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Abstract: This article presents a review of the methods used in recognition and analysis of 

the human gait from three different approaches: image processing, floor sensors and 

sensors placed on the body. Progress in new technologies has led the development of a 

series of devices and techniques which allow for objective evaluation, making 

measurements more efficient and effective and providing specialists with reliable 

information. Firstly, an introduction of the key gait parameters and semi-subjective 

methods is presented. Secondly, technologies and studies on the different objective 

methods are reviewed. Finally, based on the latest research, the characteristics of each 

method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were 

related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the 

remaining 22.5% corresponded to other wearable systems. An increasing number of 

research works demonstrate that various parameters such as precision, conformability, 

usability or transportability have indicated that the portable systems based on body sensors 

are promising methods for gait analysis. 
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1. Introduction 

Analysis of the human gait is the subject of many research projects at the present time. A search on 

the Web of Knowledge for scientific articles that include ―gait‖ in the title shows more than 3,400 

publications between 2012 and 2013. Since research on this type of analysis was first begun in the  

19th century, it has centered on achieving quantitative objective measurement of the different 

parameters that characterize gait in order to apply them to various fields such as sports [1–3], 

identification of people for security purposes [4–7], and medicine [8–10]. 

If we centre on the medical field, changes in gait reveal key information about persons’ quality of 

life. This is of special interest when searching for reliable information on the evolution of different 

diseases: (a) neurological diseases such as multiple sclerosis or Parkinson’s; (b) systemic diseases such 

as cardiopathies (in which gait is clearly affected); (c) alterations in deambulation dynamic due to 

sequelae from stroke and (d) diseases caused by ageing, which affect a large percentage of the 

population. Accurate reliable knowledge of gait characteristics at a given time, and even more 

importantly, monitoring and evaluating them over time, will enable early diagnosis of diseases and 

their complications and help to find the best treatment. 

The traditional scales used to analyse gait parameters in clinical conditions are semi-subjective, 

carried out by specialists who observe the quality of a patient’s gait by making him/her walk. This is 

sometimes followed by a survey in which the patient is asked to give a subjective evaluation of the 

quality of his/her gait. The disadvantage of these methods is that they give subjective measurements, 

particularly concerning accuracy and precision, which have a negative effect on the diagnosis,  

follow-up and treatment of the pathologies. 

In contrast to this background, progress in new technologies has given rise to devices and 

techniques which allow an objective evaluation of different gait parameters, resulting in more efficient 

measurement and providing specialists with a large amount of reliable information on patients’ gaits. 

This reduces the error margin caused by subjective techniques. 

These technological devices used to study the human gait can be classified according to two 

different approaches: those based on non-wearable sensors (NWS) or on wearable sensors (WS). NWS 

systems require the use of controlled research facilities where the sensors are located and capture data 

on the gait while the subject walks on a clearly marked walkway. In contrast, WS systems make it 

possible to analyse data outside the laboratory and capture information about the human gait during the 

person’s everyday activities. There is also a third group of hybrid systems that use a combination of 

both methods. 

NWS systems can be classified into two subgroups: (1) those based on image processing (IP); and 

(2) those based on floor sensors (FS). IP systems capture data on the subject’s gait through one or more 

optic sensors and take objective measurements of the different parameters through digital image 

processing. Analog or digital cameras are the mostly commonly used devices. Other types of optic 

sensors such as laser range scanners (LRS), infrared sensors and Time-of-Flight (ToF) cameras are 

also used. There are two systems within this category: with and without markers. The FS systems are 

based on sensors located along the floor on the so called ―force platforms‖ where the gait information 

is measured through pressure sensors and ground reaction force sensors (GRF) which measure the 

force exerted by the subject’s feet on the floor when he/she walks. 
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The WS systems use sensors located on several parts of the body, such as feet, knees, thighs or 

waist. Different types of sensors are used to capture the various signals that characterise the human 

gait. These include accelerometers, gyroscopic sensors, magnetometers, force sensors, extensometers, 

goniometers, active markers, electromyography, etc.  

The main purpose of this paper is to review the latest advances in technologies and methods used to 

analyse the human gait, with particular emphasis in the field of medicine. Section 2 is divided into  

two subsections: (1) a description of the parameters that characterize the human gait and (2) a review 

of the semi-subjective techniques traditionally used in clinics. Section 3 offers a review of the 

objective techniques and methods that use sensors to measure the parameters of the human gait, 

showing the results of the most recent research. Section 4 includes a discussion and comparison of the 

latest advances and describes future research areas and lastly, Section 5 presents our conclusions. 

