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Cancer is a metabolic disease and the solution of two metabolic equations: to produce
energy with limited resources and to fulfill the biosynthetic needs of proliferating cells.
Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in
the tricarboxylic acid cycle, a process known as the glycolytic switch.This review addresses
in a comprehensive manner the main molecular events accounting for high-rate glycolysis
in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to
hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1
in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the
necessary involvement of aerobic glycolysis (theWarburg effect) in cancer cell proliferation.
Based on the many observations positioning glycolysis as a central player in malignancy,
the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed.
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Cancer is a metabolic disease and the solution of two metabolic
equations: (i) to produce enough energy to survive when supplies
and waste disposal are limited, and (ii) to divert enough metabolic
intermediates from energy production to the biosynthetic path-
ways supporting cell proliferation. This review paper summarizes
the major observations positioning glycolysis as a central player
in malignancy and justifying the current quest for glycolytic tar-
gets in the context of tumor treatment. Our purpose is not to be
exhaustive but to briefly summarize the most promising strategies,
inviting the reader to gain in-depth knowledge in the referenced
papers.

GLYCOLYSIS AND CANCER BIOENERGETICS
The first metabolic equation of cancer refers to energy produc-
tion. It directly calls into play oxygen as the electron acceptor
allowing the proper functioning of the respiratory chain at the
inner mitochondrial membrane. Most solid tumors are hypoxic
with many biological features accounting for the lack of oxy-
gen (Bristow and Hill, 2008). Probably the most comprehensive
form of hypoxia is the so-called diffusion-limited hypoxia which
arises when cells located at increasing distance from blood ves-
sels eventually fail to receive the minimum amount of oxygen
that they would need for an optimal oxidative metabolism in
addition to the many non-metabolic redox reactions requiring
oxygen (Horsman and Overgaard, 2002). Normal cells in non-
malignant tissues are also exposed to various levels of oxygen
with respect to their distance from the closest blood vessel and
owing to the fact that intermediate layers of cells consume oxy-
gen. Evolution has selected the Pasteur Effect as a system aimed to
finely tune cell metabolism in function of the local partial pressure
of oxygen (pO2; Wu and Racker, 1959). It relies on the negative
feed-back exerted allosterically by energy metabolites [glucose-6-
phosphate (G6P), citrate, and ATP] on key glycolytic enzymes,

thus accelerating the glycolytic flux when the rate of oxidative
phosphorylation (OXPHOS) decreases, and, inversely, improving
the coupling between glycolysis and OXPHOS fluxes when oxy-
gen levels increase (Figure 1). Two fundamentals of the Pasteur
Effect are that glycolysis is nominally a faster succession of reac-
tions than ATP production through OXPHOS (Curi et al., 1988),
and that the ATP yield of OXPHOS is nominally 19-fold higher
than that of glycolysis alone. The full oxidation of one molecule of
glucose provides up to 38 ATP molecules, whereas glycolysis alone
provides only 2 ATP. Although theoretically OXPHOS is the best
energy provider, the physiological reality is that both glycolysis and
OXPHOS collaborate to produce ATP at a relative level dictated
by local oxygen concentration. Tumor hypoxia is an extreme sit-
uation under which glycolysis becomes the main source of ATP
in tumor cells (Dang and Semenza, 1999). This glycolytic switch,
formally corresponding to uncoupling glycolysis from OXPHOS,
initially depends on repression of the Pasteur Effect. In this review,
unless stated otherwise, the term “glycolysis” refers to “glycolysis
uncoupled from OXPHOS of the tricarboxylic acid (TCA) cycle.”
Direct molecular consequences are net increases in glucose con-
sumption and lactic acid release (Figure 1). Because switching to
glycolysis primarily reflects the metabolic adaptability of tumor
cells to extreme environments, it is not surprising that lactate lev-
els positively correlate with the aggressiveness of several types of
human cancers (Walenta et al., 1997, 2000, 2004; Brizel et al., 2001;
Walenta and Mueller-Klieser, 2004).

A major difference between normal and cancer tissues is that
tumors have lost cellular homeostasis. Owing to an agenda of
unbridled proliferation, tumor cells perpetually overcome the
available oxygen supply when invading regions remote from blood
vessels. Growth is further associated with a loosening of the ini-
tially dense vascular network. These conditions constitute the
initial soil for the establishment of tumor hypoxia in a lasting
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FIGURE 1 | Allosteric regulations of glycolysis confer metabolic

plasticity with respect to local pO2. Enzymes are represented in italicized
blue font and their substrates in bold black. Because the glycolytic flux is
nominally faster than OXPHOS, the Pasteur Effect has been evolutionary
selected to couple both metabolic rates. The energy metabolites
glucose-6-P, ATP, and citrate restrain the glycolytic flux through allosteric
inhibition of key glycolytic enzymes, as represented by the red arrows.
Inhibition is at its climax when oxygen is not a limiting substrate for
OXPHOS, thus allowing the full oxidation of glucose. When oxygen levels
are limited or when the pO2 fluctuates, full glucose oxidation, and
consequently the levels of ATP and citrate produced oxidatively are
decreased. The Pasteur Effect is reset to less pronounced inhibition, thus
allowing accelerated glycolysis to compensate for defective ATP
production. An extreme situation characterized by full inhibition of the
Pasteur Effect is met under severe hypoxia. The energetic crisis is
associated with an increase in the cellular levels of fructose-1,6-bisP, ADP,
AMP, and inorganic phosphate (Pi). These molecules exert a series of
allosteric stimulations (represented by the green arrows) that accelerate the
glycolytic flux. Glycolysis thus becomes the main source of cellular ATP
production, a rescue situation allowing short-term cell survival until the pO2

is restored. Other abbreviations: GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; P, phosphate; PPP, pentose phosphate pathway; TCA,
tricarboxylic acid (cycle).

form that cannot be durably accommodated by the sole sup-
pression of the Pasteur Effect. In nascent tumors, tumor cells at
the distal edge of the oxygen gradient have two possible fates:
death or metabolic adaptation. Hypoxic death is a typical fea-
ture of dormant tumors, i.e., microscopic, asymptomatic lesions
characterized by a dynamic equilibrium between the prolifera-
tion of oxygenated cells and the death of hypoxic ones (Folkman,
1971). Comparatively (and hopefully for us), durable switch to
a glycolytic metabolism is a rare event marking the entry of a
tumor into an exponential growth phase. Although this meta-
bolic adaptation initially proceeds through inhibition of the Pas-
teur Effect, sufficient ATP production for long-term cell survival
and to sustain the aggressive phenotype requires further adapta-
tions meant to accelerate the glycolytic flux. A key player is the

FIGURE 2 | Simplified scheme depicting HIF-1 activation by hypoxia.

Both HIF-1α and HIF-1β subunits are constitutively transcribed, but only the
HIF-1β protein is stably expressed into the cell nucleus. HIF-1 activity
primarily depends on the stability of the HIF-1α protein. Under normoxia,
HIF-1α is hydroxylated at two proline residues by the prolylhydroxylase
PHD2, and addressed to the von Hippel–Lindau (VHL) complex for
ubiquitylation (Ub) and further proteasome-mediated degradation. Oxygen
is a limiting substrate for the PHD2 reaction. Under hypoxia, the HIF-1α

protein is expressed, migrates to the nucleus, and binds to HIF-1β, the
adaptator p300, DNA polymerase II, and to the consensus DNA motif
hypoxia-responsive element (HRE) in the promoting region of target genes.
HIF-1-target gene products promote glycolysis, angiogenesis, and
erythropoiesis, and regulate vasomotion. Adapted from Harris (2002).

transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 is
an αβ-heterodimer: the HIF-1β subunit is constitutively nuclear,
whereas HIF-1α is inducible by hypoxia (Figure 2; Pugh and
Ratcliffe, 2003). Regulation of HIF-1α expression involves its
posttranslational hydroxylation at proline residues 402 and 564
(human sequence) by prolylhydroxylases (PHDs), among which
PHD2 is the prominent physiological facilitator of the reaction
(Ivan et al., 2001; Jaakkola et al., 2001; Berra et al., 2003). PHD2
is a Fe(II)- and 2-oxoglutarate-dependent dioxygenase which has
an absolute requirement for molecular oxygen: because of its low
affinity for oxygen (K m = 250 μM, slightly above air pO2; Hirsila
et al., 2003), PHD2 is often described as an oxygen sensor. In oxy-
genated cells, proline hydroxylation addresses HIF-1α to the von
Hippel–Lindau (VHL) protein complex for poly-ubiquitylation,
followed by destruction by the proteasome (Maxwell et al., 1999;
Masson et al., 2001; Yu et al., 2001a). During hypoxia, PHD2
is inactivated, and HIF-1α escapes proteolytic degradation to
migrate into the cell nucleus where it binds to HIF-1β. Initiation
of transcription further requires the interaction of HIF-1 with the
cofactors p300 and the DNA polymerase II complex to bind to
hypoxia-responsive elements (HRE) of target genes. Gene prod-
ucts grossly belong to two categories: those such as erythropoietin
(EPO), vascular endothelial growth factor (VEGF), and inducible
nitric oxide synthase (iNOS) aimed at restoring local pO2; and
those involved in the acceleration of the glycolytic flux (Semenza,
2010). Figure 3 highlights the major HIF-1-target gene products
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FIGURE 3 | HIF-1 promotes the expression of glycolytic enzymes and

transporters. Enzymes are represented in italicized blue
font and their substrates in bold black. Green arrows point at
HIF-1-target gene products directly involved in the acceleration
of the glycolytic flux. In the simplified scheme, only those that

have been identified as potential therapeutic targets are highlighted.
Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase;
GLUT, glucose transporter; MCT4, monocarboxylate transporter 4; P,
phosphate; PPP, pentose phosphate pathway; TCA, tricarboxylic acid
(cycle).

directly involved in the perpetuation of a high glycolytic rate in
tumor cells. A brief description of their functions follows.

GLUCOSE TRANSPORTERS GLUT1 AND GLUT3
GLUT1 and GLUT3 belong to the GLUT/SLC2A family of trans-
porters required for glucose shuttling across cell membranes.
GLUT1 (K m glucose = 1–2 mM; Wheeler and Hinkle, 1981) and
GLUT3 (K m glucose = 1.4 mM; Gould et al., 1991) have a high affin-
ity for glucose and therefore, once expressed, play the essential role
of ensuring efficient glucose uptake even when glucose becomes
a limiting resource (Tal et al., 1992; Gatenby and Gillies, 2004).
Expression of the two isoforms is HIF-1-inducible (Ebert et al.,
1995, 1996), thus coupling the glycolytic switch to increased glu-
cose uptake in hypoxic cancer cells. High expression of GLUT1
and/or GLUT3 is associated with the poor prognosis of several
types of human tumors (Younes et al., 1995, 1997; Haber et al.,
1998; Baer et al., 2002; Kim et al., 2002; Fenske et al., 2009; Ayala
et al., 2010).

HEXOKINASE 2
Hexokinase 2 is a member of the HK family of enzymes that
control the first rate-limiting step of glycolysis, i.e., the phospho-
rylation of glucose to G6P involving the transfer of phosphate
from ATP. Once phosphorylated, negatively charged G6P is lit-
erally trapped inside the cell where it fuels both glycolysis and
the pentose phosphate pathway (PPP). Compared to other HK
isoforms, HK2 is a HIF-1-target gene product (Mathupala et al.,
2001) and exists in a phosphorylated form bound to the outer
mitochondrial membrane where it interacts with the voltage-
dependent anion channel VDAC (Bustamante and Pedersen, 1977;
Nakashima et al., 1986, 1988; Gottlob et al., 2001). This strate-
gic localization provides preferential access to ATP (permeating
VDAC) and insensitivity to negative feed-back inhibition by G6P
(Bustamante and Pedersen, 1977), thus ensuring proficient glucose
entrapment by tumor cells expressing mitochondria-bound HK2.
The interaction of HK2 with VDAC further interferes with the
binding of the pro-apoptotic protein Bax to VDAC, an event that
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would otherwise form a channel through which cytochrome c can
escape from mitochondria an trigger apoptosis (Pastorino et al.,
2002). Interestingly, HIF-1 cooperates with the oncogenic tran-
scription factor c-Myc to transactivate HK2 under hypoxia (Kim
et al., 2007). Because switching from HK1 to HK2 offers both a
metabolic advantage and protection against apoptosis, it is not
surprising that HK2 is overexpressed in many cancer types com-
pared with normal tissues, which is of poor prognosis (Lyshchik
et al., 2007; Rho et al., 2007; Peng et al., 2008; Palmieri et al.,
2009).

PHOSPHOFRUCTOKINASE 2 (PFK2/PFKFB3)
Fructose-2,6-bisphosphate (F2,6BP) is a key regulator of glycolysis
acting as an allosteric activator of PFK1, one of the rate-controlling
enzymes of glycolysis. F2,6BP is produced from fructose-6-
phosphate (F6P) by a family of homodimeric enzymes known as 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB).
PFKFBs are bifunctional enzymes that catalyze either the ATP-
dependent phosphorylation of F6P to F2,6BP (PFK2 activity) or
the dephosphorylation of F2,6BP to F6P (FBPase activity). The
family comprises four members among which PFKFB1, PFKFB2,
and PFKFB4 display equal PFK2 and FBPase activities under basal
conditions, whereas PFKFB3 has high PFK2 and almost no FBPase
activity (Okar and Lange, 1999; Okar et al., 2001). The transcrip-
tion of all four PFKFB genes is inducible by hypoxia but the major
induction is seen for the PFKFB3 gene which is a target of HIF-1
(Minchenko et al., 2002, 2003). Hypoxic stimulation of the PFK2
activity of PFKFB3 is further enhanced through phosphorylation
of a serine residue at position 462 (human sequence), a process
involving AMP-activated protein kinase (AMPK; Marsin et al.,
2002). PFKFB3 sustains high-rate glycolysis and is highly expressed
in several types of human tumors (Atsumi et al., 2002; Minchenko
et al., 2005; Kessler et al., 2008).

PYRUVATE KINASE 2 (PKM2)
Pyruvate kinase (PK) is a key glycolytic enzyme which catalyzes
a rate-limiting step of glycolysis, i.e., the dephosphorylation of
phosphoenolpyruvate (PEP) into pyruvate to produce ATP. PK
has four isoforms, of which PKM1/M1-PK and PKM2/M2-PK are
produced by alternative splicing of transcripts of the PKM gene,
a HIF-1-target gene (Luo et al., 2011). Alternative splicing is reg-
ulated by the heterogeneous nuclear ribonucleoproteins (hnRNP)
I, A1, and A2 (which bind to exon 9 and repress splicing to PKM1;
Noguchi et al., 1986; David et al., 2010), in turn controlled by c-
Myc (David et al., 2010). Isozyme selection allows for the rapid
proliferation observed in tumors. Unlike PKM1, PKM2 is indeed
the characteristic isoenzyme of cells with high-rate nucleic acid
synthesis, including normal proliferating cells, embryonic cells,
adult stem cells, and also importantly tumor cells (Reinacher
and Eigenbrodt, 1981; Yamada and Noguchi, 1999). During tis-
sue differentiation in development, embryonic PKM2 is replaced
by tissue-specific isoforms. Tumorigenesis, however, is associated
with the re-expression of PKM2 together with a down-regulation
of the expression of PKM1 and other isozymes (Mazurek et al.,
2005). This “glycolytic dedifferentiation” offers a key advantage in
terms of metabolic plasticity because, unlike PKM1 (existing only
in an active tetrameric form), PKM2 may be expressed either as

an active tetramer or as a dimer with low affinity for PEP. PKM2
in its highly active tetrameric conformation (K m PEP = 0.03 mM)
provides high yield ATP production from glycolysis, whereas in
its nearly inactive dimeric conformation (K m PEP = 0.46 mM) it
provides a metabolic bottleneck allowing glycolytic intermediates
to be redirected toward biosynthesis, notably fueling through the
PPP for DNA synthesis (Mazurek, 2011). The balance between
tetrameric and dimeric PKM2 is an oscillating phenomenon sub-
ject to allosteric regulation, a topic recently reviewed by Mazurek
(2011). Briefly, the tetrameric active form is promoted by accumu-
lation of the upstream glycolytic intermediate F1,6BP and by the
biosynthetic byproduct serine; inactivating dimerization is con-
versely induced when the concentration of downstream biosyn-
thetic products (alanine, other amino-acids, and lipids) increases.
The dimeric conformation is further promoted by phosphory-
lation of tyrosine 105 in response to several oncogenic tyrosine
kinases, whereas PEP accumulation can be controlled by a non-
ATP-generating phosphate transfer to an histidine residue of phos-
phoglycerate mutase (Vander Heiden et al., 2010). Most cancer
cells express PKM2 (Christofk et al., 2008a), thereby acquiring a
finely regulated switch to promote ATP production (switch on) or
cell proliferation (switch off; Christofk et al., 2008b). In addition,
it has been elegantly demonstrated that, after nuclear transloca-
tion, PKM2 cooperates with HIF-1 to transactivate genes further
promoting glycolysis and tumor angiogenesis (Luo et al., 2011).

