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The rhizosphere supports the development and activity of a huge and diversified microbial
community, including microorganisms capable to promote plant growth. Among the latter,
plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and
enhance plant growth by direct and indirect mechanisms. Modification of root system
architecture by PGPR implicates the production of phytohormones and other signals that
lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also
modify root functioning, improve plant nutrition and influence the physiology of the whole
plant. Recent results provided first clues as to how PGPR signals could trigger these plant
responses. Whether local and/or systemic, the plant molecular pathways involved remain
often unknown. From an ecological point of view, it emerged that PGPR form coherent
functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and
biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR
effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of
action and signals, and highlight recent progress on the links between plant morphological
and physiological effects induced by PGPR. We also show the importance of taking into
account the size, diversity, and gene expression patterns of PGPR assemblages in the
rhizosphere to better understand their impact on plant growth and functioning. Integrating
mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite
to develop novel management strategies for sustainable agriculture.
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group

INTRODUCTION
Photosynthetic terrestrial plants play key roles as ecosystem engi-
neers (Wright and Jones, 2006; Hartmann et al., 2009). They
contribute, for instance, to the establishment of specific micro-
bial ecological niches in plant-based systems. This is particularly
the case in the rhizosphere, i.e., the soil in contact with plant roots.
Besides its role in plant anchorage in soil, absorption of water and
ions, nutrient storage, and plant vegetative growth, the root system
is in close contact with a wide range of soil microbial populations
(Berg and Smalla, 2009).

Despite their interactions with the biotic environment, the
root system and its rhizosphere have received much less atten-
tion by plant physiologists than the rest of the plant. Plant
roots exude a huge diversity of organic nutrients (organic acids,
phytosiderophores, sugars, vitamins, amino acids, nucleosides,
mucilage) and signals that attract microbial populations, especially
those able to metabolize plant-exuded compounds and prolifer-
ate in this microbial habitat (Bais et al., 2006; Pothier et al., 2007;
Badri et al., 2009; Shukla et al., 2011; Drogue et al., 2013). Root

exudates being the largest source of carbon supply within soil,
the rhizosphere compartment houses a rich microbial commu-
nity, comprising up to 1010 bacteria per gram of soil (Gans et al.,
2005; Roesch et al., 2007) and encompassing a large diversity of
taxa (Kyselková et al., 2009; Gomes et al., 2010). The correspond-
ing microbial community associated to plant roots can be referred
to as the rhizo-microbiome (Chaparro et al., 2013). Its compo-
sition is distinct from that of the microbial community of the
surrounding soil, a direct consequence of bacterial competition
for nutrients liberated in the vicinity of plant roots (Raynaud
et al., 2008; Bulgarelli et al., 2013; Chaparro et al., 2013). Since root
exudate composition changes along the root system, according to
stages of plant development and to plant genotypes, the rhizo-
microbiome composition differs accordingly (Berg and Smalla,
2009; Aira et al., 2010; Bouffaud et al., 2012; Bulgarelli et al., 2013;
Chaparro et al., 2013). Plant-driven selection of bacteria is an
important issue recently discussed in several reviews (Hartmann
et al., 2009; Doornbos et al., 2012; Drogue et al., 2012; Bulgarelli
et al., 2013).
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Within the rhizo-microbiome, some microorganisms can pro-
mote plant growth and provide better plant health through several
indirect or direct mechanisms (Couillerot et al., 2009; Richardson
et al., 2009). Beneficial plant-microbe interactions are symbiotic
interactions in which costs and benefits are shared by the plants
and the microorganisms (Odum and Barrett, 2005; Bulgarelli et al.,
2013) and can be categorized into two main types of interactions
(Drogue et al., 2012). First, mutualistic interactions correspond
to intimate and mostly obligate interactions between microbes
and a restricted range of compatible host plants. They gener-
ally lead to the formation of a structure specifically dedicated
to the interaction (e.g., nodules during the symbiosis between
nodulating rhizobia and Fabaceae, arbuscules in the endomyc-
orrhizal symbiosis; Parniske, 2008; Masson-Boivin et al., 2009).
Second, cooperations (also called associative symbioses) corre-
spond to less obligate and specific interactions (Barea et al., 2005;
Drogue et al., 2012). They involve soil bacteria able to colonize
the surface of the root system (and sometimes root inner tis-
sues) and to stimulate the growth and health of the plant, and
are referred to as plant growth-promoting rhizobacteria (PGPR;
Barea et al., 2005). Colonization of plant host roots by PGPR is het-
erogeneous along the root system; their competitiveness regarding
this process is a sine qua non for plant growth promotion (dis-
cussed in Benizri et al., 2001; Compant et al., 2010; Dutta and
Podile, 2010; Drogue et al., 2012). In comparison to mutualistic
symbionts, PGPR are thought to interact with a large range of
host plant species and to encompass a huge taxonomic diversity,
especially within the Firmicutes and Proteobacteria phyla (Lugten-
berg and Kamilova, 2009; Drogue et al., 2012). PGPR can enhance
plant nutrition via associative nitrogen fixation, phosphate sol-
ubilization, or phytosiderophore production (Richardson et al.,
2009). They can improve root development and growth through
the production of phytohormones or enzymatic activities, as well
as favor the establishment of rhizobial or mycorrhizal symbioses.
Others can protect the plant through inhibition of phytopara-
sites, based on antagonism or competition mechanisms, and/or by
eliciting plant defenses such as induced systemic resistance (ISR;
Couillerot et al., 2009; Lugtenberg and Kamilova, 2009). Some
PGPR can also help plants withstand abiotic stresses including
contamination by heavy metals or other pollutants; certain are
even able to increase the capacity of plants to sequester heavy met-
als (Jing et al., 2007; Saharan and Nehra, 2011; Tak et al., 2013).
Therefore, utilizing PGPR is a new and promising approach for
improving the success of phytoremediation of contaminated soils
(for recent reviews see Zhuang et al., 2007; Shukla et al., 2011; Tak
et al., 2013).

Understanding and quantifying the impact of PGPR on roots
and the whole plant remain challenging. One strategy is to inoc-
ulate roots with a PGPR in vitro and monitor the resulting effects
on plant. This showed that many PGPR may reduce the growth
rate of the primary root (Dobbelaere et al., 1999), increase the
number and/or length of lateral roots (Combes-Meynet et al.,
2011; Chamam et al., 2013), and stimulate root hair elongation
in vitro (Dobbelaere et al., 1999; Contesto et al., 2008). Conse-
quently, the uptake of minerals and water, and thus the growth of
the whole plant, can be increased. Some of these effects, includ-
ing increased root and shoot biomass, are also documented for

PGPR-inoculated plants growing in soil (El Zemrany et al., 2006;
Minorsky, 2008; Veresoglou and Menexes, 2010; Walker et al.,
2012).

The focus of this paper is to review the main modes of action
of PGPR strains, the functioning of PGPR populations, and their
ecology in the rhizosphere. Description of plant-beneficial prop-
erties of PGPR has been the focus of several reviews (e.g., Vessey,
2003; Richardson et al., 2009; Bashan and de-Bashan, 2010), but
without integrating actual PGPR gene expression on roots, the
interactions between different PGPR populations in the rhizo-
sphere, or the resulting plant-beneficial effects. This paper is
organized into four sections. In the first section, we present the
molecular mechanisms through which PGPR may affect the archi-
tecture of the root system and interfere with the plant hormonal
pathways, and review our current understanding of their impact
on the structural properties of the roots. In the second section,
recent findings related to the impact of PGPR on the physiology
of the whole plant are presented, with a focus on plant nutri-
ent acquisition, plant transcriptome and plant metabolome. The
third section shows how expression of plant-beneficial properties
can be affected within the rhizosphere by molecules emitted by
other microbial populations or by the plant. As PGPR strains are
not acting individually in the rhizosphere, the ecology of PGPR
populations and notably the complexity of the interactions tak-
ing place between PGPR populations is discussed in the fourth
section. Finally, we conclude on the importance of integrating
molecular investigations on the modes of action and ecology of
PGPR strains with high-throughput analyses on the abundance,
taxonomic/functional diversity and activity of rhizosphere micro-
bial communities, and with the monitoring of plant molecular
responses.

