 1984.

http://www.iplant.cn/frps
http://www.iplant.cn/frps
http://www.iplant.cn/rep/
http://www.cvh.ac.cn/
http://www.kun.ac.cn/
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In order to avoid multicollinearity of environmental parameters 
that might result in model over-fitting, Pearson correlation coeffi-
cient (r) was calculated between each variable in R 3.5.2 software 
(https://www.r-proje​ct.org/) (the Pearson correlation coefficient 
between each variable is in the supporting information). After per-
formed a multicollinearity test, 11 environmental variables (|r| < .8) 
were finally obtained to model the potential geographical distri-
bution of each species (Mukherjee et al., 2020; Zhang et al., 2019) 
(Figure 2).

2.3 | Model construction

Two models were constructed in this research: One was for predict-
ing the potential geographical distribution area of species; the other 

was for analyzing the main environmental factors influencing the 
potential distribution of species.

2.3.1 | Construction of the MaxEnt model

In this study, the latitude and longitude of species distribution sites 
and the 11 environmental factors in Northwest Yunnan were si-
multaneously imported into the MaxEnt model (version 3.3.3k) to 
construct the correlation function between species and the envi-
ronment. Usually, the prediction results of the MaxEnt model are 
related to some set parameters, such as the max number of back-
ground points (BC), regularization multiplier (RM), and feature com-
bination (FC) (Zhu et  al.,  2018). MaxEnt is applied to run with the 
following modeling regulations: (1) Linear features were applied for 

F I G U R E  1   Map of the study area. (a) The location of Northwest Yunnan in China; (b) the topographic map of Northwest Yunnan and the 
distribution of national nature reserves (NNRs) and provincial nature reserves (PNRs) in this region

(a) (b)

https://www.r-project.org/
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species with <10 distribution records; (2) quadratic features were 
utilized for species with 10–14 distribution records; and (3) hinge 
features were employed for species with >15 distribution records 
(Zhang et al., 2012, 2017). In this research, the RM value was set to 

[0.5, 3], the step size was 0.5; the BC value set as [5,000, 15,000], 
the step size was 5,000. After that, the linear, quadratic, and hinge 
features were applied to construct the MaxEnt model, respectively 
(the specific value of each parameter used to construct the MaxEnt 

TA B L E  1   Environmental variables used to predict the potential geographical distribution of each species

Hypothesis
Environmental 
variable (Unit) Abbreviation Resolution Time period Data source

Energy availability Annual mean 
temperature (℃)

Boi1 2.5 min 1970–2000 WorldClim version 2-Bioclimatic variables 
(http://world​clim.com/)

Mean diurnal range 
(℃)

Bio2

Isothermality (℃) Bio3

Temperature 
seasonality (℃)

Bio4

Max temperature of 
warmest month (℃)

Bio5

Min temperature of 
coldest month (℃)

Bio6

Temperature annual 
range (℃)

Bio7

Mean temperature of 
wettest quarter (℃)

Bio8

Mean temperature of 
driest quarter (℃)

Bio9

Mean temperature of 
warmest quarter (℃)

Bio10

Mean temperature of 
coldest quarter (℃)

Bio11

Water availability Annual precipitation 
(mm)

Bio12 2.5 min 1970–2000 WorldClim version 2-Bioclimatic variables 
(http://world​clim.com/)

Precipitation of 
wettest month (mm)

Bio13

Precipitation of driest 
month (mm)

Bio14

Precipitation 
seasonality

Bio15

Precipitation of 
wettest quarter (mm)

Bio16

Precipitation of driest 
quarter (mm)

Bio17

Precipitation of 
warmest quarter 
(mm)

Bio18

Precipitation of 
coldest quarter (mm)

Bio19

Productive energy Normalized difference 
vegetation index

NDVI 1 km2 2008–2018 Resource and Environment Data Cloud 
Platform (http://www.resdc.cn/Defau​lt.aspx)

Habitat 
heterogeneity

Altitude (m) Alt 1 km2 2000 National Earth System Science Data Center 
(http://www.geoda​ta.cn/)Altitudinal variation 