LACTATE DEHYDROGENASE 5
Pyruvate is at a hub between different metabolic pathways: it
is the product of glycolysis, the product of malate oxidation in
proliferating cells (DeBerardinis et al., 2007), the main fuel of
the TCA cycle, the precursor of alanine in a reversible transam-
ination reaction involving glutamate as the nitrogen donor, and
the substrate of a redox reaction generating lactate. The latter
reaction, coupling the reduction of pyruvate to the oxidation of
NADH into NAD+, allows the replenishment of the NAD+ pool
required for glycolysis self-sufficiency. NAD+ is indeed manda-
tory for the OXPHOS of glyceraldehyde-3-phosphate into 1,3-
diphosphoglycerate by GAPDH (see Figure 1). Pyruvate reduction
into lactate also allows glycolytic cells to maintain the levels of
pyruvate low enough to avoid cell death (Thangaraju et al., 2006,
2009). This reversible reaction is catalyzed by the LDH family
of tetrameric enzymes. LDHs are formed by the arrangement
of up to four copies of two different subunits: subunit LDH-
H is encoded by the LDH-B gene and is ubiquitously expressed
in healthy tissues, whereas subunit LDH-M is encoded by the
HIF-1-target gene LDH-A and is therefore induced by hypoxia
(Figure 4). Compared to LDH-H, LDH-M has a higher K m for
pyruvate and a higher V max for pyruvate reduction (Markert et al.,
1975). Consequently, LDH5/LDH-4M preferentially catalyzes the
reduction of pyruvate into lactate and plays key roles in the main-
tenance of a high glycolytic flux and in resistance to apoptosis.
Elevated LDH5 expression is of unfavorable prognostic signifi-
cance to many human tumors (Koukourakis et al., 2003, 2005,
2009). Conversely, LDH1/LDH-4H is most commonly silenced in
glycolytic cancer cells, a process involving hypermethylation of
the LDH-B gene promoter (Leiblich et al., 2006; Thangaraju et al.,
2009).
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FIGURE 4 | Lactate dehydrogenases. In eukaryote cells, lactate
dehydrogenases (LDHs) are tetrameric enzymes catalyzing the reversible
reduction of pyruvate into lactate. The LDH-B gene is constitutively
transcribed and encodes subunit LDH-H, whereas transcription of the
LDH-A gene, which is inducible by hypoxia due to the presence of a
consensus HIF-1-binding motif (hypoxia-responsive element, HRE), encodes
the LDH-M subunit. Arrangement of the subunits to forms active tetramers
may lead to the formation of five distinct enzymes, LDH1 to LDH5.
Compared to LDH-H, LDH-M has a higher K m and a higher V max for pyruvate
reduction. Consequently, LDH5/LDH-4M preferentially catalyzes the
reduction of pyruvate into lactate, LDH1/LDH-4H preferentially catalyzes
the oxidation of lactate into pyruvate, and LDH2, LDH3, and LDH4 have
intermediate enzymatic activities.

PYRUVATE DEHYDROGENASE KINASE 1
Pyruvate dehydrogenase (PDH), the enzyme committing pyru-
vate to enter into the TCA cycle, is subject to phosphorylative
inhibition by PDK1 (Holness and Sugden, 2003). Under hypoxia,
PDH inhibition has two main objectives: to orient pyruvate to the
LDH5 reaction for NAD+ production, and to prevent the exces-
sive production of reactive oxygen species (ROS) by uncoupled
mitochondria (Kim et al., 2006; Papandreou et al., 2006). Indeed,
although oxygen is the primary acceptor of the electrons produced
by the respiratory chain, electrons are transferred to water to pro-
duce ROS when oxygen becomes limiting. As a HIF-1-target gene
product, PDK1 couples hypoxia to the attenuation of the respira-
tory chain activity (Kim et al., 2006). Similar to HK2, it has been
shown that HIF-1 cooperates with c-Myc for the transactivation
of PDK1 (Kim et al., 2007). High PDK1 expression strongly corre-
lates with poor outcome in head-and-neck cancer (Wigfield et al.,
2008).

MONOCARBOXYLATE TRANSPORTER 4
The LDH5 reaction yields equimolar concentrations of lactate
(from pyruvate) and protons (from NADH). To avoid intracel-
lular acidification and death, glycolytic cells must export protons.
Several systems are adapted for the transport of protons (see also
below) among which MCT1, MCT2, MCT3, and MCT4 are pas-
sive lactate–proton symporters (Halestrap and Meredith, 2004).
MCT4 (K m lactate = 22 mM) has the lowest affinity for lactate, is
encoded by a HIF-1-target gene (Ullah et al., 2006), and is there-
fore adapted for the export of lactic acid from glycolytic tumor
cells (Dimmer et al., 2000). It plays an important contribution to
the regulation of intracellular pH (pHi): although it has only a low

affinity for lactate, its high turnover rate ensures efficient proton
export (Chiche et al., 2011). MCT1 (K m lactate = 3.5–10 mM) has
an intermediate affinity for lactate and is ubiquitously expressed
in healthy and cancer tissues. In cancer, it facilitates lactate uptake
by oxidative tumor cells in a newly described metabolic pathway
involving lactate oxidation into pyruvate to fuel the TCA cycle
(see below; Sonveaux et al., 2008). MCT2 (K m lactate = 0.5 mM)
and MCT3 (K m lactate = 5 mM) have the highest affinity for lac-
tate and are specialized in the import of lactate in very specific
tissues such as liver (Cori cycle), kidney, and retina (Garcia et al.,
1995; Philp et al., 2001; Perez et al., 2010). It was recently shown
that high expression of both MCT1 and MCT4 correlates with the
invasiveness of lung cancer cells (Izumi et al., 2011).

In a synthetic form, the full glycolytic reaction is
expressed by the equation: Glucose + 2ADP → 2ATP + 2 Lac-
tate + 2H+ + 2H2O. Under hypoxia, the reaction is paced at high-
rate to fulfill the energetic needs of tumor cells. Two important
questions directly come to mind. How do hypoxic tumor cells
often located at distance from blood vessels get access to high level
glucose? How do they avoid intracellular acidification?

We have recently proposed metabolic symbiosis as a rationale
for efficient glucose delivery to the hypoxic tumor cell compart-
ment (Figure 5; Sonveaux et al., 2008). The symbiosis is based
on the exchange of lactate: hypoxic/glycolytic tumor cells pro-
duce lactate and normoxic/oxidative tumor cells consume lactate
oxidatively. The latter process involves lactate oxidation into pyru-
vate by LDH1. Core to the symbiosis is the metabolic preference of
oxygenated tumor cells for lactate compared to glucose as an oxida-
tive fuel, with as consequence improved distribution of glucose
to hypoxic tumor areas. Rationale for the metabolic preference
include a competition between LDH1 and the glycolytic enzyme
GAPDH for NAD+ (LDH1 being a more efficient pathway; Tanaka
et al., 2004) coupled to the fact that lactate inhibits HK and PFK1
activities (Leite et al., 2011). In the symbiotic model, MCT4 serves
to export lactate from glycolytic tumor cells (Dimmer et al., 2000)
and we have demonstrated MCT1 as the main facilitator of lactate
uptake by oxidative tumor cells (Sonveaux et al., 2008).

The maintenance of an intracellular pH close to or even slightly
above 7.3 is ensured by several pH regulatory systems in addition
to MCT4 (see above). Interestingly, most of these transporters
and enzymes are also HIF-1-target gene products, thus emphasiz-
ing that the regulation of pHi is an integral part of the glycolytic
switch (Pouyssegur et al., 2006). Figure 6 proposes a synthetic view
of the major pH regulators of cancer cells. Compared to MCT4
which is a fully passive system, the other systems directly [vacuo-
lar ATPase (V-ATPase)] or indirectly require ATP; although they
are not sodium-dependent enzymes, CA9 and NHE1 ultimately
depend on the export of sodium largely mediated by NaK ATPase
to maintain their activities. A brief description of their activities
follows.