IMPACT OF PGPR ON ROOT SYSTEM ARCHITECTURE AND
ROOT STRUCTURE
Most terrestrial plants develop their root system to explore soil and
find nutrients to sustain growth. Root is a complex organ made
of distinct regions such as the root tip, root meristem, differen-
tiation and elongation zones, and emerging lateral roots (Scheres
et al., 2002). These regions have distinct roles. For instance, root
hairs are differentiated epidermal cells important for plant mineral
nutrition, as inferred from gene expression studies (Lauter et al.,
1996; von Wiren et al., 2000) and nutrient accumulation mea-
surements (Ahn et al., 2004). Root functional specificity is also
reflected at the level of plant-microbe interactions. In Fabaceae
for example, the root tip is the most important region to initi-
ate the rhizobial colonization process leading eventually to the
formation of a root nodule (Desbrosses and Stougaard, 2011).
In Poaceae, root hairs and lateral roots are preferentially colo-
nized by PGPR, where they may express their plant beneficial
properties (Pothier et al., 2007; Combes-Meynet et al., 2011).
Root system architecture (RSA) integrates root system topol-
ogy, the spatial distribution of primary and lateral roots, and
the number and length of various types of roots. Several abi-
otic and biotic factors can influence RSA, including PGPR strains.
PGPR modify RSA and the structure of root tissues mainly
through their ability to interfere with the plant hormonal balance
(Figure 1).
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FIGURE 1 | Impact of phytostimulating PGPR on RSA, nutrient

acquisition and root functioning. PGPR can modulate root develop-
ment and growth through the production of phytohormones, secondary
metabolites and enzymes. The most commonly observed effects are a
reduction of the growth rate of primary root, and an increase of the

number and length of lateral roots and root hairs. PGPR also influ-
ence plant nutrition via nitrogen fixation, solubilization of phos-
phorus, or siderophore production, and modify root physiology
by changing gene transcription and metabolite biosynthesis in
plant cells.

PGPR EFFECTS ON RSA VIA MODULATION OF HOST HORMONAL
BALANCE
Changes in RSA may result from interferences of PGPR with
the main hormonal pathways involved in regulating plant root
development: auxin, cytokinin, ethylene, and to a lesser extend
gibberellin, and abscisic acid (ABA) (Moubayidin et al., 2009;
Stepanova and Alonso, 2009; Dodd et al., 2010; Overvoorde et al.,
2011). The balance between auxin and cytokinin is a key regu-
lator of plant organogenesis, and shapes root architecture (Aloni
et al., 2006). The auxin to cytokinin ratio can be affected by PGPR
because they are able to produce a wide range of phytohormones,
including auxins and/or cytokinins, and secondary metabolites
that can interfere with these hormonal pathways.

Many PGPR are able to produce phytohormones and sec-
ondary metabolites interfering with the plant auxin pathway, such
as auxins, 2,4-diacetylphloroglucinol (DAPG), and nitric oxide
(NO). Indole-3-acetic acid (IAA) is the best-characterized auxin
produced by many plant-associated bacteria, including PGPR
(Spaepen et al., 2007a). Exogenous IAA controls a wide vari-
ety of processes in plant development and plant growth: low
concentrations of IAA can stimulate primary root elongation,
whereas high IAA levels stimulate the formation of lateral roots,
decrease primary root length and increase root hair formation
(Figure 1; Dobbelaere et al., 1999; Patten and Glick, 2002; Per-
rig et al., 2007; Spaepen et al., 2007b; Remans et al., 2008). IAA
is usually synthesized by rhizobacteria from tryptophan, which
is found at different concentrations in root exudates according

to plant genotype (Kamilova et al., 2006). In PGPR strains, sev-
eral IAA biosynthetic pathways have been described depending on
the metabolic intermediates (Spaepen et al., 2007a). The indole-
3-pyruvate decarboxylase (encoded by the ipdC/ppdC bacterial
gene) is a key enzyme involved in the indolepyruvic acid pathway.
Effects of ipdC mutants on plant root morphology are often altered
in comparison to those of wild-type strains (Brandl and Lindow,
1998; Dobbelaere et al., 1999; Patten and Glick, 2002; Suzuki et al.,
2003; Malhotra and Srivastava, 2008).

Plant growth promotion by PGPR can also result from indirect
stimulation of the plant auxin pathway. For example, several PGPR
strains like Azospirillum brasilense have a nitrite reductase activity
and consequently are able to produce NO during root coloniza-
tion (Creus et al., 2005; Pothier et al., 2007; Molina-Favero et al.,
2008). NO is involved in the auxin signaling pathway controlling
lateral root formation (Creus et al., 2005; Lanteri et al., 2006, 2008;
Molina-Favero et al., 2008). DAPG is a well-known antimicrobial
compound produced by biocontrol fluorescent pseudomonads
(Couillerot et al., 2009). At lower concentrations, DAPG can also
be a signal molecule for plants, inducing systemic resistance (Iav-
icoli et al., 2003; Bakker et al., 2007), stimulating root exudation
(Phillips et al., 2004), and enhancing root branching (Brazelton
et al., 2008; Couillerot et al., 2011; Walker et al., 2011). DAPG
can interfere with an auxin-dependent signaling pathway and thus
modify RSA (Brazelton et al., 2008). Indeed, applications of exoge-
nous DAPG, at a concentration around 10 μM, inhibited primary
root growth and stimulated lateral root production in tomato
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seedlings. Furthermore, roots of an auxin-resistant diageotropica
mutant of tomato displayed reduced DAPG sensitivity (Brazelton
et al., 2008).

The growth-promotion effect of auxin or auxin-like com-
pounds by PGPR may require functional signaling pathways in
the host plant. To test that hypothesis, one could use a host plant
defective at a particular step of the hormone-signaling pathway
and assess whether PGPR inoculation complements or not the
effect of the mutation. This strategy requires the use of model
plant such as Arabidopsis, the only biological system that pro-
vides to date enough documented mutant plants (Dubrovsky
et al., 1994; Alonso et al., 2003). Consistent with that, some Ara-
bidopsis auxin-signaling mutants failed to show the typical root
architecture changes in response to the beneficial rhizobacterium
Phyllobacterium brassicacearum STM196 (Contesto et al., 2010).
However, auxin content was not increased in roots upon inocula-
tion with Phyllobacterium brassicacearum STM196, ruling out the
potential implication of auxin of bacterial origin (Contesto et al.,
2010). Nevertheless, the use of Arabidopsis DR5::GUS reporter
line, whose expression is restricted to the root meristem where
the auxin maximum is located (Ulmasov et al., 1997; Casimiro
et al., 2001), showed a change of expression pattern in response
to STM196 inoculation (Figure 2). GUS staining appeared more
intense on a wider region of the root tip as well as in the vasculature,

suggesting that there was a change of auxin distribution in the root
in response to STM196 inoculation, even though this strain is a
low auxin producer (Contesto et al., 2010). Interestingly, a similar
observation was made when Arabidopsis plantlets were inoculated
with the PGPR Bacillus subtilis GB03 (Zhang et al., 2007), which
emits volatile organic compounds (VOCs), or with Pseudomonas
fluorescens WCS417 (Zamioudis et al., 2013).

Cytokinin production (especially zeatin) has been documented
in various PGPR like Arthrobacter giacomelloi, Azospirillum
brasilense, Bradyrhizobium japonicum, Bacillus licheniformis, Pseu-
domonas fluorescens, and Paenibacillus polymyxa (Cacciari et al.,
1989; Timmusk et al., 1999; de García Salamone et al., 2001; Per-
rig et al., 2007; Cassán et al., 2009; Hussain and Hasnain, 2009).
Cytokinins stimulate plant cell division, control root meristem
differentiation, induce proliferation of root hairs, but inhibit
lateral root formation and primary root elongation (Silverman
et al., 1998; Riefler et al., 2006). Inoculation of plants with bac-
teria producing cytokinin has been shown to stimulate shoot
growth and reduce the root to shoot ratio (Arkhipova et al.,
2007). Bacterial genes involved in cytokinin biosynthetic path-
ways have been identified in silico but their role has not yet been
validated through functional analyses (Frébort et al., 2011). Con-
sequently, the contribution of cytokinin production by PGPR to
RSA modifications remains speculative.