(m)
Valt

Human 
disturbance

Population density 
(people / km2)

Pop 1 km2 2005–2015 Resource and Environment Data Cloud 
Platform (http://www.resdc.cn/Defau​lt.aspx)

Gross Domestic 
Product (yuan / km2)

GDP

http://worldclim.com/
http://worldclim.com/
http://www.resdc.cn/Default.aspx
http://www.geodata.cn/
http://www.resdc.cn/Default.aspx
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model is in the supporting information). In addition, 75% of spe-
cies distribution locations were randomly selected as training data 
to build the model, and the remaining 25% of the species distribu-
tion locations were used as testing data for model validation (Guan 
et al., 2018; Zhang et al., 2019). The maximum iterations were set as 
500, and the number of replicate runs was set as 10 or 20.

2.3.2 | Construction of the GWR model

GWR model is a local regression model, which can profoundly ex-
plain the spatial nonstationarity relationship between response 
variables and explanatory variables by decomposing global param-
eters into local parameters (Tripathi et al., 2019a). The regression 

F I G U R E  2   Environmental variables used to model the potential geographical distribution of each species in Northwest Yunnan



13058  |     YE et al.

equation can be developed as follows (Han et  al.,  2016; Tripathi 
et al., 2019b):

where k = 1, p explanatory variables, εi denotes the random error term 
at position i. In addition, (ui, vi) represents the geographic coordinate 
or spatial location of each observation, βi0 (ui, vi) is the intercept at po-
sition i, and βik (ui, vi) denotes the local regression coefficient at po-
sition i. When β1k = β2k = … = βnk, it indicates that the GWR model is 
transformed into an ordinary linear regression model. In this study, the 
potential species richness within each grid was used as dependent vari-
ables and environmental factors were used as independent variables 
to investigate the explanation capabilities of different categories of 
environmental parameters on the potential geographical distribution 
patterns of species.

According to Tobler's first law (TFL) of geography (Tobler, 1970), 
the basic principle of the GWR model to calculate the weight is “the 
closer the distance, the higher the assigned weight; on the con-
trary, the lower the assigned weight (Fotheringham et  al.,  2002).” 
Therefore, the weight can be calculated by a monotonically decreas-
ing function in space distance with [0, 1] as the value range. This type 
of function is called as the “kernel function” (Lu et  al., 2020). The 
GWR method usually employs a Gaussian model as a weight func-
tion, where bandwidth is a function that describes the weight and 
the distance and is considered as an important control parameter 
in weight calculation (Gao et al., 2019). The function is expressed as 
follows (Wang et al., 2020):

where ωij denotes the distance weight of observation location i and j, dij 
is the Euclidean distance between location i and j, and b represents the 
bandwidth. When the distance between location i and j is larger than 
b, ωij is equal to 0; when the distance between location i and j is equal 
to 0, ωij is equal to 1.

2.4 | Model evaluation

2.4.1 | Evaluation of the MaxEnt model

Area under the receiver operating curve (AUC) has emerged as the 
most popular in the MaxEnt literature (Merow et al., 2013; Schroth 
et al., 2015). AUC is a threshold independent measure of predictive 
accuracy based only on the ranking of locations (Merow et al., 2013). 
AUC value was adopted to evaluate the fitting accuracy of the 
MaxEnt model. The model fitting accuracy can be evaluated as failed 
if AUC value is between 0.50 and 0.60, poor if AUC value is between 
0.60 and 0.70, fair if AUC value is between 0.70 and 0.80, good if 
AUC value is between 0.80 and 0.90, and excellent if AUC value is 

between 0.90 and 1.00 (Phillips et al., 2006; Zhang et al., 2019). In 
addition, the suitability maps were calculated employing the logistic 
output of the MaxEnt, and the range of habitat suitability index (HSI) 
value obtained was [0, 1]. According to a large number of previous 
studies and the expert experience method (i.e., this method of clas-
sification has been used in a good deal of studies), HSI value was 
reclassified into four grades by Natural Breaks in ArcGIS 10.4 soft-
ware: [0, 0.20] is low, [0.20, 0.40] is medium, [0.40, 0.60] is high, 
and [0.60, 1.00] is optimal (Ansari & Ghoddousi, 2018; Convertino 
et al., 2014; Yi et al., 2017; Zhang et al., 2019). In order to conserva-
tively estimate the suitable potential geographical distribution area 
of species, grids with the HSI value larger than or equal to 0.40 might 
be considered as the suitable potential distribution area.