2. Background to Gait Parameters 

2.1. Parameters of Interest for the Human Gait 

Research on the human gait comprises the qualitative and quantitative evaluation of the various 

factors that characterize it. Depending on the field of research, the factors of interest vary (see Table 1). 

For instance, for security purposes, interest may centre on distinguishing and identifying persons based 

on a general characterization of their silhouette and the movements between the subject’s different 

body segments when walking [11]. However, in the field of sports, research may centre on analysis of 

the different forces exerted on each muscle through EMG [12]. From the clinical point of view, the 

importance of human gait analysis lies in the fact that gait disorders affect a high percentage of the 

world’s population and are key problems in neurodegenerative diseases such as multiple sclerosis, 

amyotrophic lateral sclerosis or Parkinson’s disease, as well as in many others such as myelopathies, 

spinal amyotrophy, cerebellar ataxia, brain tumours, craneoencephalic trauma, neuromuscular diseases 

(myopathies), cerebrovascular pathologies, certain types of dementia, heart disease or physiological 

ageing. Study of human gait characteristics may be useful for clinical applications, it has been the 

subject of numerous studies such as Mummolo et al.’s recent work [13] and may benefit the various 

groups suffering from gait-related disorders. There are studies on the elderly which link changes in 

various gait characteristics to gait deficiency [14]. The first symptoms of some neurological diseases 

are poor balance, a significantly slower pace, with a stage showing support on both feet [15]. Multiple 

sclerosis patients also show several gait alterations such as a shorter steps, lower free speed when 

walking and higher cadence than subjects without MS. In these cases, the knee and ankle joint rotation 

are distinctive for lower than normal excursion with less vertical ascent from the centre of gravity and 

more than normal bending of the trunk [16]. Another condition related to gait and balance deficiencies 

is osteoporosis [17], a systemic disease characterized by lower bone mass and deteriorated bone 

microarchitecture, which means more fragile bones and greater risk of fractures. In the elderly, 

physical exercise has a major impact on osteoporosis because it significantly helps to prevent falls, 

which are the biggest risk factor for this age group [18]. This condition is asymptomatic and may not 

be noticed for many years until it is detected following a fracture. Therefore, evaluation of gait quality 

may be valuable for early diagnosis. 
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Staff and medical associations working in the field of neurological diseases (and others) stress the 

need for constant control in high risk patients. This is currently done by subjective analyses of gait 

quality that only offer biased evaluations taken over short periods of time. These simple tests are not 

enough to give a reliable diagnosis because they only indicate the patients’ condition when they are 

being attended in the surgery and do not take into account their mobility throughout the day, week, 

month or longer term. 

Table 1. Overview of gait parameters and applications. 

Gait Parameter 
Application 

Clinical Sports Recognition 

Stride velocity X X X 

Step length X X X 

Stride length X X X 

Cadence X X X 

Step Width X X X 

Step Angle X X X 

Step time X   

Swing time X   

Stance time X   

Traversed distance X X  

Gait autonomy X   

Stop duration X   

Existence of tremors X   

Fall X   

Accumulated altitude X X  

Route X X  

Gait phases X X X 

Body segment orientation X X  

Ground Reaction Forces X X  

Joint angles X X  

Muscle force X X  

Momentum X X  

Body posture (inclination, symmetry) X X X 

Long-term monitoring of gait X X  

Accurate reliable knowledge of gait characteristics at a given moment, and more importantly, over 

time, will make early diagnosis of diseases and their complications possible, enabling medical staff to 

find the most suitable treatment. For example, gait velocity is a simple effective test that can identify 

subgroups of elderly patients who run a higher risk of death and severe morbidity following heart 

surgery [19]. Research projects such as sMartxa-basic, conducted in the Basque Country, Aragon and 

Languedoc-Roussillon, study the gait-related habits in the elderly in rural areas by long-term 

monitoring and analysis of the routes they take, distances and the uneven terrain they cover. 