FIGURE 2 | PGPR-mediated changes in RSA may relate to modifications

of auxin content in roots. Six-day-old Arabidopsis plantlets expressing the
GFP gene under the control of the auxin-sensitive DR5 artificial promoter
were inoculated (C, D) or not (A, B) with the PGPR Phyllobacterium
brassicacearum STM196. Six days later, root tips were observed under
normal light (A, C) or UV light (B, D) with a microscope (Z16APO, Leica,

Bensheim, Germany). Scale bars represent 200 μm. Inoculation by
STM196 modified root traits such as root hair elongation and primary root
growth, which coincided with an increase in GFP signal in the root tip in
inoculated (D) compared with control plants (B). These observations confirm
previous results with a different Arabidopsis DR5 reporter line (Contesto
et al., 2010).
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Ethylene is another key phytohormone, which inhibits root
elongation and auxin transport, promotes senescence and abscis-
sion of various organs, and leads to fruit ripening (Bleecker and
Kende, 2000; Glick et al., 2007). Ethylene is also involved in plant
defense pathways (Glick et al., 2007). This phytohormone can be
produced in small amounts from the precursor methionine by
some PGPR, like Azospirillum brasilense (Thuler et al., 2003; Per-
rig et al., 2007). The ability of Azospirillum brasilense to produce
ethylene presumably promotes root hair development in tomato
plants. Indeed, exogenous ethylene supply to the plant mimicked
the effect of Azospirillum brasilense inoculation, while the addition
of an ethylene biosynthesis inhibitor blocked this effect (Ribaudo
et al., 2006). Actually, PGPR are more widely able to lower plant
ethylene levels through deamination of 1-aminocyclopropane-1-
carboxylic acid (ACC). Many genomes of PGPR do contain a
gene (acdS) coding for an ACC deaminase, which degrades ACC
into ammonium and α-ketobutyrate (Blaha et al., 2006; Contesto
et al., 2008; Prigent-Combaret et al., 2008). By lowering the abun-
dance of the ethylene precursor ACC, the PGPR AcdS activity is
thought to decrease root ethylene production, which can in turn
alleviate the repressing effect of ethylene on root growth (Glick,
2005). Despite being widely accepted and supported by experi-
mental data (Penrose et al., 2001; Contesto et al., 2008), the model
raises issues that have not been well addressed yet. The first one
deals with ethylene production within roots. Light is promoting
ethylene biosynthesis, providing there is a sufficient CO2 sup-
ply for shoots (Yang and Hoffman, 1984). Exposition of roots to
light was shown to trigger an increase in ethylene production (Lee
and Larue, 1992). In soil however, roots are sheltered from light,
suggesting that this organ might not be able to synthesize large
amounts of ethylene. In agreement with that, Fabaceae roots did
produce ethylene in response to rhizobial colonization in pres-
ence of light, but less when they were in the dark (Lee and Larue,
1992). Secondly, there is a regulation of ethylene synthesis by a
feedback loop (Yang and Hoffman, 1984). This loop should stim-
ulate ethylene biosynthesis when the level of ACC is low. Unless
PGPR disconnect that feedback loop, lowering ACC content would
eventually result in stimulation of ethylene production. There is
no indication yet how the feedback loop would work in pres-
ence of a PGPR. Last but not least, if ethylene plays a key role
during the plant-PGPR interaction, one would expect that either
plant ethylene mutants or impaired AcdS activity in the bacteria
would result in clear disturbance of the plant responses to bacteria.
However, minor effects on RSA were observed when plants were
inoculated with an acdS bacterial mutant, or when plants affected
in their ethylene signaling pathway were inoculated with wild-type
PGPR (Contesto et al., 2008; Galland et al., 2012; Zamioudis et al.,
2013). It suggests that ethylene participates to the root architec-
ture response but is not a key player. Taken together, the functional
importance of the bacterial ACC deaminase function needs fur-
ther clarification. One hypothesis could be that AcdS contributes
to the fine-tuning of ethylene biosynthesis during the plant-PGPR
cooperation.

Several reports have revealed that PGPR are able to produce
ABA or gibberellic acid, or to control the level of these hormones
in plants (Richardson et al., 2009; Dodd et al., 2010). The first one,
ABA, is well known for its involvement in drought stress. During

water stress, increase in ABA levels causes closing of stomata,
thereby limiting water loss (Bauer et al., 2013). However, this hor-
mone also plays different roles during lateral root development (De
Smet et al., 2006; Dodd et al., 2010). Inoculation with Azospirillum
brasilense Sp245 led to an increase of ABA content in Arabidopsis,
especially when grown under osmotic stress (Cohen et al., 2008).
Gibberellins promote primary root elongation and lateral root
extension (Yaxley et al., 2001). Production of gibberellins has been
documented in several PGPR belonging to Achromobacter xylosox-
idans, Acinetobacter calcoaceticus, Azospirillum spp., Azotobacter
spp., Bacillus spp., Herbaspirillum seropedicae, Gluconobacter dia-
zotrophicus and rhizobia (Gutiérrez-Mañero et al., 2001; Bottini
et al., 2004; Dodd et al., 2010). Application of gibberellic acid on
maize, at a concentration similar to that produced by Azospirillum,
promotes root growth; furthermore, gibberellin content increases
in maize root inoculated with Azospirillum (Fulchieri et al., 1993).
In addition to playing a role in plant RSA, these two hormones
are involved in plant defense mechanisms. Thus, PGPR producing
these hormones may modulate the hormonal balance involved in
plant defense, including the jasmonate and salicylic acid pathways
(for a review see Pieterse et al., 2009).

Although the production of hormones by PGPR has been
well described, the genetic determinants involved in their biosyn-
thesis remain largely unknown and bacterial mutants affected
in hormone biosynthesis are mostly lacking. Consequently, the
involvement of hormones of bacterial origin in the modulation of
plant hormonal balance has not been fully demonstrated.

MODIFICATION OF ROOT CELL WALL AND ROOT TISSUE STRUCTURAL
PROPERTIES BY PGPR
Many PGPR can lead to modifications of the chemical composi-
tion and therefore structural properties of root cell walls (Figure 1;
El Zemrany et al., 2007; Zhang et al., 2007). For example, the bio-
control agent Bacillus pumilus INR-7 is able to enhance lignin
deposition in pearl millet epidermal tissues, and this plant defense
response appears much more rapidly in PGPR-primed plants
infected by the pathogen Sclerospora graminicola compared to non-
primed plants (Niranjan Raj et al., 2012). The sole inoculation of
INR-7 led to callose apposition. Although the precise location of
these deposited polymers was not investigated, it is possible that
their enhanced accumulation may participate to pathogen inhibi-
tion and disease suppression. A similar response was also triggered
by Bacillus pumilus SE34 and Bacillus subtilis UMAF6639 when
inoculated to respectively pea and melon roots. In both cases,
it led to enhanced fungal pathogen tolerance (García-Gutiérrez
et al., 2013). Inoculation of Pseudomonas fluorescens 63-28R to
pea roots induced accumulation of lignin in root cells and inhib-
ited colonization by the oomycete Pythium ultimum (Benhamou
et al., 1996). The same result was observed with a Pseudomonas
putida strain inoculated on bean roots (Anderson and Guerra,
1985). These cell wall modifications have been reported in the
case of PGPR that protect plants against phytopathogens by acti-
vating ISR plant defense responses (Iavicoli et al., 2003; Desoignies
et al., 2012; Weller et al., 2012; García-Gutiérrez et al., 2013). One
of the consequences of ISR is thus the reinforcement of the cell
wall through enhanced lignin synthesis and callose apposition
(Kovats et al., 1991; Strömberg and Brishammar, 1993), which
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restricts the progression of phytopathogens through plant tissues
(García-Gutiérrez et al., 2013).