2.4.2 | Evaluation of the GWR model

In this study, 11 environmental variables were classified as 6 dif-
ferent models (i.e., temperature model, water model, productive 
model, topographical model, human activity model, and compre-
hensive model) and investigated which of them was the best predic-
tor on the potential distribution patterns. Furthermore, bandwidth 
is an important parameter for GWR, which controls the degree of 
smoothing. In order to choose the best one, the package “spgwr” 
(Bivand et al., 2020) of R software was used to select bandwidth by 
adopting Gaussian function and Akaike information criterion (AIC) 
was employed to confirm the optimal bandwidth. Generally, regres-
sion residual is an evaluation value of the fitting goodness of the 
model, including residual sum of squares (RSS) and residual standard 
deviation (Sigma), and these two values should be as small as pos-
sible. R2 denotes the proportion of the variance in the dependent 
variable that is explained or predicted by linear regression and the 
independent variable (also known as the predictor variable). In addi-
tion, R2 and AIC value can also reflect fitting goodness of the model. 
The higher R2, and the lower AIC value, indicating the better fitting 
effect of the model (Li et al., 2017; Liu et al., 2019). When the differ-
ence in the AIC value (∆AIC) of the two models is greater than three, 
then the model with smaller AIC value reflects a better fitting effect 
(Han et al., 2016; Xue et al., 2020).

3  | RESULTS

3.1 | Species distribution records

On the basis of the selection criteria in section 2.1, 25 rare and en-
dangered plant species were finally identified with high simulation 
accuracy, belonging to 23 genera and 19 families (Table 2; Table S1). 
The collected species distribution data were organized to obtain a 
total of 314 distribution records of species, and further lead to un-
derstanding the distribution status of each species in Northwest 
Yunnan. The result suggested that there were at least four distri-
bution records for each species; as a result, detailed distribution 

yi = � i0(ui , vi) +

p
∑

k =1

� ik(ui , vi)xik + �i

�ij = exp

(

−

d2
ij

b2

)

.
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records were shown in Table 2. Among them, Dipentodon sinicus and 
Psammosilene tunicoides had more occurrence records, with a total 
of 59 and 41, respectively. They were mainly distributed in the vi-
cinity of the Gaoligong Mountain National Nature Reserve and sev-
eral PNRs (i.e., Napahai, Bitahai, Haba Snow Mountain, and Yulong 
Snow Mountain). However, Anisodus tanguticus, Camellia reticulata, 
and Paris rugosa owned few distribution records, with four for each. 

They were scattered in the vicinity of Gaoligong Mountain, Baima 
Snow Mountain, and Cangshan Erhai NNRs.

3.2 | MaxEnt model performance

The average AUC value of each species was between 0.80 and 1.00, 
indicating that the simulation effect of the model on each species 
was good or excellent (Table 2). Among them, the minimum average 
AUC value was 0.80 and the maximum was 0.99 (Table  2), which 
demonstrated that the constructed MaxEnt model could be used to 
predict and analyze the potential geographical distribution of 25 rare 
and endangered species in Northwest Yunnan.