CARBONIC ANHYDRASE-9
Carbonic anhydrases (CAs) form a large family of zinc metal-
loenzymes that catalyze the reversible hydration of carbon dioxide
into carbonic acid. Although both CA9 and CA12 are transmem-
brane isoforms with an extracellular-facing catalytic site, CA9 is
characterized by the highest H+ transfer rate known among CAs
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FIGURE 5 | Model according to which tumors behave as metabolic

symbionts. Tumor heterogeneity includes metabolism. At a remote location
from perfused blood vessels, hypoxic tumors cells rely on glycolysis for
survival and proliferation. High ATP production mandatorily depends on high
glucose availability and is associated with the release of lactate, a process
facilitated by monocarboxylate transporter 4 (MCT4). In contrast, although
they also express glucose transporters (GLUT), oxygenated tumor cells have a

metabolic preference for lactate versus glucose. MCT1 is a transporter is
adapted for lactate uptake (Sonveaux et al., 2008). In the presence of oxygen,
lactate is oxidized to pyruvate by lactate dehydrogenase 1 (LDH1) and
pyruvate fuels the tricarboxylic acid (TCA) cycle to produce ATP. The metabolic
preference of oxidative tumor cells for lactate allows hypoxic tumor cells to
get access to high levels of glucose. This metabolic cooperativity is key for
tumor cell survival under hypoxia in vivo.

(kcat/K m ∼ 55 μM−1s−1; Wingo et al., 2001). It is a major facil-
itator of the extracellular trapping of acid in tumors, which is
achieved by hydrating cell-generated CO2 into HCO−

3 and H+.
Both CA9 and CA12 are HIF-1-target gene products and their
expression is therefore significantly induced by hypoxia (Wykoff
et al., 2000; Chiche et al., 2009). The two enzymes have been shown
to promote tumor cell survival and growth by maintaining pHi

within the physiological range,which also confers a survival advan-
tage to tumor cells (compared to non-malignant cells) exposed to
an acidic extracellular environment (Chiche et al., 2009). Overex-
pression of CA9 in several types of malignancies is associated with
increased metastatic burden and poor patient survival (Hussain
et al., 2007).

MEMBRANE-BOUND VACUOLAR ATPase
Vacuolar ATPase is a large heteromultimeric enzyme playing an
important role in pH homeostasis. It is composed of two sectors: a
catalytic V1 sector and a membrane-bound V0 sector. The V1 sec-
tor, comprising eight different subunits, hydrolyzes ATP to ADP to
abstract energy for H+ transportation. The V0 sector is composed
of five different subunits that form the H+ translocating channel
(Forgac, 1989). In the highly invasive human breast cancer cells
MDA-MB-231, the extrusion of protons via membrane-bound V-
ATPase was shown to cause extracellular acidification and to con-
tribute to the maintenance of a negative pH gradient between the
cytosol and the acidic extracellular environment (Sennoune et al.,
2004; Hinton et al., 2009). Low extracellular pH (pHe) may induce
the increased secretion and activation of proteases such as matrix
metalloproteinases (MMP), bone morphogenetic protein-1-type
metalloproteinases, tissue serine proteases,and adamalysin-related
membrane proteases, resulting in degradation and remodeling of

the extracellular matrix. V-ATPase thereby contributes to cancer
invasion and metastasis. It is indeed overexpressed in many types
of metastatic cancers and positively correlates with invasion and
metastasis (Martinez-Zaguilan et al., 1993; Sennoune et al., 2004).
Although none of the subunits of V-ATPase was reported as a HIF-
1-target gene product so far, subunit c in V0 (ATP6V0C) has been
found to directly interact with HIF-1α, suggesting it to be a novel
regulator of HIF-1 (Lim et al., 2007).

SODIUM–PROTON EXCHANGER (NHE1)
NHE1 is a ubiquitously expressed member of the SLC9A family of
Na+/H+ exchangers that mediates the transmembrane exchange
of intracellular proton for extracellular sodium. Amiloride-
sensitive and growth factor-activated NHE1 is activated by mito-
gens, integrins and oncogenic transformation (Paris and Pouysse-
gur, 1984), and has been suggested as a HIF-1-target gene product
(Shimoda et al., 2006; Mo et al., 2011). In normal cells, NHE1
is almost quiescent at neutral pH. Proton-dependent activation
occurs when pHi becomes acidic, i.e., below a set point of 7.1–6.9
pH units (Reshkin et al., 2000). In mitogen-stimulated normal cells
like in cancer cells, an increase in the affinity of the allosteric intra-
cellular proton-binding site thus hyperactivates NHE1 resulting in
an increase in pHi and extracellular acidification. Numerous stud-
ies with in vitro cancer cell cultures including migration assays have
shown that NHE1 is polarized at the leading edge of invadopo-
dia where it promotes a local increase in pHi and a decrease in
pHe, both involved in cell extension (Pouyssegur et al., 1984; Car-
done et al., 2005; Stuwe et al., 2007; Chiang et al., 2008). Indeed,
increased pHi remodels the cytoskeleton, whereas lowered pHe

modifies cellular attachment to substrates and disrupts the extra-
cellular matrix (Stuwe et al., 2007; Busco et al., 2010). High NHE1
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FIGURE 6 | Major cellular pathways involved in the cellular export of

protons. The maintenance of high-rate glycolysis requires the export of
protons that would otherwise create intracellular acidification leading to cell
death. Monocarboxylate transporter 4 (MCT4) is a passive lactate
(Lac−)-proton symporter adapted for the export of protons. Carbonic
anhydrase-9 (CA9) is a transmembrane enzyme promoting the reversible
hydratation of CO2. Acidity is exported under the form of cell-permeable
CO2, followed by CA9-facilitated hydratation of CO2 to carbonic acid.
Carbonic acid then readily dissociates to proton and bicarbonate
extracellularly. Bicarbonate may be recaptured by the sodium bicarbonate
cotransporter (NBC) to react with a proton intracellularly. Then, bicarbonate
gets dehydrated to yield CO2 for export. V-ATPase is expressed at the
plasma membrane of several tumor cell types where it acts as a proton
pump fueled by ATP. The sodium–proton exchanger 1 (NHE1) is a passive
proton–sodium antiporter. The sodium–potassium (NaK) ATPase promotes
the export of sodium that would otherwise accumulate as a consequence
of NHE1, CA9, and NBC activities. MCT4 is thus the only truly passive
system for proton export. Other abbreviation: Pi, inorganic phosphate.

expression was reported to correlate with poor clinical outcome in
cervix and hepatocellular cancers (Chiang et al., 2008; Yang et al.,
2010).

Although we emphasized above the prominent role exerted by
HIF-1 in the glycolytic switch, several additional pathways collab-
orate with HIF-1 to promote high-rate glycolysis. An important
contributor is c-Myc, a transcription factor normally involved in
the regulation of cell metabolism and in the induction of cell pro-
liferation (Grandori et al., 2000). While HIF-1 has evolved to facili-
tate energy production through glycolysis under hypoxia, c-Myc in
contrast promotes mitochondrial biogenesis under normoxic con-
ditions (Li et al., 2005). Through various mechanisms (see Dang
et al., 2008 for a complete review), both pathways are mutually
exclusive in normal cells. In many tumors, however, c-Myc is found
to be overexpressed as a consequence of yet incompletely under-
stood mechanisms involving gene amplification, altered transcrip-
tional control and chromosomal translocation (Oster et al., 2002).
Ectopically expressed c-Myc cooperates with HIF-1 to induce the
expression of GLUT1, of the glycolytic enzymes HK2, PDK1, and

LDH5, and of pro-angiogenic VEGF (Ebert et al., 1995; Osthus
et al., 2000; Kim et al., 2007). In addition, c-Myc promotes the
selection of PKM2 versus PKM1, as described before (David et al.,
2010). c-Myc deregulation in cancer cells thus offers the advantage
of cooperativity with HIF-1 to simultaneously promote glycolytic
energy production and cataplerosis. Another pathway is initiated
when AMPK, the energy-state sensor of the cell, is allosterically
activated by the rising levels of AMP associated with the ener-
getic crisis that can be met with hypoxia. Once activated, AMPK
directly phosphorylates and activates PFKFB3, supporting acceler-
ated glycolysis as detailed above (Marsin et al., 2002). Interestingly,
AMPK activation has also been shown to support the phospho-
rylative inhibition of mammalian target of rapamycin (mTOR),
a kinase stimulating the transcription of HIF-1α and MYC genes
(Inoki et al., 2003; Guertin and Sabatini, 2007; Shackelford et al.,
2009). While AMPK represses mTOR, mTOR hyperactivation is
associated with malignancies characterized by a high glycolytic
rate (Inoki et al., 2003; Corradetti et al., 2004; Gwinn et al., 2008).
Another feature of AMPK as a cell cycle check-point is its ability to
activate p53 (Imamura et al., 2001; Zhang et al., 2010), and recent
findings have implicated p53 in the inhibition of glycolysis (Jiang
et al., 2011).