Modifications of the chemical composition of root cell walls
are also triggered by PGPR that directly promote plant growth
(Figure 1). Through the analysis of the infrared spectral charac-
teristics of crude cell wall preparations of maize roots, El Zemrany
et al. (2007) concluded that roots inoculated with Azospirillum
lipoferum CRT1 had lower lignin content than uninoculated
ones. This result contrasts with those aforementioned for bio-
control agents. Nevertheless, lower lignin content may facilitate
cell elongation, and therefore overall root elongation. Similarly,
Azospirillum irakense produces pectate lyases that are capable of
degrading the pectate content of root cell wall and might allow
its progression between root cortex cells and its functioning as an
endophyte (Bekri et al., 1999). Up to now, the impact on plant
lignin content of PGPR that are both inducing ISR and promoting
root growth has not been clarified.

Modifications of root cell wall ultrastructure are thought to
result mainly from PGPR-triggered changes in plant gene expres-
sion. Indeed, Bacillus subtilis GB03 promotes Arabidopsis growth
by producing VOCs that were shown to modulate the expression of
38 genes with known functions associated with cell wall structure
(Ryu et al., 2003; Zhang et al., 2007). Among them, 30 were impli-
cated in cell wall expansion or loosening. The endophytic PGPR
Azospirillum irakense was also shown to stimulate the expression
of polygalacturonase genes in inoculated rice roots (Sekar et al.,
2000).

Chemical mediators involved in the effects of PGPR on root
cell walls have received little attention. A single report has indi-
cated that the exogenous addition of auxins enhanced the induced
polygalacturonase activities observed in Azospirillum irakense
inoculated rice roots (Sekar et al., 2000).

SYSTEMIC EFFECTS OF PGPR ON WHOLE PLANT
PHYSIOLOGY AND FUNCTIONING
In addition to their effects on root tissues, PGPR can mod-
ify the physiology and functioning of plant tissues located at
a substantial distance from the colonized sites, such as shoots.
Two types of mechanisms are involved. On the one hand, some
PGPR can enhance nutrient availability/uptake for plant roots.
Stimulation of plant nutrition will lead to modifications in pri-
mary metabolism and consequently will contribute to enhance
growth. On the other hand, certain PGPR trigger specific systemic
responses, mostly by unknown signaling mechanisms. High-
throughput analyses of plant transcriptomic and metabolomic
responses have evidenced the effects of PGPR on plant gene expres-
sion and metabolite accumulation, respectively. These results
highlight the extensive effect of PGPR on whole plant physiol-
ogy and functioning (Figure 1), and provide clues to understand
the systemic effect of PGPR.

IMPACT OF PGPR ON PLANT NUTRITION
The impact of PGPR on plant nutrition may result from effects on
plant nutrient uptake and/or on plant growth rate (Mantelin and
Touraine, 2004). It is indeed commonly hypothesized that nutrient
uptake is increased as a consequence of increased root surface area
triggered by PGPR. However, root ion transporters are under the

control of regulatory processes that adjust their activity to the plant
nutritional demand (Imsande and Touraine, 1994; Lappartient
and Touraine, 1996; Lappartient et al., 1999; Nazoa et al., 2003), so
that regulations of root development and ion transporter activi-
ties are antagonistically coordinated to maintain steady nutrient
acquisition rate (Touraine, 2004). Hence, PGPR must interfere
with pathways coordinating plant development and plant nutri-
tion to elicit both increased nutrient acquisition rate and plant
growth promotion (Figure 1).

Plant growth-promoting rhizobacteria can directly increase
nutrient supply in the rhizosphere and/or stimulate ion trans-
port systems in root. With regards to increased nutrient supply,
two main types of bacterial activities can be considered. Firstly,
phosphate solubilization is one key effect of PGPR on plant nutri-
tion. Soils generally contain a large amount of phosphorus, which
accumulates in the wake of regular fertilizer applications, but only
a small proportion of the latter is available for plants. Plants are
able to absorb on their own mono and dibasic phosphate; organic
or insoluble forms of phosphate need to be mineralized or sol-
ubilized by microorganisms, respectively (Richardson et al., 2009;
Ramaekers et al., 2010). Many PGPR – such as Pseudomonas, Bacil-
lus, Rhizobium – are able to dissolve insoluble forms of phosphate
(for a review see Richardson et al., 2009). Two main processes
exist: acidification of the external medium through the release of
low molecular weight organic acids (such as gluconic acid) that
chelate the cations bound to phosphate (Miller et al., 2009), and
production of phosphatases/phytases that hydrolyse organic forms
of phosphate compounds. Secondly, many associated bacteria can
fix N2 so that they could provide nitrogen to the plant. Evidence
in favor of the participation of PGPR to the plant N budget has
been reported for several plants, especially sugar cane (Boddey
et al., 2003). However, the impact of N2-fixation by PGPR is still
debated and is rarely credited for the stimulation of plant growth
(for review see Dobbelaere et al., 2003). In addition, non-fixing
rhizobacteria can promote plant growth, showing that N provi-
sion is not obligatory for plant growth promotion. For instance,
Phyllobacterium brassicacearum STM196 is unlikely to fix N2 while
it promotes the growth of canola and Arabidopsis (Bertrand et al.,
2000, 2001; Mantelin et al., 2006).

With regards to the impact of PGPR on nutrient uptake sys-
tems, only very few studies have been published so far. Inoculation
of canola with Achromobacter sp. strain U80417 resulted in an
increase of both NO−

3 and K+ net influx rates per root surface area
unit (Bertrand et al., 2000). In this study, the net H+ efflux was
also enhanced, so that increased NO−

3 and K+ uptake rates may be
part of a general mechanism leading to increased ion uptake rate,
similar to energization of nutrient transport by enhanced proton
pump activity (Sondergaard et al., 2004). In favor of this hypoth-
esis, acidification of the rhizosphere has also been reported with
Arabidopsis exposed to the VOC-emitting Bacillus subtilis strain
GB03 (Zhang et al., 2009).

In Arabidopsis, NO−
3 uptake measurement in response to PGPR,

over time, can lead to contradictory results: NO−
3 influx was

increased in seedlings, upon 24 h-inoculation with Phyllobac-
terium brassicacearum STM196, while it was reduced 7 days later
(Mantelin et al., 2006). However, it is hard to draw a firm conclu-
sion as the net NO−

3 uptake rate remained unknown since ion
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efflux was not measured in these experiments. Except for the
NRT2.5 and NRT2.6 genes, the accumulation of transcripts of
nitrate and ammonium transporters was very slightly or not sig-
nificantly changed upon Phyllobacterium brassicacearum STM196
inoculation (Mantelin et al., 2006). Interestingly, these two genes
have recently been shown to be required in Arabidopsis growth
promotion by this PGPR (Kechid et al., 2013). Since these two
genes code for two plasma membrane-localized NO−

3 trans-
porters (Kotur et al., 2012), this discovery raises the question
of the interactions between N nutrition and plant development
in PGPR-inoculated plants. The NRT2.5 and NRT2.6 genes are
predominantly expressed in shoots (Mantelin et al., 2006). Their
role in Phyllobacterium brassicacearum STM196 plant growth pro-
motion and/or root architecture modification are not linked to
changes in NO−

3 uptake rate or NO−
3 distribution between roots

and shoots (Kechid et al., 2013), suggesting an involvement in
N-signaling rather than a direct role in N-metabolism.

Evidence in favor of a regulation of ion transporters at a
transcriptional level by PGPR has been obtained in studies with
Bacillus subtilis GB03. This strain induces concomitant down-
and up-regulation of HKT1 expression in roots and shoots of Ara-
bidopsis seedlings, respectively (Zhang et al., 2008). In the shoots,
HKT1 functions in phloem tissues to retrieve Na+ from the xylem
(Berthomieu et al., 2003) and in the roots it is involved in Na+
uptake (Rus et al., 2001). The differential regulation of HKT1
expression in roots and shoots resulted in reduced accumula-
tion of Na+ and increased accumulation of K+ in both organs
of GB03-inoculated seedlings under salt-stress conditions (Zhang
et al., 2008). Consistent with the effect of GB03 on HKT1, GB03
failed to rescue salt-stressed hkt1 mutant seedlings from elevated
Na+ accumulation.