At the same time, many neurodegenerative and age-related diseases such as Parkinson’s are linked 

to other parameters which make it possible to diagnose and know the patient’s evolution. Some of these 

symptoms are altered balance and falls, agitation, tremors and changes in routine movements, etc. 
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Specialists assess patients’ health by using various methods that measure the parameters which 

most clearly represent the human gait. These are described below:  

• Velocity 

• Short step length (linear distance between two successive placements of the same foot)  

• Long step or stride length (linear distance between the placements of both feet) 

• Cadence or rhythm (number of steps per time unit) 

• Step width (linear distance between two equivalent points of both feet) 

• Step angle (direction of the foot during the step) 

• Short step time  

• Swing time for each foot (time from the moment the foot lifts from the floor until it touches it 

again, for each foot) 

• Support time (time from the moment the heel touches the floor until the toes are lifted, for  

each foot) 

• Distances travelled 

• Gait autonomy (the maximum time a person can walk, taking into account the number and 

duration of the stops) 

• Duration of the stops 

• Existence of tremors when walking 

• Record of falls 

• Uneven terrain covered (height difference between drops and rises) 

• Routes taken 

• Gait phases 

• Direction of leg segments 

• Ground Reaction Forces 

• Angles of the different joints (ankle, knee, hip) 

• Electrical activity produced by muscles (EMG)  

• Momentum and forces 

• Body posture (bending, symmetry) 

• Maintaining gait over long time periods 

The parameters described above can be measured by two techniques to carry out an analysis that 

makes it possible to evaluate a person’s health: (1) semi-subjective analysis techniques and (2) objective 

analysis techniques. The following section describes the semi-subjective techniques and Section 3 

discusses the objective techniques. 

2.2. Semi-Subjective Analysis Techniques 

Semi-subjective methods usually consist of analyses carried out in clinical conditions by a 

specialist. The patient’s various gait-related parameters are observed and evaluated while he/she walks 

on a pre-determined circuit. The following comprise a selection of the most common semi-subjective 

analysis techniques which are based on a medical specialist’s observation of the patient’s gait. 
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2.2.1. Timed 25-Foot Walk (T25-FW) 

This technique is known as the 25 foot walk test. This is the first part of the Multiple Sclerosis 

Functional Composite (MSFC), a standardised quantitative evaluation instrument consisting of three 

parts for use in clinical studies, particularly clinical tests on multiple sclerosis [20]. In this test, the 

specialist measures the time it takes the subject to walk a distance of 7 and a half meters in a  

straight line. 

2.2.2. Multiple Sclerosis Walking Scale (MSWS-12) 

This scale assesses 12 parameters, taken from interviews with 30 patients, expert opinions and 

literature reviews which describe the impact of multiple sclerosis on patients’ gait [21]. However, 

because other neurological conditions affect motor skills, this test was later adapted to become a 

generic profile called Walk-12 [22]. 

2.2.3. Tinetti Performance-Oriented Mobility Assessment (POMA) 

In this test, the patient is required to walk forward at least 3 m, turn 180° and then walk quickly 

back to the chair. Patients should use their habitual aid (walking stick or walker) [23]. In a more recent 

study, Tinetti presented a reduced scale consisting of seven parameters according to two levels (normal 

or abnormal) that seem to accurately reflect the risk of falls. In the full version of the test, the section 

on balance disorders is based on 13 parameters organized in three levels and the study of the human 

gait is based on nine additional parameters classified in four levels. In conclusion, this test makes it 

possible to accurately evaluate elderly persons’ balance and gait disorders in everyday situations. 

However, the test requires a great deal of time with active participation from the subjects. 

2.2.4. Timed Get up and Go (TUG) 

The TUG test is a timed test that requires patients to get up from a sitting position, walk a short 

distance, turn around, walk back to the chair and sit down again [24]. 

2.2.5. Gait Abnormality Rating Scale (GARS)  

This is a video-based analysis of 16 human gait characteristics. The GARS includes five general 

categories, four categories for the lower limbs and seven for the trunk, head and upper limbs [25]. 

2.2.6. Extra-Laboratory Gait Assessment Method (ELGAM) 

ELGAM is a method to evaluate gait in the home or community [26]. The parameters studied 

include step length, speed, initial gait style, ability to turn the head while walking and static balance. 