GLYCOLYSIS AND BIOSYNTHESIS IN CANCER
The second metabolic equation of cancer refers to the biosynthesis
of cell constituents. Glucose is a major source of carbohydrates,
with as direct consequence that full energy extraction in oxida-
tive pathways would deprive cells from important biosynthetic
blocks. Similarly, a glycolytic cell producing lactate from glucose
stoichiometrically would fail to proliferate. The second metabolic
equation of cancer can therefore be rephrased: which metabolic
behavior is compatible with cell proliferation? Or even further:
which metabolic behavior would promote cell proliferation? Cur-
rent knowledge indicates that glycolysis offers the best plasticity
to determine the fate of metabolic intermediates, that TCA cycle
reactions are an essential providers of biosynthetic precursors in
a process termed cataplerosis, and that glucose is not the only
source of carbohydrates (DeBerardinis et al., 2008). In fact, any
proliferating cell in the body undergoes a metabolic switch pri-
marily consisting of uncoupling the TCA cycle from OXPHOS
(Vander Heiden et al., 2010). Organic acids such as citrate, isoc-
itrate, and malate may thereby leak out from mitochondria. The
switch is associated with an increased glycolytic rate allowing gly-
colysis to become a main provider of ATP but also to serve as a
hub for several biosynthetic pathways (DeBerardinis et al., 2008).
Phenotypically, proliferating cells which have increased glucose
uptake and increased lactate production perform aerobic glycoly-
sis, a phenomenon initially described in mouse ascites tumor cells
by the 1931 Nobel Prize laureate Otto Warburg and now termed
“the Warburg effect” (Warburg et al., 1927). Aerobic glycolysis is
a metabolic hallmark of any proliferating cell, being malignant or
not (Vander Heiden et al., 2010). What distinguishes cancer cells
from normal cells is its persistence, aerobic glycolysis being oth-
erwise naturally reversible in after cell division. Self-autonomous
aerobic glycolysis is thus an integral part of the proliferative phe-
notype of cancers. It is driven by genetic and epigenetic changes
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that are still incompletely understood. Mutations in enzymes cou-
pling the TCA cycle to OXPHOS have been identified (Pollard
et al., 2003; Selak et al., 2005; Dang et al., 2009) but account only
marginally for the total population of cell lines performing aerobic
glycolysis. Consequently, the Warburg effect may be reverted phar-
macologically in many cases (Fantin et al., 2006; Moreno-Sanchez
et al., 2007).

Privileged biosynthetic pathways in Warburg-phenotype tumor
cells are summarized in Figure 7 and have been extensively
reviewed recently (DeBerardinis et al., 2008). Briefly, two HIF-1-
target gene products exert key influences: PKM2 and PDK1. PKM2
exists either as an active tetramer that promotes ATP production
or as an inactive dimer that redirect carbohydrates to ribulose-
5P and NADPH production through the PPP. Ribulose-5P is as

an essential precursor for DNA synthesis. NADPH on the other
hand is a reductant that may serve either to recycle anti-oxidant
glutathione or as an essential reagent for lipid biogenesis (Vander
Heiden et al., 2009). As a metabolic sensor, PKM2 is under the
positive allosteric regulation of F1,6BP (a glycolytic intermediate
signaling the upstream saturation of biosynthetic pathways) and
under allosteric repression by downstream biosynthetic products
such as alanine, other amino-acids, and lipids (see above). It is fur-
ther controlled by oncogene-mediated phosphorylation. A second
important biosynthetic bottleneck is PDH, under the repressive
control of PDK1. PDK1 controls mitochondrial activities: when
activated, it prevents pyruvate entry into the TCA cycle; when
inactive, pyruvate is converted to acetyl-coA and may serve as a
precursor for the production of the cataplerotic products citrate

FIGURE 7 | Simplified scheme highlighting glycolysis as a biosynthetic

hub. Enzymes are represented in italicized blue font and their
substrates in bold black. Tumor cell proliferation relies on aerobic
glycolysis for ATP production and also to redirect carbohydrates toward
biosynthetic routes. When allosterically activated by fructose-1,6-
bisphosphate (F1,6BP), pyruvate kinase M2 (PKM2) promotes pyruvate
(and ATP) synthesis. Pyruvate fuels either the production of lactate (for NAD+

production further supporting glycolytic ATP production), alanine [through
the reversible alanine aminotransferase (ALAT) reaction during which a
nitrogen group is transferred from glutamate onto pyruvate to yield alanine],
and/or it can be used to replenish the tricarboxylic acid (TCA) cycle.
The fate of pyruvate is oriented by the activity of pyruvate dehydrogenase
kinase 1 (PDK1) repressing pyruvate dehydrogenase (PDH) in the
mitochondrion. When PKM2 is off (for example when accumulating alanine
allosterically promotes dimer formation), glucose-6-P is directed toward
the pentose phosphate pathway (PPP) to yield ribulose-5P (for DNA
synthesis) and NADPH (2 molecules per molecule of G6P). In addition to

glucose, glutamine is an important source of organic acids for proliferating
cells. Glutamine uptake is mediated by glutamine transporters (GLT) and
glutaminases present in the cytosol or in the mitochondrion generate
glutamate. Glutamate fuels the TCA cycle and is also a nitrogen donor for
alanine synthesis (ALAT reaction). Uncoupled mitochondria are major
providers of biosynthetic precursors and produce reactive oxygen species
(ROS). During cataplerosis, citrate, and isocitrate are exported to fuel
lipogenesis, malate is exported and converted into pyruvate for NADPH
production by the malic enzyme (ME), and glutamate may serve to
regenerate glutamine as a precursor for amino-acid synthesis or to be
exchanged against extracellular amino-acids. NADPH, produced either from
the PPP or from malate, has two main roles: it is a necessary cofactor for
lipogenesis (HMG-CoA reductase step) and it is used as a reductant for the
regeneration of glutathione (GSH) from its oxidized disulfide form (GSSG). As
an anti-oxidant, GSH detoxifies ROS. Other abbreviations: GLUT, glucose
transporter; IDH, isocitrate dehydrogenase; MCT, monocarboxylate
transporter.
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and isocitrate (initiating in lipid biogenesis), glutamate (gener-
ating glutamine), and malate (to produce NADPH and pyruvate
through the malic enzyme reaction). NADPH, produced either
in the oxidative arm of the PPP or through the malic reaction,
is a necessary cosubstrate for lipid biogenesis and promotes glu-
tathione turnover for the detoxification of ROS produced from
uncoupled mitochondria. Importantly, replenishment of the TCA
cycle is ensured by glutamine, taken up from the extracellular envi-
ronment and recently identified as an important source of organic
acids for biosynthesis (DeBerardinis and Cheng, 2010). Glutamine
uptake is under the control of c-Myc (Wise et al., 2008; Gao et al.,
2009). Although aerobic glycolysis is now widely recognized as an
essential component of the proliferative phenotype, key questions
still remain unanswered. For instance, several studies report con-
stitutive HIF-1 activity in Warburg-phenotype tumor cells, but,
although pathways triggering HIF-1 under normoxia have been
known for years (Semenza, 2010), none in particular has been
conclusively linked with the Warburg effect yet. Furthermore, the
primum movens accounting for OXPHOS inhibition remains elu-
sive, which consequently limits our understanding as to whether
or not reversion of the Warburg effect may be therapeutically
exploited.