Volatile organic compounds emitted by GB03 also activate the
plant’s iron acquisition machinery leading to increased iron assim-
ilation (Zhang et al., 2009). Firstly, this PGPR leads to acidification
of the rhizosphere, both directly due to chemical effects of some
unidentified VOCs and indirectly through increased root proton
efflux. Secondly, GB03 up-regulates the expression levels of FRO2
and IRT1 genes, coding respectively for a Fe3+ chelate reductase
and a Fe2+ transporter. As a result, GB03-exposed Arabidopsis
has enhanced ferric chelate reductase activity and increased iron
content. Finally, it has been shown that this PGPR induces the
expression of the FIT1 transcription factor that regulates posi-
tively FRO2 and IRT1 expressions (Zhang et al., 2009). The fact
that GB03 fails to increase root ferric reductase activity and plant
iron content in Arabidopsis fit1 mutants shows that PGPR can
modify indirectly ion uptake by interfering with plant regulatory
processes that control ion transporter expressions and/or activities
(Zhang et al., 2009).

IMPACT OF PGPR ON PLANT TRANSCRIPTOME
Targeted or genome-wide analyses of plant gene expression fol-
lowing root inoculation by PGPR were reported with various
bacterial models: phytostimulating PGPR, endophytes and PGPR
exerting a biocontrol activity. Inoculation of the phytostimulator
Pseudomonas putida MTCC5279 triggered overexpression of 520
genes and repression of 364 genes (threefold changes) in leaves of
Arabidopsis; upregulated genes were involved in maintenance of

genome integrity, growth hormone and amino acid syntheses, ABA
signaling and ethylene suppression, Ca2+ dependent signaling and
induction of ISR (Srivastava et al., 2012). On rice, a recent study
performed with Azospirillum points towards association specificity
(Vargas et al., 2012). The targeted expression of ethylene receptors
was followed after inoculation of Azospirillum brasilense Sp245 on
two rice cultivars of contrasted ability to gain nitrogen from bio-
logical nitrogen fixation. Seedlings of cultivar IR42, which enabled
higher nitrogen fixation, also displayed higher expression of ethy-
lene receptors compared to cultivar IAC 4440 (Vargas et al., 2012).
The transcript accumulation of all ethylene receptors might be
necessary for the establishment of a beneficial association between
the plant and the bacteria.

As for endophytes, differential colonization of rice roots was
observed with an Azoarcus PGPR. In a less compatible interac-
tion, a slight defense response occurred and was accompanied
by the induction of pathogenesis-related proteins and proteins
sharing domains with receptor-like kinases induced by pathogens;
those proteins were also induced by a jasmonate treatment
(Miché et al., 2006). Inoculation of rice roots with the endo-
phytic PGPR Herbaspirillum seropedicae triggered the expression
of genes responsive to auxin and ethylene and the repression of the
defense-related proteins PBZ1 and thionins (Brusamarello-Santos
et al., 2012). These studies suggest that endophytes modulate plant
defense responses during colonization.

Plants treated with biocontrol PGPR, usually belonging to the
Pseudomonas genus, are more resistant to subsequent infections by
bacterial or fungal pathogens. In Arabidopsis, this rhizobacteria-
mediated ISR requires sensitivity to jasmonate and ethylene, and
the regulators MYC2 (Pieterse et al., 1996, 2000; Pozo et al., 2008),
NPR1 (Pieterse et al., 1998), and MYB72 (Van der Ent et al., 2008)
played a central role in this signaling. One of the earliest transcrip-
tomic study performed with Pseudomonas fluorescens WCS417r
indicated that bacteria elicited a substantial change in the expres-
sion of 97 genes in roots whereas none of the approximately
8,000 genes tested showed a consistent change in expression in
the leaves (Verhagen et al., 2004). Subsequent studies on Arabidop-
sis reported an increase of defense-related transcripts, including
PR-related proteins, in shoots of bacterized plants compared to
untreated shoots (Cartieaux et al., 2003; Wang et al., 2005; van
de Mortel et al., 2012). Interestingly, the ISR induced by Pseu-
domonas fluorescens SS101 was recently reported to be dependent
on salicylic acid signaling and not on jasmonic acid and ethylene
signaling (van de Mortel et al., 2012); moreover, a prominent role
of camalexin and glucosinolates in the ISR was proposed. In wheat,
bacterization with Pseudomonas fluorescens Q8r1-96 also trig-
gered the accumulation of defense-related transcripts (Okubara
et al., 2010; Maketon et al., 2012) and neither DAPG nor the type
three secretion system were key single factors in the expression
of these genes (Maketon et al., 2012). The establishment of ben-
eficial associations requires mutual recognition and substantial
coordination of plant and microbial responses and consequently
beneficial microbes modulate plant immunity.

IMPACT OF PGPR ON PLANT METABOLOME
Several studies have addressed the metabolomic changes triggered
by PGPR inoculation, by analyzing metabolite contents of root
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exudates, root tissues and shoots under normal or stressful con-
ditions (Figure 1). Some studies have shown that PGPR can elicit
changes in the activities of root enzymes involved in the produc-
tion of metabolites, especially flavonoids, leading to changes in the
pattern of root exudation (Lavania et al., 2006; Shaw et al., 2006).
Some Azospirillum PGPR stimulated by up to one-third the level
of carbon compounds exuded from roots (Heulin et al., 1987).
Moreover, compounds of microbial origin, such as phenazines
and DAPG, could enhance total net efflux of amino acids in
plant species (Phillips et al., 2004). On soybean roots, the PGPR
Chryseobacterium balustinum Aur9 influences flavonoids exuda-
tion (Dardanelli et al., 2010). PGPR strains from Chryseobacterium
(Dardanelli et al., 2010) or Azospirillum (Burdman et al., 1996)
may influence flavonoid exudation by Fabacea roots. This prop-
erty can be important for the design of mixed inoculants that will
include a PGPR strain promoting flavonoid exudation together
with rhizobia that will respond to plant flavonoids (Burdman et al.,
1996).

In addition to effects on root exudates, PGPR can trigger
modifications of metabolite composition of the whole plant. For
instance, rice plants inoculated with Herbaspirillum seropedicae
showed higher shoot contents in malate and in key amino acids
than those of control plants (Curzi et al., 2008). Many more studies
focused on modifications of secondary metabolites. Elicitation of
isoflavone accumulation was observed on soybean inoculated with
various PGPR, either by increasing the total isoflavone content in
seedlings or by causing an asymmetric distribution of isoflavones
throughout the plant (Ramos-Solano et al., 2010). Increase in the
content of several alkaloid and terpenoid compounds of pharma-
ceutical relevance was demonstrated in medicinal plants following
PGPR inoculation (Manero et al., 2003; Jaleel et al., 2007; Bharti
et al., 2013). Recent studies investigated the early impact of sev-
eral Azospirillum strains on root and shoot secondary metabolite
profiles of maize and rice; analysis of secondary metabolites of
two maize cultivars, inoculated by three different Azospirillum
strains under greenhouse conditions, revealed major qualita-
tive and quantitative modifications of the contents of secondary
metabolites, especially benzoxazinoids (Walker et al., 2011). In the
same way, a metabolic profiling approach of two rice cultivars
inoculated with two different Azospirillum strains under gnoto-
biotic conditions, showed that profiles of secondary metabolites
were modified with phenolic compounds such as flavonoids and
hydroxycinnamic derivatives being the main metabolites affected
(Chamam et al., 2013). Both studies evidenced a specific response,
as plant metabolic changes differed according to the Azospirillum
strain-cultivar combination. Moreover, PGPR applied to the roots
can affect the composition of secondary metabolites in shoots,
pointing towards systemic effects (Chamam et al., 2013).