3.3 | Environmental variable contribution

The percentage contribution values of environmental variables to 
the predicted results of the MaxEnt model were defined through 
heuristics and depended on the specific path that MaxEnt codes 
used to provide best solutions (Li et al., 2020). In this research, the 
percentage contribution values were the average contribution val-
ues established over cross-validation and repeated runs for each 
species (Li et al., 2020). The results showed that among the 11 en-
vironmental variables, annual precipitation (Bio12), precipitation of 
coldest quarter (Bio19), and population density (Pop) made a greater 
contribution to the species distribution model than other environ-
mental variables (Figure 3). Their average contribution values to the 
model were 25.92%, 15.86%, and 17.95%, respectively, and the cu-
mulative contribution value accounted for 59.73% of the total con-
tribution value of all environmental factors to the model (Table S2). 
However, compared with other environmental factors, mean diurnal 
range (Bio2) and altitude (Alt) made a lower contribution to the spe-
cies distribution model (Figure 3). Their average contribution values 
to the model were 1.07% and 1.64%, respectively, and the accumu-
lated contribution value accounted for 2.71% of the total contribu-
tion value of all environmental variables to the model (Table S2).

3.4 | Potential geographical distribution of species

HSI is an important or key indicator that affects the survival and 
development of species. It refers to the potential ability of a habi-
tat to support the survival of a particular species. The results of the 
study revealed that potential distribution areas of species appear to 
be decreased with the improvement of habitat suitability (Figure 4), 
which indicated that the remaining natural habitat suitable for spe-
cies was becoming less and less. In addition, the research results also 
indicated that the species with a larger potential distribution areas 
were Echinocodon lobophyllus, Gymnadenia crassinervis, Rhodiola 
atuntsuensis, and Aristolochia delavayi. Their potential distribution 
areas occupied 44,963.53  km2, 30,830.51  km2, 22,481.77  km2, 

TA B L E  2   The checklist of species used in this study was based 
on IUCN Red List criteria and the National Key Protected Wild 
Plants List, specifically: (1) Threat level: IUCN Red List criteria was 
took as reference, including vulnerable (VU), endangered (EN), and 
critically endangered (CR); (2) Protection level: 1 represents the 
National Key Protected Wild Plants List (the first), 2 represents 
the National Key Protected Wild Plants List (the second), I denotes 
national first-level protected species, II denotes national second-
level protected species