ANTICANCER TARGETS IN THE GLYCOLYTIC METABOLISM
OF TUMORS
The aforementioned observations position glycolysis as a key con-
tributor to the malignant phenotype and support the quest for
new anticancer treatments targeting glycolysis. Indeed, most of the
molecular adaptations supporting high-rate glycolysis are either
unique to cancer in an otherwise healthy organism or druggable
with manageable toxicities. The most advanced clinical applica-
tions exploiting tumor glycolysis are briefly summarized in Table 1
and detailed below. Our purpose is not to be exhaustive but to
illustrate how the current molecular knowledge may translate into
(future) anticancer treatments.

EXPLOITING HIGH GLUCOSE UPTAKE WITH 2-DEOXYGLUCOSE
High glucose uptake is a direct consequence of the glycolytic
switch. While the uptake per se primarily results from overexpres-
sion of the high affinity transporters GLUT1 and GLUT3, glucose
trapping depends on high-rate glucose phosphorylation by the
HK2 reaction (see before). The capability of tumors to take up
and sequester glucose even in limiting condition has been broadly
imposed for the detection of tumors and their metastases and for
tumor staging in the clinics (Gambhir, 2002). The glucose analog
[18F]-fluorodeoxyglucose ([18F]-FDG, wherein 18F is a positron
emitter) has been developed for positron emission tomography
(PET; Som et al., 1980). [18F]-FDG–PET takes advantage of the
fact that, although as a glucose analog 2-deoxyglucose (2-DG) is
avidly taken up and phosphorylated in tumor cells, lack of the 2′
hydroxyl group does not allow further processing thus leading to
2-DG accumulation. Owing to spatial resolution, the fact that not
all tumors are highly glycolytic and because some non-malignant
tissues (such as the brain and the bladder) also accumulate the
tracer, the overall mean sensitivity and specificity across various
applications using [18F]-FDG–PET is of about 85% (Gambhir,
2002).

GLUT INHIBITORS
GLUT1 and GLUT3 overexpression in many types of cancer pro-
vides a rationale for the anticancer use of GLUT inhibitors. Besides
diagnosis and tailored radiotherapy, 2-DG as a GLUT inhibitor
has been tested as an anticancer drug. Although its efficacy alone
has been questioned (notably because of brain toxicity; Tennant
et al., 2010), it has proven efficacy in sensitizing human osteosar-
coma and non-small cell lung cancers to adriamycin and paclitaxel
(Maschek et al., 2004). A Phase I clinical study for prostate can-
cer recently terminated defining a dose of 45 mg/kg for Phase II
trials (Stein et al., 2010). Phloretin is a natural flavonoid and a
competitive GLUT inhibitor which was demonstrated to retard
tumor growth in preclinical models (Nelson and Falk, 1993;
Kobori et al., 1997). Another natural flavonoid, silybin/silibinin,
was recently revealed as a GLUT inhibitor (Zhan et al., 2011).
Silybin, already known to inhibit tumor formation and growth in
preclinical models (Matsumoto et al., 2008; Garcia-Maceira and
Mateo, 2009), is ongoing clinical Phase I (Flaig et al., 2007) and
Phase II (ClinicalTrials.gov Identifier: NCT00487721) trials for
prostate cancer. Flavonoids have many biological properties and
act primarily as anti-oxidants, making it hazardous to conclude
that GLUT inhibition is a primary or even a main mechanism
accounting for their antitumor effects. To our knowledge, no spe-
cific GLUT1 or GLUT3 inhibitor has been identified so far, with
as consequence a lack of evidence that GLUT inhibition could be
tumor-specific.

HK2 INHIBITORS
HK2 has been widely characterized as a facilitator of glycoly-
sis and as a repressor of apoptosis in several types of cancers.
Its expression is essential for the growth of glioblastoma mul-
tiform (GBM; Wolf et al., 2011). Many efforts have thus been
made to identify specific inhibitors. Beside 2-DG, lonidamine
has been described since the early eighties as a specific inhibitor
of mitochondria-bound HK (Floridi et al., 1981). Lonidamine,
which further potentiates the therapeutic efficacy of other anti-
cancer drugs in preclinical models (reviewed in Pelicano et al.,
2006), went to Phase II clinical trials for GBM in combina-
tion with diazepam, where it failed to show therapeutic benefit
in terms of time-to-progression and overall survival (Oudard
et al., 2003). The drug was until recently in clinical trials Phase
II/III for the treatment of benign prostatic hyperplasia (Clini-
calTrials.gov Identifiers: NCT00237536 and NCT00435448), but
the trials have been suspended after six patients suffered from
severe hepatic adverse effects. The current leading compound is
3-bromopyruvate (3BP), an alkylating agent reacting with cysteine
residues in proteins. 3BP was initially identified as an HK inhibitor
in an ex vivo model of rabbit liver cancer (Ko et al., 2001), and
later confirmed to exert antitumoral activities (including metasta-
tic suppression) in several types of advanced experimental tumors
in vivo (see Ganapathy-Kanniappan et al., 2010 for review). The
molecular determinants of the cancer selectivity of 3BP are still
incompletely understood but could logically depend on the abun-
dance of cysteine-rich glutathione detoxifying 3BP in normal
cells and more rapidly exhausted in oxidatively stressed, glycolytic
tumor cells (Qin et al., 2010). Because 3BP is chemically highly
reactive, several other targets could mediate its antitumor effects
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Table 1 | Leading therapeutic compounds targeting the glycolytic metabolism of tumors.

Target Compound Mode of action Current clinical status

GLUTs 2-DG Competitor with glucose Phase I for prostate cancer terminated. Enter-

ing Phase II. Brain toxicity reported

Phloretin Competitive inhibitor Preclinical

Silybin/silibinin Small molecule inhibitor Phase I and Phase II, prostate cancer

HK2 2-DG Competitor with glucose Phase I for prostate cancer terminated. Enter-

ing Phase II. Brain toxicity reported

Lonidamine Small molecule inhibitor Failed to show therapeutic benefit in Phase

II for GBM. Phase II/III for benign hyperplasia

suspended due to hepatotoxicity

3-bromopyruvate Alkylating agent, inhibitor of HK2 mitochondrial

anchorage

Preclinical

PFK2/PFKFB3 3PO Specific inhibitor Preclinical

PKM2 TLN-232/CAP-232 Peptidic inhibitor Phase II trials for metastatic RCC and

melanoma have been halted for legal reasons

Shikonin and alkannin Selective inhibitors Preclinical

LDH5 Gossypol/AT-101 Malarial LDH inhibitor Phase I and II, many types of cancer

FX11 Selective competitive inhibitor Preclinical

PDK Dichloroacetate Small molecule inhibitor (pyruvate mimetic) Phase I, brain cancer. Phase II, head-and-neck

and non-small cell lung cancers

CA9 Indisulam Small molecule inhibitor Phase II, melanoma, lung, pancreatic, and

metastatic breast cancers

Girentuximab Blocking antibody Phase III, clear-cell RCC

Membrane-bound

V-ATPase

Esomeprazole Proton pump inhibitor Phase II, metastatic breast cancer

NHE1 Paclitaxel Antimitotic, reported to induce apoptosis through

NHE1 inhibition (Reshkin et al., 2003)

In clinical use

EIPA Small molecule inhibitor, amiloride (diuretic)

derivative

Preclinical

MCT1 AZD3965 Small molecule inhibitor Entering Phase I/II, advanced solid tumors

HIF-1 BAY87-2243 Inhibitor of HIF-1 activity Entering Phase I, advanced cancers

EZN-2968 Antisense oligonucleotide Entering Phase I, several types of cancers

c-Myc Quarfloxin/CX-3453 Inhibitor of MYC transcription Phase II, neuro-endocrine carcinomas

AMPK Metformin AMPK activator, antidiabetic drug In clinical use for diabetes. Several clinical

trials ongoing for cancer

2-DG, 2-deoxyglucose; 3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; AMPK, AMP kinase; CA9, carbonic anhydrase-9; EIPA, 5-(N-ethyl-N-isopropyl)amiloride;

FX11, 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid; GBM, glioblastoma multiform; GLUT, glucose transporter; HIF-1, hypoxia-inducible

factor-1; HK2, hexokinase 2; LDH5, lactate dehydrogenase 5; MCT1, monocarboxylate transporter 1; NHE1, sodium–proton exchanger 1; PDK, pyruvate dehy-

drogenase kinase; PFK2, phosphofructokinase 2; PFKFB3, phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; PKM2, pyruvate kinase M2; RCC, renal cell

carcinoma.