Accumulation of secondary compounds was also modified in
several plants inoculated with consortia containing arbuscular
mycorrhizal fungus and PGPR. Blumenin accumulation triggered
by Rhizophagus irregularis (formerly Glomus intraradices) in bar-
ley and wheat roots was increased when a rhizosphere bacterium
was applied with the fungus (Fester et al., 1999). Leaf secondary
metabolites (total phenols and ortho dihydroxy phenols), as well
as leaf mineral content (phosphorus, potassium, zinc, copper, and
iron) were maximal when Begonia malabarica or Solanum viarum

were inoculated with consortia containing two fungi and a Bacil-
lus coagulans strain (Selvaraj et al., 2008; Hemashenpagam and
Selvaraj, 2011). Field-inoculation of maize with selected strains of
Pseudomonas, Azospirillum or Rhizophagus/Glomus, or with these
strains combined two by two or all three together, led to qualitative
and quantitative modifications of root secondary metabolites, par-
ticularly benzoxazinoids and diethylphthalate (Walker et al., 2012).
These modifications depended on fertilization level and on the
type of microorganisms inoculated. The three selected strains gave
distinct results when used alone, but unexpectedly all microbial
consortia gave somewhat similar metabolic responses.

Plant growth-promoting rhizobacteria can help plants to with-
stand saline stress, a feature that may be linked to accumulation
of specific metabolites. A higher level of proline content was
reported in inoculated Bacopa monnieri (Bharti et al., 2013), as
well as higher accumulation of glycine betaine-like quaternary
compounds in rice inoculated with Pseudomonas pseudoalcali-
genes (Jha et al., 2011). Similarly, Arabidopsis inoculation with the
VOC-emitting strain Bacillus subtilis GB03 induced strong plant
accumulation of glycine betaine and its precursor choline, and
GB03-induced drought tolerance was lost in the xipotl mutant of
Arabidopsis with reduced choline production (Zhang et al., 2010).
Alleviation of cold stress was demonstrated for Burkholderia
phytofirmans PsJN on grapevine; this endophytic strain promotes
plant post-chilling recovery by improving acclimation to cold
(Ait Barka et al., 2006). This is accompanied by accumulation
of stress-related metabolites such as proline, malondialdehyde
and aldehydes (known as lipid peroxidation markers), hydrogen
peroxide, and by higher expression of defense- and cold-related
genes (Theocharis et al., 2012). Bacterization resulted in a 1.2-fold
increase in starch content and in a two-fold increase in total solu-
ble sugars, with sugars known to be involved in low-temperature
tolerance (glucose, sucrose, and raffinose) displaying higher
concentrations in treated plantlets (Fernandez et al., 2012). Inde-
pendently of temperature, inoculation also enhanced phenolic
content (Ait Barka et al., 2006).

EXPRESSION OF PLANT-BENEFICIAL FUNCTIONS OF PGPR IN
THE RHIZOSPHERE
One PGPR strain can harbor several plant-beneficial properties,
which may be co-regulated or not. Within the rhizosphere, the
expression of PGPR’s plant-beneficial properties is affected by both
abiotic factors (like pH, oxygen, clay mineralogy, heavy metals,
etc.) and biotic factors (i.e., compounds produced by plants or the
rhizo-microbiome) that can lead to distinct expression patterns
in space and time, possibly with different effects on host plant
(Piccoli and Bottini, 1994; Pothier et al., 2008; Prigent-Combaret
et al., 2008; Dutta and Podile, 2010; Almario et al., 2013b; Drogue
et al., 2013). In this section, a focus is put on the regulation of the
expression of PGPR plant-beneficial properties by biotic factors
occurring in the rhizosphere.

REGULATION OF PGPR FUNCTIONS BY ROOT EXUDATES
Through the release of root exudates, plants can impact bacte-
rial gene expression, especially genes encoding plant-beneficial
traits. Composition of root exudates is dependent upon intra and
inter-specific genetic variability (Bertin et al., 2003; Czarnota et al.,
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2003; Phillips et al., 2004), plant developmental stage (Lynch and
Whipps, 1990; Bacilio-Jiménez et al., 2003) and soil abiotic factors
(Lipton et al., 1987). One of the major studies aiming at analyzing
the impact of root exudates variability on bacterial gene expres-
sion was carried out on phlA, involved in DAPG biosynthesis, in
Pseudomonas protegens (formely Pseudomonas fluorescens) CHA0
(Notz et al., 2001). The expression of phlA was increased four-
fold in the rhizosphere of monocots (maize and wheat) compared
to the rhizosphere of dicots (bean and cucumber). The analysis
of six maize cultivars also revealed that phl expression and hence
biocontrol activity could be affected by plant genotype (Notz et al.,
2001). Specific components of root exudates, notably sugars, were
shown to affect the production of antimicrobial compounds, such
as DAPG,pyoluteorin and pyrrolnitrin by fluorescent pseudomon-
ads, with some strain-dependent effects (Duffy and Défago, 1999).
Among 63 plant compounds related to defense or development,
or involved in plant-microbe interactions (flavonoids, phenolic
acids, phytohormones, etc.), many could modulate the expression
of phlA and pltA in Pseudomonas protegens CHA0 (de Werra et al.,
2011). No specific chemical structures were identified that gener-
ally induced or repressed phlA or pltA expression (de Werra et al.,
2011). Umbelliferone led to the strongest inhibition of phlA; sali-
cylate, jasmonate, and methyl jasmonate, all slightly reduced phlA
expression, whereas the plant hormone IAA induced phlA expres-
sion. None of these compounds had an effect on pltA expression
(de Werra et al., 2011) whereas a previous study reported repres-
sion of both DAPG and pyoluteorin biosynthesis genes by salicylate
(Baehler et al., 2005).

1-Aminocyclopropane-1-carboxylic acid deamination (encoded
by acdS) is another bacterial function that may be differen-
tially expressed according to plant genotypes. Indeed, in vitro
experiments demonstrated that some compounds present in root
exudates tightly control acdS expression. First, ACC, the precursor
of ethylene that is metabolized by AcdS, can positively regulate
acdS expression (Hontzeas et al., 2004; Prigent-Combaret et al.,
2008). Second, leucine, by inhibiting oligomerization of the Lrp-
type regulator AcdR, prevents transcription of acdS leading to a
decrease of ACC deaminase activity in Pseudomonas putida UW4
(Li and Glick, 2001) and in Azospirillum lipoferum 4B (Prigent-
Combaret et al., 2008). Finally, carbon sources can also influence
acdS transcription (Prigent-Combaret et al., 2008).

As presented above, bacterial IAA biosynthesis mostly depends
on tryptophan-related pathways (Spaepen et al., 2007a). The
main source of tryptophan for PGPR is root exudates. Mea-
surement of tryptophan bioavailability from graminaceous roots
(Avena barbata) indicated that this amino acid is abundant at
the emergence of secondary roots (Jaeger et al., 1999). In the
absence of exogenous tryptophan supply, bacterial IAA biosyn-
thesis is insignificant (Ona et al., 2005; Malhotra and Srivastava,
2006). Next to being an IAA precursor, tryptophan also plays an
important role in regulating positively the ipdC/ppdC gene (Ona
et al., 2005). Other root-exuded amino acids like tyrosine and
phenylalanine can also induce ipdC/ppdC expression (Rothballer
et al., 2005). Besides amino acids, plant roots release compounds
like vitamins (e.g., pyridoxine and nicotinic acid) and organic
acids (e.g., phenylacetic acid and prephenic acid; Shukla et al.,
2011). All these compounds increase significantly IAA production

in Azospirillum brasilense Sp245 (Zakharova et al., 2000;
Somers et al., 2005).

Metabolites present in root exudates can thus specifically mod-
ulate the expression of key genes involved in plant-beneficial func-
tions. Consequently, specific physiological responses of the plant
are dependent on the PGPR strain/plant cultivar combination
(Drogue et al., 2012).

REGULATION OF PGPR FUNCTIONS BY MICROBIAL SIGNALS
Plant growth-promoting rhizobacteria exchange several types of
cell-to-cell communication signals between each other and with
other rhizosphere-inhabiting bacteria and fungi, i.e., quorum-
sensing (QS) signals that allow bacteria to monitor their density
and to coordinate gene expression only when a quorum of cells
is achieved (Fuqua et al., 1994) and other bacterial signals that
regulate gene expression independently of the cell density.