Species
Threat 
level

Protection 
level Samples

AUC 
value

Actinidia pilosula VU 2(II) 9 0.88

Anisodus acutangulus CR — 14 0.86

Anisodus tanguticus — 1(II) 4 0.93

Aristolochia delavayi EN — 7 0.80

Bulleyia yunnanensis EN 2(II) 10 0.85

Camellia reticulata VU 2(II) 4 0.97

Coptis teeta CR 2(II) 5 0.88

Cypripedium guttatum EN 2(I) 9 0.90

Dipentodon sinicus — 1(II) 59 0.89

Diphylax uniformis VU 2(II) 6 0.99

Echinocodon 
lobophyllus

CR 2(II) 7 0.81

Fritillaria delavayi VU — 8 0.91

Gymnadenia 
crassinervis

VU 2(II) 5 0.81

Magnolia rostrata VU 1(II) 5 0.93

Nouelia insignis VU 2(II) 25 0.80

Ottelia acuminata VU — 7 0.80

Paris dulongensis CR 2(II) 7 0.99

Paris rugosa EN 2(II) 4 0.88

Psammosilene 
tunicoides

EN 1(II) 41 0.83

Rhodiola atuntsuensis EN 2(II) 8 0.86

Sinopodophyllum 
hexandrum

— 2(II) 26 0.85

Sorolepidium glaciale — 1(I) 25 0.80

Taiwania 
cryptomerioides

VU 1(II) 4 0.83

Terminalia myriocarpa VU 1(II) 5 0.99

Tetracentron sinense EN 1(II) 10 0.82

Note: Samples: the distribution records of the 25 rare and endangered 
plant species as the input of the MaxEnt modeling. AUC value: used to 
assess the accuracy of the MaxEnt model.
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and 22,396.28  km2, respectively, accounting for 56.36%, 38.64%, 
28.18%, and 28.07% of the total area of Northwest Yunnan (Table 3; 
Figure 5). The species with smaller potential distribution areas were 
Diphylax uniformis, Paris dulongensis, and Terminalia myriocarpa. Their 
potential distribution areas occupied 2,137.05  km2, 1,054.28  km2, 
and 826.33  km2, respectively, occupying only 2.68%, 1.32%, and 
1.04% of the total area of Northwest Yunnan (Table  3; Figure  5). 
Generally, the potential distribution areas of each species were 
relatively concentrated. The HSI values of the mid-western, mid-
eastern, and northern regions of the study area were between 0.40 
and 1.00, which were deemed the main concentration area of the 
potential distribution of species. Furthermore, the area of high suit-
ability plaques (i.e., sum area of high suitability level habitats, where 
0.40  ≤  HSI  <  0.60) was larger than the area of optimal suitability 
plaques (i.e., sum area of optimal suitability level habitats, where 
0.60 ≤ HSI < 1.00) (Table 3; Figure 5).

In addition, the results also showed that on the grid scale with 
a resolution of 0.05° × 0.05°, the potential species richness of each 
grid ranged from 0 to 12 (Figure 6). Through a combination of the 
distribution of the existing national and provincial nature reserves 

in Northwest Yunnan together with the administrative division of 
this region (Figure S2; Figure S3), it indicated that part of the grids 
with the highest potential species richness were located near Baima 
Snow Mountain and Gaoligong Mountain NNRs, while the other part 
of the grids with the highest potential species richness were situated 
in Shangri-La County (Figure 6).

3.5 | Environmental explanations for potential 
distribution of species

According to the category of environmental factors, the package 
“spgwr” of the software R was employed to construct 6 different 
types of environmental factor models which might explain the po-
tential distribution of species through the GWR model (Table 4). The 
research results indicated that the human activity model had a lower 
interpretation rate than other models, which appeared a goodness-
of-fit R2 and AIC value of 0.83 and 8,850.15, respectively. However, 
the goodness-of-fit R2 and AIC value of the water model were 0.88 
and 7,703.82, respectively, which gave a higher explanation rate 

F I G U R E  3   Contribution values of 
environmental variables to predicting 
result of the MaxEnt model
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than other models, indicating the water factor largely influenced the 
potential distribution of species. In addition, the goodness-of-fit R2 
and AIC value of the comprehensive model were 0.92 and 6,785.26, 
respectively, and the difference in the AIC value (∆AIC) with other 
models was greater than three, demonstrating that the comprehen-
sive model had a better simulation effect on the potential distribu-
tion of species. The results also revealed that multiple environmental 
variables were not mutually exclusive, and the potential distribution 
of species was the result of the combined effects of various environ-
mental factors.

4  | DISCUSSION

4.1 | The potential geographical distribution of 
species

Habitat is a vital place for survival, reproduction, and population de-
velopment of species. Its quality might directly influence the distri-
bution, quantity, and survival rate of species (Hall et al., 1997; Zhang 
et al., 2019). In this research, we utilized the MaxEnt model to predict 
the potential geographical distribution of 25 rare and endangered 

plant species in Northwest Yunnan. The results showed that the po-
tential distribution area (i.e., region where HSI ≥ 0.4) of each species 
was between 826.33 km2 and 44,963.53 km2, which indicated that 
these species had obvious differences in their adaptability to envi-
ronmental factors such as the topography and climate in Northwest 
Yunnan. The potential distribution area of these target species was 
mainly concentrated in the mid-western, mid-eastern, and northern 
parts of the study area, which well matched the prediction results 
of the potential distribution area which studied by Zhuang, Qin, 
et  al.  (2018). The prediction results of this study are expected to 
provide possible new areas for species distribution and field inves-
tigation. In addition, the potential distribution area of species over-
lapped greatly in the mid-western and northern parts of Northwest 
Yunnan. We roughly divided them into two parts. One part was close 
to the Gaoligong Mountain and Baima Snow Mountain NNRs, which 
were almost consistent with the hotspot distribution of key higher 
plant species in Northwest Yunnan (Ye, Zhang, et al., 2020), while 
the other part was located in Shangri-La County, which might be re-
lated to the fact that Shangri-La is situated in the core area of the 
Three Parallel Rivers World Natural Heritage Site (Yang et al., 2013), 
with abundant landscape types, vegetation types, and ecosystem 
types. In addition, Shangri-La not only had a very high potential spe-
cies richness, but also had a very high species endemic rate (Wu, 
Peng, et  al.,  2016). Consequently, the results reflected that these 
regions mentioned above would play a crucial role in biodiversity 
conservation in the future.