Low speed (under 0.5 m/s), short steps, difficulty turning the head and lack of balance are significantly 

linked to unstable gait. 
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3. Survey of Objective Techniques Used for Gait Measuring 

In contrast to the semi-subjective techniques, objective gait analysis techniques are based on the use 

of different devices to capture and measure information related to the various gait parameters. These 

methods can be divided into three categories: those based on image processing (IP), on floor sensors 

(FS) and on sensors located on the body, carried by the users (wearable sensors—WS).There are a 

great many studies that demonstrate the validity of these sensors when quantifying and analysing the 

different aspects of the human gait. The following section contains an in-depth description of some 

studies on the newest technologies used in human gait analysis and recognition. They are organised 

according to the three categories described above. 

3.1. Image Processing 

The typical IP system is formed by several digital or analog cameras with lens that can be used to 

gather gait-related information. Techniques such as threshold filtering which converts images into 

black and white, the pixel count to calculate the number of light or dark pixels, or background 

segmentation which simply removes the background of the image, are just some of the possible ways 

to gather data to measure the gait variables. This method has been widely studied in order to identify 

people by the way they walk [27–29]. In the medical diagnosis field, Arias-Enriquez et al. presented a 

fuzzy system able to provide a linguistic interpretation of the kinematic analysis for the thigh and  

knee [30]. Recent research shows promising results on gait recognition by taking into account changes 

in the subject’s path [31]. In [32], Muramatsu et al. solve the problem of decreased recognition 

accuracy due to the different views of the compared gallery and probe, applying a gait-based 

authentication method that uses an arbitrary view transformation scheme. 

Within IP methods, one technique has become very important at the present time: depth 

measurement, also called range imaging. This is a collection of techniques used to calculate and obtain 

a map of distances from a viewpoint [33]. These techniques make it possible to obtain important 

elements of the image with a better and faster real-time process. There are several technologies that 

can be applied for this purpose (Figure 1), such as camera triangulation (stereoscopic vision), laser 

range scanner [34], and Time-of-Flight methods [35]. Other studies use structured light [36,37], and 

infrared thermography [38]. 

Figure 1. Different technologies for IP based measurement. Reproduced with permission 

from MESA Imaging. 
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3.1.1. Stereoscopic Vision 

This method can be used to determine the depth of points in the scene, for example, from the 

midpoint of the line between their focal points. In order to solve the problem of depth measurement 

using a stereo camera system, it is necessary to first find corresponding points in different images. This 

technique is based on the creation of a model through the calculation of similar triangles between the 

optical sensor, the light-emitter and the object in the scene. Creating a camera model involves 

acquiring multiple images, usually of a calibration grid, in multiple planes. This technique is widely 

used for gait analysis [11,39]. 

3.1.2. Time-of-Flight Systems (ToF) 

ToF systems are based on cameras using signal modulation that measure distances based on the 

phase-shift principle [40] (Figure 2). The observed scene is illuminated with modulated near infrared 

light (NIL), whereby the modulation signal is assumed to be sinusoidal with frequencies in the order of 

some megahertz. The reflected light is projected onto a charge coupled device (CCD) or 

complementary metal oxide semiconductor (CMOS) sensor or a combined technology. There, the 

phase shift, which is proportional with the covered distance, is measured in parallel within each pixel. 

Let                                        be     measurements of an optical input signal 

taken at each of   pixel locations in the image array. Further let                be the set of 

amplitude data and               the set of intensity (offset) data. From the reflected sinusoidal 

light four measurements      ,       ,       , and        at 0°, 90°, 180°, and 270° of the phase are 

taken each period       . A pixel’s phase shift    , amplitude    and intensity    , that is, the 

background light can be calculated by the following equations: 

         
             

             
  (1) 

   
                                

 
 (2) 

   
       

 
   

 
 (3) 

The distance measurement                between image array and object is then determined by: 

   
  

 
 
  

  
 (4) 

where    is the wavelength of the modulation signal. Due to the periodicity of the modulation signal, 

ToF cameras have a range unambiguous of            . Within this range, the distance can be 

calculated exclusively [32]. The range depends on the modulation frequency of the camera which 

defines the wavelength of the emitted signal. To compute the distances, the camera evaluates the phase 

shift between a reference signal and the received signal.    is proportional to the distance  . 

Derawi et al. used ToF systems for human gait recognition by extracting gait features from the 

different joints and segments of the body [41].  
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In a recent study, Samson et al. used a ToF camera to analyse dynamic footprint pressures with high 

resolution [42]. 

Figure 2. Time-of-flight working principle. 