(Dell’Antone, 2009). Although preclinical studies led to promis-
ing results, 3BP is not yet reported to have entered into clinical
trials.

PFKFB3 INHIBITOR
As a main provider of the PFK1 allosteric activator F2,6BP, PFKFP3
exerts an important contribution to the glycolytic switch. To
our knowledge, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one
(3PO) is the only specific inhibitor of PFKBP3 identified so far
(Clem et al., 2008). 3PO was reported to decrease the concentra-
tion of F2,6BP in tumor cell lines, leading to decreased glucose
uptake and to growth suppression in several types of experimental
tumors in vivo. The same study documented in vitro selectivity for

tumor versus non-malignant cells. Independent confirmation is
now warranted.

PKM2 INHIBITORS
PKM2 is a master switch orienting glycolysis to ATP synthesis or
to the production of biosynthetic blocks, making it an attractive
target for anticancer treatments. In 2007, Thallion Pharmaceu-
ticals started a Phase II clinical trial with the PKM2 inhibitor
TLN-232/CAP-232, a seven amino-acid peptide administered to
patients with refractory metastatic renal cell carcinoma. Encourag-
ing results were reported in a poster displayed at the 33rd congress
of the European Society for Medical Oncology in September 2008:
two out of the 3 patients having completed the study showed stable
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disease and TLN-232 was generally safe and well tolerated. Recruit-
ment for a second Phase II trial in metastatic melanoma patients
started mid 2008 but was halted for legal reasons in June 20101. In
2010, Cantley’s lab screened a huge library of compounds to ulti-
mately identify two water-soluble small molecule inhibitors with
selectivity for PKM2 versus PKM1 (Vander Heiden et al., 2010).
Both molecules were reported to presumably block the allosteric
F1,6BP-binding site of PKM2 absent in PKM1. Recently, shikonin
and its enantiomeric isomer alkannin have been shown to inhibit
PKM2 at concentrations that resulted in over 50% inhibition
of PKM2 without affecting the activities of PKM1 and pyruvate
kinase-L (harboring the same F1,6BP-binding site as PKM2; Chen
et al., 2011). Both compounds inhibited glucose consumption and
lactate release in MCF-7 and A549 tumor cells. These studies col-
lectively demonstrate the possibility to identify specific PKM2
inhibitors that could serve as potent anticancer drugs. Interest-
ingly, a recent publication describes the identification of PKM2
activators intended to be used as antiproliferative agents (Boxer
et al., 2010). These drugs would act as oncostatics.

LDH5 INHIBITORS
By restoring the NAD+ pool required for the GAPDH reaction,
LDH5 plays an essential role in the perpetuation of high-rate
glycolysis and is therefore recognized as a therapeutic target for
cancer (Xie et al., 2009; Le et al., 2010). High blood and tis-
sue levels are associated with bad prognosis for many types of
tumors (discussed in Koukourakis et al., 2011). The significance
of LDH5 as a therapeutic target has been documented in recent
studies showing that inhibition of its expression using RNA inter-
ference impairs tumor initiation, maintenance and progression
(Fantin et al., 2006; Le et al., 2010). A selective (with respect to
LDH1 and GAPDH) competitive (with respect to NADH bind-
ing) inhibitor of LDH5, 3-dihydroxy-6-methyl-7-(phenylmethyl)-
4-propylnaphthalene-1-carboxylic acid (FX11), has been iden-
tified through screening a bank of compounds derived from
the natural product gossypol, a known malarial LDH inhibitor
(Yu et al., 2001b). FX11 was recently shown to induce oxida-
tive stress and cell death in vitro, which translated in vivo into
inhibition of the progression of human lymphoma and pancre-
atic cancer xenografts (Le et al., 2010). Although gossypol/AT-101
either alone or in association with chemotherapy is undergo-
ing several Phase I and II clinical trials2, the use of FX11 in
clinical studies has not yet been reported. Recently, N -Hydroxy-
2-carboxy-substituted indole compounds have been identified as
LDH5-specific inhibitors (Granchi et al., 2011). This series of com-
pounds acts as competing inhibitors of LDH5 with respect to both
NADH and pyruvate.

PDK INHIBITOR
By blocking PDH activity, PDK1 is a major gatekeeper of pyru-
vate entry into the TCA cycle. Dichloroacetate (DCA) has been
known for a long time as a PDK inhibitor (Whitehouse and Ran-
dle, 1973) and was already used in the late eighties in clinical trial

1http://www.thallion.com
2http://www.clinicaltrial.gov

for lactic acidosis treatment (Stacpoole et al., 1988). This pyru-
vate mimetic was shown to occupy the pyruvate-binding site of
PDK2, which is largely conserved among PDKs, therefore inhibit-
ing non-selectively albeit with different potencies all PDK isoforms
(Knoechel et al., 2006). Papandreou et al. (2011) is a recent
review describing the preclinical evaluation of DCA. Although
the drug showed high heterogeneity in terms of antitumor activ-
ity, a prospective clinical trial on five glioblastoma patients treated
with surgery, radiation, and temozolomide was completed with
promising results (Michelakis et al., 2010). A Phase I clinical trial
in brain cancer (ClinicalTrials.gov Identifier: NCT01111097) and
two Phase II clinical trials (for head-and-neck, NCT01386632; and
for refractory metastatic breast and non-small cell lung cancers,
NCT01029925) are ongoing.

TARGETING pH REGULATION
Low pHe in tumors is the consequence of high metabolic activities
and an important determinant of tumor aggressiveness. Indeed,
tumor cells contrarily to normal cells at the invasive front of
tumors are well equipped for the release of protons and are there-
fore selectively adapted to survive and proliferate in a moderately
acidic environment (Fang et al., 2008; Chiche et al., 2010). Accord-
ingly, Gillies, Gatenby and colleagues have shown that dietary
measures that boost bicarbonate levels in the plasma can to some
extent induce tumor alkalinization without affecting healthy tis-
sues (Robey et al., 2009). This study also reported a reduced
incidence of metastasis in mice in some but not all tumor models.
These encouraging results certainly warrant further investigations.
On the other hand, many drugs targeting proton transporters have
been suggested as anticancer drugs. These drugs should exert max-
imum toxicity to cancer cells and negligible or minimal toxicity to
normal cells. The current leading compound for CA9 inhibition
is indisulam, a sulfonamide derivative shown to inhibit CA9 at
nanomolar concentrations (Owa et al., 1999; Abbate et al., 2004;
Supuran, 2008). Despite no significant efficacy was observed for
indisulam as a single agent in a Phase II clinical trial on non-
small cell lung cancer (Talbot et al., 2007), additional Phase II
trials are ongoing for the treatment of melanoma, lung, pancreatic,
and metastatic breast cancers. Blocking antibodies against CA9 or
CA12 have been identified (Xu et al., 2010; Battke et al., 2011;
Murri-Plesko et al., 2011). Girentuximab, a specific antibody tar-
geting CA9, is now in Phase III clinical trials for treating patients
with clear-cell renal cell carcinoma (Deal watch, 2011). Several
inhibitors of membrane-bound V-ATPase have been reported and
are the topic of a recent review (Perez-Sayans et al., 2009). A block-
ing antibody has been reported to induce growth retardation in
preclinical xenograft models (Wang et al., 2008). Though they
have different antitumor efficacies, they all seem to target sub-
unit c in the V0 domain. Esomeprazole (ESOM) is among the
leading compounds of the class, currently undergoing Phase II
clinical trials in metastatic breast cancer in combination with doc-
etaxel and cisplatin (ClinicalTrials.gov Identifier: NCT01069081).
NHE1 can be inhibited by supraclinical concentrations of the
diuretic drug amiloride. A derivative of amiloride, 5-(N -ethyl-N -
isopropyl)amiloride (EIPA), is 200-times more potent as a specific
inhibitor of NHE1 but has not been developed for clinical use
(Maidorn et al., 1993). Interestingly, Reshkin et al. (2003) have
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shown that the pro-apoptotic effects of paclitaxel involved NHE1
inhibition and a decrease in pHi, thus providing additional signif-
icance for clinical targeting. For what pertains to MCT4, although
MCT4 silencing was shown to reduce tumor cell migration (Gal-
lagher et al., 2007), no specific small molecule inhibitor has been
identified so far (Kennedy and Dewhirst, 2010). To our knowl-
edge, no blocking antibody has been identified targeting NHE1
or MCT4. Taken collectively, there is ample evidence that pH reg-
ulatory systems constitute promising anticancer targets. Clinical
translation will primarily depend on (i) better understanding the
relative contribution of each of these systems to the control of
tumor pH (target selection), (ii) the identification of isoform-
selective inhibitors (to minimize collateral effects), and (iii) the
development of non-invasive, sensitive pH imaging modalities.
Particular caution (and interest) should be paid to combination
treatments with anticancer drugs that are weak acids or bases.