4.2 | A model used to predict the 
distribution of species

The model prediction method could help to compensate for the dif-
ficulty in field investigation. The vertical peaks and horizontal valleys 
in Northwest Yunnan greatly limit the accessibility of field surveys. 
Hence, by combining the model prediction with field investigation, 
the field survey could be carried out in the order of habitat suitabil-
ity, with priority given to the field investigation in the optimal suit-
ability distribution area and the potential distribution area that has 
not been studied. In addition, the completeness, accuracy, and relia-
bility of species geographical distribution data are important and key 
links of division of key biodiversity areas. In our study, the range of 
Shangri-La County was consistent greatly with the potential distri-
bution area of species. This may be related to the sufficient investi-
gation and abundant species distribution data in this area (Wu, Peng, 
et al., 2016), which further affects the fitting results of the MaxEnt 
model. Meanwhile, the accuracy of the data and the accuracy of the 
model prediction are also mutually promoted (Wu et al., 2016; Zhang 
et al., 2016; Zhuang, Qin, et al., 2018). In this study, we tried our best 
to collect the species distribution data through multiple approaches, 
but there are still some species with relatively less distribution data. 
For example, Coptis teeta is also distributed in Myanmar and other 
countries. Therefore, more species distribution data must be col-
lected to construct a more accurate species distribution model. In 

F I G U R E  4   Potential distribution area of habitat with various 
suitability levels. Different habitat suitability levels show different 
HSI ranges: HSI is between [0, 0.20] represents low suitability, 
HSI is between [0.20, 0.40] represents medium suitability, HSI is 
between [0.40, 0.60] represents high suitability, and HSI is between 
[0.60, 1.00] represents optimal suitability
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addition, the distribution of species is not only determined by to-
pography, climate, and edaphic factors, but also influenced by so-
cial and economic structure, land-use type, human disturbance, and 
other social factors. In some cases, due to the influence of the local 
microenvironment, the areas predicted to be of lower suitability 
levels are actually the distribution areas of species. Therefore, the 
results obtained in this study are only advisory. A more precise and 
accurate potential distribution prediction needs to be supported by 
more comprehensive social and environmental factors and more 
precise and more reliable species distribution information. In the fu-
ture, we will evaluate the presence of the target species in areas with 
high and optimal habitat suitability (a) to look for new geographic 

locations of the target species and accomplish the population cen-
sus of the target species and (b) to verify the accuracy of prediction 
model generated by the MaxEnt in the meanwhile.

4.3 | Environmental explanations for the potential 
distribution of species

From an ecological point of view, environmental factors can affect 
the spatial distribution of species, as well as their habitat suitabil-
ity (Zhang et  al.,  2019). In this study, we found that the cumula-
tive contribution rate of the annual precipitation (Bio12) (25.92%), 

TA B L E  3   The area of potential distribution at different suitability levels for each species

Species

Potential distribution area (km2)
Proportion of potential 
distribution area (%)Low Medium High Optimal Suitable