Quorum-sensing relies on the synthesis and perception of small
diffusible molecules, such as N-acyl-homoserine lactones (AHLs).
In fluorescent pseudomonads, colonization properties and biosyn-
thesis of antimicrobial metabolites, such as phenazines, is often
subjected to an AHL-based QS regulation (Pierson et al., 1994;
Chin-A-Woeng et al., 2001; De Maeyer et al., 2011). Production
of pyrrolnitrin in Serratia plymuthica HRO-C48, a strain isolated
from the rhizosphere of oilseed rape and able to protect crops
against Verticillium wilt, is also under QS regulation (Liu et al.,
2007). In S. plymuthica G3, an endophytic strain, QS positively
regulates antifungal activity, production of exoenzymes, but neg-
atively regulates IAA production (Liu et al., 2011). Among the
genus Azospirillum, only a few strains belonging to the lipoferum
species and isolated from rice, display the ability to produce
AHL signals (Vial et al., 2006). In the rice endophyte Azospiril-
lum lipoferum B518, AHL inactivation abolishes pectinase activity,
increases siderophore synthesis and reduces IAA production (in
stationary phase) but no effect is observed on cellulase activity
and on the phytostimulatory effect (Boyer et al., 2008). Moreover,
a proteomic approach indicates that AHL-based QS regulation in
Azospirillum is rather dedicated to control functions linked to rhi-
zosphere competence and adaptation to plant roots (Boyer et al.,
2008).

Interestingly, several studies have shown that bacterial com-
munication of a specific bacterial population could be jammed
by other microbes; indeed, some soil bacteria can inactivate AHL
(notably members of the genus Bacillus), whereas others can inter-
cept AHL or can act as a physical barrier preventing their diffusion
(Boyer and Wisniewski-Dyé, 2009). Consequently, other members
of the bacterial rhizosphere community can compromise expres-
sion of biocontrol traits in PGPR. Conversely, cross-talk between
species using the same AHL signal or a structurally-related AHL
can occur in natural habitats and was evidenced in the rhizo-
sphere of wheat and tomato (Pierson et al., 1998; Steidle et al.,
2001). Finally, plant compounds designated as AHL-mimics can
also interfere with bacterial QS and may influence the expression of
plant-beneficial functions (Teplitski et al., 2000; Vandeputte et al.,
2010). Some Pseudomonas fluorescens strains unable to synthetize
AHLs but possessing the cognate receptor may even recognize
a plant compound to trigger expression of genes involved in
biocontrol properties (Subramoni et al., 2011).
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Exometabolites produced by microbial populations including
pathogenic fungal strains can also affect PGPR plant-beneficial
properties. For instance, fusaric acid produced by Fusarium oxys-
porum represses the production of DAPG in the biocontrol strain
Pseudomonas protegens CHA0 (Notz et al., 2002). Next to their
antifungal effect, some Pseudomonas-produced compounds can
influence gene expression of biocontrol traits in pseudomonads.
Indeed, in Pseudomonas protegens strains CHA0 and Pf-5, DAPG
and pyoluteorin productions are influenced by positive autoreg-
ulation; moreover, DAPG and pyoluteorin mutually inhibit one
another’s production (Brodhagen et al., 2004; Baehler et al., 2005).
In order to determine if DAPG could act as a signal on other
PGPR strains than those of the fluorescent Pseudomonas group,
a differential fluorescence induction promoter-trapping approach
based on flow cytometry was developed on Azospirillum. Using
this approach DAPG was shown to enhance expression of a
wide range of Azospirillum brasilense genes, including genes
involved in phytostimulation. Four of them (i.e., ppdC, flgE,
nirK, and nifX-nifB) were upregulated on roots in the presence of
Pseudomonas fluorescens F113 compared with its DAPG-negative
mutant (Combes-Meynet et al., 2011). Accordingly, Pseudomonas
fluorescens F113 but not its DAPG-negative mutant enhanced the
phytostimulatory effect of Azospirillum brasilense Sp245 on wheat.
Thus, DAPG can act as a signal by which some beneficial pseu-
domonads may stimulate plant-beneficial activities of Azospirillum
PGPR (Combes-Meynet et al., 2011). This finding is also relevant
in the context of inoculation with microbial consortia, in which
different types of PGPR may be combined. The number of studies
investigating the efficacy of such combined inoculations is grow-
ing, with variations in the number of microorganisms and the
nature of the combinations (PGPR strains only, PGPR and fungi,

etc.; Cassán et al., 2009; Couillerot et al., 2012; Kumar et al., 2012;
Walker et al., 2012). Field inoculation of sorghum with fluores-
cent Pseudomonas strains alone or in combination with arbuscular
mycorrhizal fungi showed a better effect when in presence of the
latter (Kumar et al., 2012). Field inoculation of maize with a con-
sortium consisting of two PGPR (Azospirillum lipoferum CRT1 and
Pseudomonas fluorescens F113) and one mycorrhizal strain (Rhi-
zophagus irregularis/Glomus intraradices JJ291) showed an increase
of root surface, root volume and number of roots, although
data were not statistically significant compared to the single Rhi-
zophagus inoculation (Walker et al., 2012). Modification of one
member of this consortium (three different Azospirillum strains
were tested) could lead to significant modification of maize growth
(Couillerot et al., 2012). Further studies are needed to describe the
synergistic effects between beneficial microorganisms at a molecu-
lar scale and to analyse the expression of plant-beneficial functions
when consortia are used.

ECOLOGY OF PGPR POPULATIONS AND IMPACT ON ROOT
SYSTEM FUNCTIONING
Many studies have deciphered the mechanisms of action of PGPR
using one individual strain and one host plant. But in reality, as
described above, PGPR strains are not acting individually in the
rhizosphere but rather as part of bacterial communities, in which
cell communication signals may coordinate the activities of all
individual strains. Indeed, a vast array of PGPR populations dis-
playing co-occurring plant-beneficial activities and that may share
between each other antagonistic or synergistic effects are inter-
acting with a same host plant (Figure 3). When analysing plant
growth-promoting effects, it is thus important to integrate the
complexity of the interactions between PGPR populations within

FIGURE 3 | Implementation of plant-growth promoting traits in PGPR

functional groups. Selected PGPR functional groups are represented by
different colored circles. The resulting effect of all PGPR functional groups on
the plant is symbolized by the gray circle. Abiotic and biotic factors may

influence the activity of each functional group. Solid arrows represent
potential interactions (inhibition, signaling, etc.) between members of the
functional groups, which may impact on the size, diversity and activity of
these groups.
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the rhizo-microbiome. To do so, functional ecology approaches
are needed, in which the relations between the size, diversity and
activities of PGPR assemblages in the rhizosphere are taken into
account. This is of particular importance when assessing the effect
of various environmental factors, including that of plant genotype.

PGPR ECOLOGY IN THE RHIZOSPHERE: FROM INDIVIDUAL STRAINS TO
FUNCTIONAL GROUPS
Plant growth-promoting rhizobacteria strains occur in various
taxonomic groups, and these different taxonomic groups may
be present simultaneously in a given soil (Kyselková et al., 2009;
Almario et al., 2013a). This suggests that taxonomically-contrasted
PGPR strains may coexist in soil and colonize a same rhizosphere,
along with all non-PGPR members of the bacterial community.
This possibility has been documented repeatedly, especially when
characterizing the taxonomic status of bacterial isolates selected
based on their positive effect on plant growth or health, their
ability to inhibit phytopathogens, or the occurrence of a par-
ticular gene or property of relevance for PGPR effect (Bertrand
et al., 2001; Barriuso et al., 2005; Upadhyay et al., 2009). In fact,
this possibility seems to be the rule rather than the exception.
PGPR populations contributing to a same type of function (i.e.,
ISR, nitrogen fixation, nutrient solubilization, plant development
enhancement, etc.) belong to a same functional group. Functional
group approaches can be implemented when specific genes are
documented. For instance, nitrogen fixers can be assessed using
the nifH gene, which encodes the dinitrogenase subunit of the
nitrogenase. Its sequence is well conserved within the functional
group and it is commonly used as marker to monitor the size and
diversity of the diazotrophic community (Poly et al., 2001; Dixon
and Kahn, 2004). Some of these PGPR functional groups are tax-
onomically narrow, such as the Pseudomonas DAPG producers
(Frapolli et al., 2012). In contrast, others are much more diver-
sified, and certain bacterial functional groups may also comprise
both PGPR and non-PGPR strains. For instance, nitrogen fixers
include PGPR as well as mutualistic symbionts and even a few
pathogens (Herridge et al., 2008).