 

3.1.3. Structured Light 

Structured light is the projection of a light pattern (beam, plane, grid, coded light, etc.) under 

geometric calibration on an object whose shape is to be recovered. The illumination pattern captured 

varies depending on the beam used: single dot, slit or grating stripes pattern. In these techniques,  

three-dimensional information is obtained by analysing the deformation of the projection of the pattern 

onto the scene with respect to the original projected pattern. 2D structured illumination is generated by 

a special projector or a light source modulated by a spatial light modulator [43,44]. One of the most 

common devices which use this technology is the Kinect sensor, which was used in [37] to create a 

marker-based real-time biofeedback system for gait retraining. In [36], stride durations and arm 

angular velocities were calculated using a markerless system with a Kinect sensor. 

3.1.4. Infrared Thermography (IRT) 

ITG is the process of creating visual images based on surface temperatures. The ability to accurately 

measure the infrared thermal intensity of the human body is made possible because of the skin’s 

emissivity is 0.98 ± 0.01, which is independent of pigmentation, absorptivity (0.98 ± 0.01) reflectivity 

(0.02) and transmissivity (0.000) [45]. This method was applied in [38] to recognize human gait 

patterns and achieved 78%–91% for probability of correct recognition (Figure 3). 

Figure 3. IRT image processing to extract the essential gait features. Reproduced with 

permission from Xue et al. [38]. 
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3.2. Floor Sensors 

In the systems based on this technique, sensors are place along the floor on the so called ―force 

platforms‖ or instrumented walkways where gait is measured by pressure or force sensors and moment 

transducers when the subject walks on them. There are two types of floor sensors: force platforms and 

pressure measurement systems. Force platforms should be distinguished from pressure measurement 

systems which, although they too quantify the centre of pressure, do not directly measure the force 

vector applied. Pressure measurement systems are useful for quantifying the pressure patterns under a 

foot over time but cannot quantify horizontal or shear components of the applied forces [46]. An 

example of an instrumented floor sensor and the acquired data from a research conducted in University 

of Southampton is depicted in Figure 4. 

Figure 4. Gait analysis using floor sensors. (a) Steps recognized; (b) time elapsed in each 

position; (c) profiles for heel and toe impact; and finally (d) image of the prototype sensor 

mat on the floor. Reproduced with permission from University of Southampton. 

 

The characteristic that distinguishes FS-based systems from IP-based systems is the analysis of 

force transmitted to the floor when walking, known as Ground Reaction Force (GRF). This type of 

system is used in many gait analysis studies [47,48]. In [49], a comparative assessment of the 

spatiotemporal information contained in the footstep signals for person recognition was performed 

analysing almost 20,000 valid footstep signals. 

These devices are the most basic ones that can be used to obtain a general idea of the gait problems 

patients may have. Since the reaction force is exactly the opposite of the initial force (Newton’s third 

law), the specialist finds out the evolution of the foot’s pressure on the floor in real time. These data, 

added to the previous comparison, help specialist to make diagnoses. Pressure is given in percentage of 

weight in order to compare the patients’ data. Pressure varies during the time the foot is in contact with 



Sensors 2014, 14 3372 

 

 

the floor. The maximum pressure occurs when the heel touches the floor and when the toes push off to 

take another step. During this time, pressure may reach up to 120%–150% of the patient’s body weight. 

The most complex systems have a sensor matrix (up to four sensors per cm²) which makes it 

possible to measure the differentiated pressure of each zone of the foot separately over time to obtain 

more significant information on the patient’s ailment. Some examples of commercial force platforms 

and baropodometric mats are: 

• Force platform AMTI series OR6-7 of Biometrics France (Figure 5) 

• Kistler force plates of different types 

• Dynamometric mat ADAL of Tecmachine 

• MatScan System made by Tekscan (43.6 × 36.9 cm) 

• Walking mat made by RM.Lab (150 × 50 cm) 

• FootScan Plates made by RSScan.Lab (up to 200 × 40 cm) 

• FDM-T System for stance and gaits analysis made by Zebris (150 × 50 cm) 

Figure 5. Example of AMTI Force Plate showing the three forces and the three moment 

components along the three measurable GFR axis. Reproduced with permission from AMTI. 