Actinidia pilosula 60,663.73 12,252.42 4,502.05 2,365.00 6,867.05 8.61

Anisodus 
acutangulus

56,019.20 12,223.93 7,294.46 4,245.61 11,540.07 14.46

Anisodus tanguticus 69,667.83 5,499.34 3,276.81 1,339.22 4,616.03 5.79

Aristolochia delavayi 24,333.88 33,053.04 16,213.09 6,183.20 22,396.28 28.07

Bulleyia 
yunnanensis

49,665.04 21,940.38 4,872.47 3,305.30 8,177.78 10.25

Camellia reticulata 70,066.75 5,670.31 2,365.00 1,681.15 4,046.15 5.07

Coptis teeta 46,103.29 20,829.11 6,724.58 6,126.21 12,850.79 16.11

Cypripedium 
guttatum

56,275.65 11,283.62 7,778.86 4,445.06 12,223.93 15.32

Dipentodon sinicus 60,549.75 9,260.55 6,354.16 3,618.74 9,972.90 12.50

Diphylax uniformis 75,737.05 1,909.10 1,396.21 740.84 2,137.05 2.68

Echinocodon 
lobophyllus

12,793.81 22,025.86 37,099.19 7,864.34 44,963.53 56.36

Fritillaria delavayi 59,865.89 9,089.59 6,610.61 4,217.11 10,827.72 13.57

Gymnadenia 
crassinervis

22,424.78 26,527.91 21,085.56 9,744.95 30,830.51 38.64

Magnolia rostrata 66,391.02 7,892.84 3,618.74 1,880.60 5,499.34 6.89

Nouelia insignis 41,629.73 18,606.58 12,936.28 6,610.61 19,546.88 24.50

Ottelia acuminata 34,078.82 26,413.94 12,993.26 6,297.17 19,290.44 24.18

Paris dulongensis 77,959.58 769.34 712.35 341.93 1,054.28 1.32

Paris rugosa 64,339.45 11,568.56 3,276.81 598.37 3,875.18 4.86

Psammosilene 
tunicoides

43,880.76 19,831.82 11,027.18 5,043.44 16,070.62 20.14

Rhodiola 
atuntsuensis

42,199.61 15,101.82 17,039.41 5,442.35 22,481.77 28.18

Sinopodophyllum 
hexandrum

57,728.84 12,936.28 5,328.38 3,789.70 9,118.08 11.43

Sorolepidium 
glaciale

59,096.56 10,371.82 6,382.66 3,932.17 10,314.83 12.93

Taiwania 
cryptomerioides

48,382.81 21,683.93 7,180.49 2,535.97 9,716.45 12.18

Terminalia 
myriocarpa

78,159.04 797.83 512.89 313.43 826.33 1.04

Tetracentron sinense 44,935.04 21,342.01 8,348.74 5,157.41 13,506.16 16.93
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F I G U R E  5   Potential distribution area of each species predicted by the MaxEnt model. The habitat suitability is evaluated as high, if HSI 
value is between 0.40 and 0.60, and evaluated as optimal if HSI value is between 0.60 and 1.00
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precipitation of coldest quarter (Bio19) (15.86%), and population 
density (Pop) (17.95%) to the MaxEnt model prediction results 
reached 59.73%. Furthermore, the contribution rate of the annual 
precipitation (Bio12) was the highest, which was consistent with 
the results obtained by Zhuang, Zhang, et al. (2018). In addition, the 
R2 values of the GWR model were all above 0.80, indicating that 
the model has a reliable goodness of fit for explaining the poten-
tial distribution of species. Moreover, the water model (R2  =  .88, 
AIC  =  7,703.82) showed a higher explanation rate compared with 
other single models, followed by the temperature model (R2 =  .88, 
AIC = 7,939.56) and topographical model (R2 = .88, AIC = 7,900.40), 
which were second only to the water model in their interpretation 
effect on the potential distribution of species. Accordingly, this re-
sult suggested that climate (temperature and water factor) and habi-
tat heterogeneity (topographical factor) could play an important role 
in the prediction of potential distribution areas of species, which 
was coincided with the research results of Ștefănescu et al. (2017). 
Because plant species need a certain temperature and sufficient 
water in the growing season, hence temperature and water are the 
main environmental factors that limit the potential geographical dis-
tribution of these plant species. In addition, topography is the syn-
thesis of various environmental factors, and temperature and water 
will change with the terrain gradient and then affect the potential 

geographical distribution of these plant species. However, com-
pared with all single models, the comprehensive model (R2  =  .92, 
AIC = 6,785.26) that combines all environmental factors had a bet-
ter goodness of fit, which indicated that the potential distribution of 
species was the result of the combined effects of various environ-
mental factors (Wang et al., 2018). In addition, rare and endangered 
species are usually restricted to specialized edaphic or topographic 
or other environmental conditions which occupy a quite fraction of 
their climatically suitable range. Therefore, on the basis of this study, 
it is necessary to study the effects of other relevant environmental 
factors on the potential distribution of species.