When considering PGPR-plant relationship in fields, the co-
occurrence of genetically contrasted PGPR strains from a same
functional group in the rhizosphere has two consequences. First,
the activity of a given PGPR functional group corresponds to the
resulting contributions of all active individual cells from each type
of bacterium within the functional group. If synergistic effects
occur between the PGPR populations, the expected performance
level for the PGPR function might be higher than if only one
type of strain was involved. On this basis, knowing the size of the
functional group will help understand the potential importance
of the corresponding function. Indeed, for functions leading to
enhanced nutrient availability to the plant, such as nitrogen fixa-
tion or phosphorus solubilization, the higher the better. For others
where optimality matters, such as the production of auxinic signals
(Dobbelaere et al., 1999; Spaepen et al., 2007b), the performance
level of the functional group will need fine-tuning to avoid produc-
tion levels too small or too great. How this is ecologically regulated
at the scale of the corresponding functional group is unknown, but
it raises the possibility of co-evolutionary patterns. To bridge the
gap between the potential of a plant-beneficial PGPR function and

its actual implementation by PGPR strains, the regulatory effects
need also to be taken into consideration. Some of these regulatory
effects will be common to all members of the functional group
(Prigent-Combaret et al., 2008). However, other regulatory effects
may be relevant for a subset only of the functional group. For
instance, zinc sulfate stimulates DAPG production in certain but
not all genetic groups of Pseudomonas PGPR strains (Duffy and
Défago, 1999).

Second, the relationships amongst the different PGPR strains
co-occurring in a same rhizosphere are important. Interactions
will take place within a functional group, as illustrated above
with QS regulation of phenazine production in fluorescent Pseu-
domonas PGPR (Pierson et al., 1994). Interactions may also take
place between different PGPR functional groups (Figure 3), inte-
grating competitive and inhibitory effects (Couillerot et al., 2011),
signal jamming (Boyer and Wisniewski-Dyé, 2009) and positive
signaling (Combes-Meynet et al., 2011), as well as more indi-
rect processes such as root exudation modifications (Phillips et al.,
2004; Dardanelli et al., 2010). These interactions have the poten-
tial to modulate spatial colonization patterns of PGPR on roots
(Couillerot et al., 2011) and to affect PGPR performance (Pier-
son et al., 1998). This also suggests that members of different
PGPR functional groups can function together, as consortia, with
the possibility of synergistic effects or, contrariwise, antagonis-
tic effects. These positive effects may be sought by implementing
inoculation procedures in which different types of plant-beneficial
microorganisms are used in combination, as highlighted above.
Even in this context, interactions between the different micro-
bial strains that are inoculated and indigenous microorganisms
(including PGPR) probably matter.

IMPACT OF PLANT GENOTYPES ON PGPR FUNCTIONAL GROUPS
Plants at species, sub-species and variety levels exhibit substantial
genetic and phenotypic diversity (Salamini et al., 2002; Vaughan
et al., 2008). In the rhizosphere, different plant genotypes will
have a different impact on the number, diversity and activity of
microorganisms (Bais et al., 2006; Micallef et al., 2009). This has
been shown when comparing different plant species (Grayston
et al., 1998; Costa et al., 2006; Berg and Smalla, 2009) or varieties
within species (Germida and Siciliano, 2001; van Overbeek and
van Elsas, 2008; İnceoǧlu et al., 2010; Bouffaud et al., 2012). It
entails differences noticeably in root system structure, root exuda-
tion profile, and nutrient acquisition (Czarnota et al., 2003; Comas
and Eissenstat, 2009). These effects have also been evidenced when
considering microbial functional groups of PGPR or where PGPR
predominate.

Nitrogen-fixing bacteria are particularly important for plant
nitrogen nutrition (Hsu and Buckley, 2009; Turk et al., 2011).
The analysis of functional groups indicated that the size and/or
composition of nitrogen-fixing bacteria is influenced by host
plant features (Figure 3), both at plant species (Perin et al.,
2006) and variety levels (Coelho et al., 2009; Wu et al., 2009).
Analysis of nifH gene transcripts extracted from the rhizosphere
showed that only a fraction of the community expresses nifH,
and that the corresponding bacterial species differed according to
the plant variety, pointing to an influence of plant genotype on
the functioning of nitrogen-fixing bacteria (Knauth et al., 2005;
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Mårtensson et al., 2009; Orr et al., 2011). Similar findings
were made with the functional group of phosphate solubilizers
(Richardson and Simpson, 2011). Their selection by roots varies
according to host plant species (Kaeppler et al., 2000; Chen et al.,
2002; Ramaekers et al., 2010).

Other functional groups, such as those involved in plant pro-
tection from parasites, act mainly by competition or antagonism,
even though direct ISR effects might also take place (Weller et al.,
2012). For these microorganisms as well, plant genotype can have
a major effect on microbial selection processes, as shown with
fluorescent pseudomonads producing DAPG (Picard et al., 2004;
Bergsma-Vlami et al., 2005; Picard and Bosco, 2006; Frapolli et al.,
2010) or hydrogen cyanide (Jamali et al., 2009; Rochat et al., 2010).
Plant-genotype differences in rhizosphere ecology may also mat-
ter in terms of plant protection efficiency (Smith and Goodman,
1999; Mazzola and Gu, 2002; Mazzola et al., 2004; Ryan et al.
2004).

CONCLUSION
Plants have evolved different types of biotic interactions with soil
microbial populations, ranging from commensalism to mutu-
alism. Within this continuum of interactions, the plant-PGPR
cooperation plays a major role by enhancing growth and health
of widely diverse plants. Recent progress has helped to under-
stand key features regarding the modes of action and ecology
of plant-PGPR interactions, but major knowledge gaps remain.
In terms of molecular signaling and functioning, whether PGPR
fine-tune plant hormonal pathways similar to those induced by
pathogens and symbionts and/or trigger yet-unknown specific
pathways requires clarification.

Plant growth-promoting rhizobacteria are able to modulate
RSA and in fine the vegetative growth and physiology of the whole
plant. RSA effects have long been associated with the produc-
tion of IAA by PGPR. Surprisingly, bacterial modulation of plant
auxin distribution and IAA signal transduction pathways, inde-
pendently of IAA production by PGPR, has also been revealed. It
is obviously a step forward in our understanding of plant-PGPR
cooperation but it does not fully clarify the bacterial functions

and plant hormonal networks involved. Plant hormones regu-
late genes for the biosynthesis of other hormones or components
of hormonal pathways. Consequently, it is possible that PGPR
can affect these cross-talks too. It would explain why PGPR can
have such pleiotropic effects on plants. One of the major current
scientific challenges lying ahead is to understand how these differ-
ent signaling pathways are integrated to coordinate plant growth
and development, and how PGPR influence the plant hormonal
network.

Distinct PGPR populations present in a same soil can express
plant-beneficial properties in concert. As aforementioned, the
relationships between plants and their rhizo-microbiome are com-
plex and vary both according to plant genotypes and soil inhabiting
populations (and thus local soil properties, more generally speak-
ing). Next-generation sequencing technologies have started to
reveal their taxonomic and functional diversity. They have begun
to bring new knowledge on the ecology of PGPR functional
groups. In the near future, it is expected that metatranscriptomics
and metaproteomics will develop drastically, and will allow fur-
ther progress on the understanding of the activity and ecological
behavior of natural PGPR populations within the rhizosphere.
However, given the heterogeneity in space and time of the rhizo-
sphere habitat, samplings at different times and locations within
the plant rhizosphere and within fields will be essential to bet-
ter understand the ecology and performance of PGPR at plant
and field plot scales. Nevertheless, despite being very reduction-
ist, mechanistic functional studies using one PGPR and one plant
are still useful to investigate the ways PGPR exert beneficial effects
on plants. We think that the most important advances on plant-
PGPR cooperation will be brought in the future by combining
both ecology and functional biology approaches.
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