 

3.3. Wearable Sensors 

In gait analysis using wearable sensors, these are placed on various parts of the patient’s body, such 

as the feet, knees or hips to measure different characteristics of the human gait. This is described in 

several recent reviews [50,51].This section offers a brief overview of the different types of sensors 

which are most commonly used in research. They include force sensors, accelerometers, gyroscopes, 

extensometers, inclinometers, goniometers, active markers, electromyography, etc. 

3.3.1. Pressure and Force Sensors 

Force sensors measure the GRF under the foot and return a current or voltage proportional to the 

pressure measured. Pressure sensors, however, measure the force applied on the sensor without taking 

into account the components of this force on all the axes. The most widely used models of this type are 

capacitive, resistive piezoelectric and piezoresistive sensors. The choice of sensor depends on the 

range of pressure it will stand, linearity, sensitivity and the range of pressure it offers: 
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• In resistive sensors, their electrical resistance decreases as the weight placed on them increases 

(Figure 6). 

• Piezoelectric sensors: These sensors are made of three deformation meters in three different 

orthogonal directions and are placed on silicone gel. Under pressure, the gel is deformed and 

the meters calculate this deformation. If the deformation meter and the gel characteristics are 

known, the total pressure can be calculated. These sensors are known for their excellent 

linearity and reactivity but do not adapt to surfaces due to their large size. 

• Capacitive sensors: These sensors are based on the principle that the condenser capacity 

changes depending on different parameters, including the distance between the two electrodes. 

Figure 6. FlexiForce piezoresistive pressure sensor. 

 

This type of sensor is widely used in wearable gait analysis systems by integrating them into 

instrumented shoes (Figure 7) such as those developed in [52], or into baropodometric insoles [53,54]. 

Howell et al.’s study demonstrated that the GRF measurements obtained with an insole containing  

12 capacitive sensors showed a high correlation to the simultaneous measurements from a clinical 

motion analysis laboratory [55]. Another innovative system was created by Lincoln et al [56], using 

reflected light intensity to detect the proximity of a reflective material, and was sensitive to normal and  

shear loads. 

Figure 7. Instrumented shoe from Smartxa Project: (a) inertial measurement unit;  

(b) flexible goniometer; and (c) pressure sensors which are situated inside the insole. 
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3.3.2. Inertial Sensors 

Inertial sensors are electronic devices that measure and report on an object’s velocity, acceleration, 

orientation, and gravitational forces, using a combination of accelerometers and gyroscopes and 

sometimes magnetometers. An accelerometer basically uses the fundamentals of Newton’s Laws of 

Motion, which say that the acceleration of a body is proportional to the net force acting on the body. If 

we know the proportionality quotient (mass of the object), and all the forces (measured with the 

sensors), we can calculate the acceleration. With 3-axis accelerometers and 3-axis gyroscopes, it is 

possible to obtain the acceleration and angular velocity. By taking the integral of the acceleration, we 

obtain the velocity, and by integrating the velocity, we obtain the position as refers to the 3 axes. By 

integrating the angular velocity, we obtain the flexion angle. Thus, analysing the signals from the 

accelerometers by filtering and classifying algorithms, we can extract the number of steps taken  

in a determined time lapse. This type of sensors may be fitted within an IMU device (Inertial  

Measurement Unit). 

Gyroscopes are based on another property, which implies that all bodies that revolve around an axis 

develop rotational inertia (they resist changing their rotation speed and turn direction). A body’s 

rotational inertia is determined by its moment of inertia, which is a rotating body’s resistance to change 

in its rotation speed. The gyroscope must always face the same direction, being used as a reference to 

detect changes in direction. 

Inertial Measurement Units (IMUs) are one of the most widely used types of sensors in gait 

analysis. Anna et al. developed a system with inertial sensors to quantify gait symmetry and gait 

normality [57], which was evaluated in-lab, against 3D kinematic measurements; and also in situ, 

against clinical assessments of hip-replacement patients, obtaining a good correlation factor between 

the different methods. In another recent study, Ferrari et al. presented an algorithm to estimate gait 

features which were compared with camera-based gold standard system outcomes, showing a 

difference in step length below 5% when considering median values [58]. In diseases where gait 

disorders are a symptom such as Parkinson’s, we find several applications of sensors of this type [59]: 

Tay et al. presented a system with two integrated sensors located at each ankle position to track gait 

movements and a body sensor positioned near the cervical vertebra to monitor body posture. The 

system was also able to measure parameters such as maximum acceleration of the patients during 

standing up, and the time it takes from sit to stand [60]. 