MCT1 INHIBITORS
MCT1 inhibitors offer the opportunity to simultaneously target
tumor metabolism and angiogenesis within a same molecule.
As the main facilitator of lactate uptake, MCT1 is indeed at
the core of a metabolic symbiosis in tumors (Figure 5, where
MCT1 is expressed in oxidative tumor cells; Sonveaux et al., 2008)
and is the most upstream element of a lactate-signaling pathway
leading to NF-κB activation and IL-8 production in endothelial
cells (Vegran et al., 2011). Expressed at the plasma membrane of
oxygenated cells, MCT1 thus offers the advantage of an easy-to-
reach target for systemic therapy. Accordingly, the commercially
available MCT1 inhibitor α-cyano-4-hydroxycinnamate (CHC)
showed potent antitumor affects alone or in combination with
radiotherapy in mice, without exerting overt toxicity (Sonveaux
et al., 2008; Vegran et al., 2011). Safety is reasonably supported
by reports about MCT1-deficient humans who have no symp-
toms at rest but only develop muscle cramps under intensive
exercise; (Fishbein, 1986) and by the use of alternate metabolic
substrates by healthy tissues (Halestrap and Meredith, 2004). A
first small molecule, AR-C117977, has been developed as a specific
MCT1 inhibitor for mild immunosuppression (Bueno et al., 2007;
Kennedy and Dewhirst, 2010). A related orally administered com-
pound, AZD3965, is currently entering Phase I/II clinical trials for
advanced solid tumors3.

HIF-1 INHIBITORS
As a master regulator of the glycolytic and angiogenic switches,
HIF-1 has attracted much attention as an anticancer target.
Although several drugs have been identified to exert anticancer
effects partially through HIF-1 inhibition (extensively reviewed
in Onnis et al., 2009), there was until recently no small drug
directly and selectively inhibiting HIF-1. BAY87-2243, presented
as an inhibitor of HIF-1 activity and of HIF-1α stability and now
entering into Phase I clinical trials (ClinicalTrials.gov identifier:
NCT01297530) could be the first compound of the class. Patients
are also currently recruited for a Phase I trial testing EZN-2968,
an antisense oligonucleotide targeting HIF-1α (Greenberger et al.,

3http://science.cancerresearchuk.org/

2008). Conclusively, according to the peer-reviewed information
available, validation of HIF-1 as druggable anticancer target is still
pending.

c-Myc INHIBITORS
c-Myc is a member of the basic helix-loop-helix leucine zipper
(bHLH-ZIP) protein family. Its dimerization with another bHLH-
ZIP protein, Max, is necessary for various biological activities
including cellular transformation, apoptosis, and transcriptional
activation (Meyer and Penn, 2008). As recently reviewed in Berg
(2011), the c-Myc–Max interaction is an appealing target for drug
design having stimulated the development of several small mole-
cule inhibitors. One such small molecule, 10058-F4, inhibited the
growth of hepatocellular carcinoma cells in vitro (Lin et al., 2007).
Another small molecule compound, Quarfloxin/CX-3453, which
inhibits MYC transcription (Brooks and Hurley, 2010), is now in
Phase II clinical trials for neuro-endocrine carcinoma (ClinicalTri-
als.gov Identifier: NCT00780663). Although c-Myc inhibitors are
progressing to the clinics, an important limitation is that c-Myc is
a pleiotropic transcription factor required for the proliferation
of normal cells and for the maintenance of stemness (Wilson
et al., 2004). It is not clear to date whether c-Myc inhibitors will
display side effects as severe as or even worse than chemo- and
radiotherapy.

AMPK ACTIVATORS
Clinical data and translational research have now revealed that
patients with metabolic disorders such as type-2 diabetes or obe-
sity have an increased risk to develop tumors. Hyperglycemia and
hyperinsulinemia have indeed been implicated in tumorigenesis
by several pathways that either directly or indirectly converge to
mTOR activation (Godsland, 2010; Jalving et al., 2010; La Vec-
chia, 2011). Interestingly, epidemiological studies have also shown
reduced incidence of cancer in diabetic patients treated met-
formin, an AMPK-activating drug currently used for type-2 dia-
betes treatment (Evans et al., 2005; Libby et al., 2009; Jalving et al.,
2010). Ongoing clinical studies are aimed at evaluating whether
non-diabetic cancer patients could benefit from metformin as a
(neo-)adjuvant or chemopreventive treatment (to limit the risk of
cancer recurrence; Muti et al., 2009; Martin-Castillo et al., 2010).
Despite the undisputable advantage of using a clinically safe drug,
efforts are now indispensable to define the optimal therapeutic
dose (being lactic acidosis a side effect of AMPK activators) and
the genetic background of cancers suitable to be treated with this
drug.

CONCLUDING REMARKS
The glycolytic switch occupies a privileged position in the aggres-
sive agenda of most solid tumors. Initially proceeding through
suppression of the Pasteur Effect in response to hypoxia, it is indeed
an early event marking the entry of dormant tumors into an expo-
nential growth phase. As such, switching to a glycolytic metabolism
may precede the evolution of tumors toward the more aggres-
sive angiogenic and metastatic phenotypes. Glycolysis also exerts
a pervasive influence throughout tumor growth, making of cancer
a metabolic disease and suggesting necessary crosstalks between
metabolism, angiogenesis, and metastasis. Persistence of high-
rate glycolysis is under the master command of the transcription
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factor HIF-1 which, in collaboration with other oncogenic signal-
ing pathways including c-Myc, AMPK, and mTOR, promotes the
expression of most glycolytic enzymes and transporters. HIF-1
is inducible by hypoxia, thus bridging low pO2 to the glycolytic
phenotype for anaerobic energy production. But HIF-1 is also
constitutively expressed in Warburg-phenotype tumor cells where
it couples high-rate aerobic glycolysis to biosynthesis and cell pro-
liferation. Solid tumors are the result of metabolic selection and
a peculiar environment hosting different populations of metabol-
ically overactive cells among which cells with aerobic glycolysis,
anaerobic glycolysis and more oxidative phenotypes may cohabit.
Our identification of a metabolic symbiosis based on the exchange
of lactate between glycolytic and oxidative tumor cells provides a
cooperative dimension (Sonveaux et al., 2008), recently extended
to non-malignant, supportive stromal cells (Bonuccelli et al.,
2010). Metabolism is not static but rather highly adaptive to exter-
nal influences. The Warburg-phenotype itself is often reversible,
as it is for non-malignant cells. The comprehensive (and therefore
simplified in its expression) review that we provide here positions
tumor metabolism as a key contributor to malignancy and as an
attractive target for therapy. What have we learned until know?
Researches worldwide have essentially shown that several regula-
tors of glycolysis are amenable for anticancer therapy. The field
is still in its infancy, though. Essential questions remain unan-
swered, as for example regarding the plastic adaptation of tumor
metabolism to therapy. Furthermore, although many strategies
have been being developed, some of which are currently evaluated

in Phase I and Phase II clinical trials, there is still no grounded
rationale to select one or several regulator(s) of glycolysis as pre-
ferred anticancer target(s) and little clinical information about
toxicities. Should the therapy be tailored to a given tumor in a given
patient? On which bases? One element to take into account could
be the genetic background of the tumor based on experimen-
tal evidences that showed different metabolic outcomes deriving
from some specific mutation (Cairns et al., 2011). Systemic thera-
pies directly targeting hypoxic tumor cells are generally confronted
with difficulties to access to the hypoxic tumor cell compartment
remote from blood vessels and to the emergence of resistance
due to hypoxia-selected DNA instabilities. It is not clear whether
antimetabolic therapies will do better than chemotherapy in this
prospect. Alternatively, targeting metabolic cooperativity, which
will necessitate a thorough understanding of the functions, regula-
tions, and crosstalks between metabolic transporters, is an avenue
recently opened for therapy.
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