4.4 | Suggestions for the protection of rare and 
endangered plant species

In recent decades, due to the disturbance of human activities and 
the impacts of the external natural environment, especially climate 
change, the population size and distribution area of some rare and 
endangered species had been declining (Yu et al., 2014). Therefore, 
understanding the habitat suitability of species and its influencing 
factors is the basis of protecting rare and endangered plant species 
(Zhang et al., 2019). Habitat suitability plays an important role in the 
survival and development of species. Hence, habitat suitability as-
sessment is the first step of effective conservation and scientific 
management of species and can provide scientific basis for relevant 
departments to formulate valid conservation strategies. It has be-
come a resultful method to protect rare and endangered species by 
scientifically predicting the potential distribution areas and habitat 
suitability levels of species and planning wild nature reserve in the 
best suitable areas (Xiao et al., 2011; Xu, Cao, Bai, 2015; Xu, Cao, 
Wu, et al., 2015). In this study, we selected 25 rare and endangered 
plant species to predict their suitable areas. What matters is that we 
should pay more attention to the suitable areas of these species, es-
pecially the overlapping parts of these species suitable areas, which 
should be the significant areas for conservation. The results of this 
study revealed that the habitat suitability of species near Gaoligong 
Mountain and Baima Snow Mountain NNRs and Shangri-La Country 
was relatively high, and these areas were also the core regions 
for the distribution of rare and endangered species in Northwest 
Yunnan. For this reason, it is suggested to strengthen the conserva-
tion of these areas. In addition, Shangri-La Country had more habitat 
suitability distribution areas for species, but there were only three 
PNRs with a small area, namely, Napahai, Bitahai, and Haba Snow 
Mountain PNRs (Figure  S3). It is recommended that appropriate 
expansion of the nature reserve should be carried out, with meas-
ures combining in situ and ex-situ conservation to strengthen the 
protection of species in a state of isolation and/or fragmentation. 
In addition, the species distribution model is an estimate of the po-
tential distribution of species, and its essence is prediction research. 
Therefore, the results of the model simulation cannot be used as 
the only basis for formulating strategies of species conservation, 
and corresponding field surveys should be carried out according 

F I G U R E  6   Distribution pattern of potential species richness of 
25 rare and endangered plant species in Northwest Yunnan
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to the simulation prediction results, so as to formulate more scien-
tific and reasonable strategies for species conservation (Renner & 
Warton, 2013; Wen et al., 2019). Correspondingly, by simulating the 
potential distribution area of species, it can also provide some basic 
and scientific evidence for species reintroduction.

5  | CONCLUSIONS

This study has identified 25 rare and endangered plant species in 
Northwest Yunnan with high simulation accuracy, belonging to 23 
genera and 19 families. The average AUC value of each species was 
from 0.80 to 1.00, which confirmed that the simulation accuracy of the 
MaxEnt model on each species was good or excellent. On the whole, 
the potential distribution area for each species was relatively con-
centrated, mainly distributed in the central-western, central-eastern, 
and northern regions of Northwest Yunnan. In addition, the poten-
tial distribution areas of these species were between 826.33 km2 and 
44,963.53 km2. Additionally, the average contribution values of the an-
nual precipitation (Bio12), precipitation of coldest quarter (Bio19), and 
population density (Pop) were 25.92%, 15.86%, and 17.95%, respec-
tively. Furthermore, the goodness-of-fit R2 and AIC value of the water 
model were 0.88 and 7,703.82, respectively, which demonstrated the 
water factor largely influenced the potential distribution of these tar-
get species. These results would contribute to a more comprehensive 
understanding of the potential geographical distribution pattern and 
the distribution of suitable habitats of these target species. This could 
provide useful information and reasonable reference for us to make 
recommendations for implementing long-term conservation, regional 
management, and reintroduction for these species.
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