The miniaturization of inertial sensors allows the possibility of integrating them on instrumented 

insoles for gait analysis, such as the Veristride insoles developed by Bamberg et al., which additionally 

include specially designed pressure sensors for distributed plantar force sensing, Bluetooth 

communication modules and an inductive charging system (Figure 8). 
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Figure 8. Instrumented insole: (a) inertial sensor, Bluetooth, microcontroller and battery 

module; (b) coil for inductive recharging; and (c) pressure sensors. Reproduced with 

permission from Stacy Morris Bamberg (Veristride, Salt Lake City, UT, USA). 

 

3.3.3. Goniometers 

These sensors can be used to study the angles for ankles, knees, hips and metatarsals. Strain  

gauge-based goniometers (Figure 9) work with resistance that changes depending on how flexed the 

sensor is. When flexed, the material forming it stretches, which means the current going through it has 

to travel a longer path. Thus, when the sensor is flexed, its resistance increases proportionally to the 

flex angle. Other types include the inductive or mechanical goniometers, and in their recent work, 

Dominguez et al., developed a digital goniometer based on encoders to measure knee joint  

position [61]. These sensors are usually fitted in instrumented shoes to measures ankle to foot angles [62]. 

Figure 9. Flexible Goniometer. 

 

3.3.4. Ultrasonic Sensors 

As was described above, other important data to analyse are short step and stride length and the 

separation distance between feet. Ultrasonic sensors have been used to obtain these  

measurements [63,64]. Knowing the speed at which sound travels through the air, ultrasonic sensors 

measure the time it takes to send and receive the wave produced as it is reflected on an object. 
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Knowing the time it takes the signal to travel and come back, and the speed, we can obtain the distance 

between the two points. The measurement range varies between 1.7 cm and nearly 450 cm. It is also 

possible to use this sensor to obtain other data such as the distance between the foot and the floor itself. 

3.3.5. Electromyography (EMG) 

The electromyogram (EMG) is an electrical manifestation of the contracting muscle—this can be 

either a voluntary or involuntary muscle contraction. The EMG signal is obtained from the subject by 

either measuring non-invasively with surface electrodes (Figure 10), or invasively with wire or needle 

electrodes. The measured signal is then amplified, conditioned and recorded to yield a format that is 

most suitable for answering the clinical or scientific question of concern. The measurement and 

recording of a complex analog signal such as EMG is a complex subject as the signals of interest are 

invariably very small (in the order of 0.00001 to 0.005 of a Volt). It has been shown that application of 

surface electromyography (SEMG) is a useful in non-invasive assessment of relevant pathophysiological 

mechanisms potentially hindering the gait function such as changes in passive muscle-tendon 

properties (peripheral, non-neural component), paresis, spasticity, and loss of selectivity of motor output 

in functionally antagonist muscles [65]. Furthermore, EMG signals can be used to measure different gait 

characteristics: kinematic plots of joint angular motion can be compared to the EMG plots recorded at 

the same time to see if one set of data can explain the other, the amplitude of EMG signals derived 

during gait may be interpreted as a measure of relative muscle tension and it has been found that the 

EMG amplitude increases with increased walking speed and that the EMG activity is minimized with 

subjects walking at a comfortable speed. In a recent study performed by Wentink et al. [66], it was 

determined that EMG measured at a prosthetic leg can be used for prediction of gait initiation when  

the prosthetic leg is leading, predicting initial movement up to 138ms in advance in comparison to 

inertial sensors.  

Figure 10. Brainquiry Wireless EMG/EEG/ECG system. 
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3.4. Commercialized Gait Analysis Systems and Laboratories 

There are many commercial WS systems and NWS gait analysis laboratories which use different 

combinations of the abovementioned sensors and technologies. Some examples of NWS systems 

situated and calibrated in laboratory or clinical environments, such as the one depicted in Figure 11, 

are CONTEMPLAS: Clinical gait analysis based on a walkway [67], Tekscan: Pressure Mapping [68], 

GRAIL: Gait Real-time Analysis Interactive Lab, from Motek Medical [69] and BTS GAITLAB [70]. 

Figure 11. Example of NWS system: BTS GaitLab configuration. (1) infrared videocameras; 

(2) inertial sensor; (3) GRF measurement walkway; (4) wireless EMG; (5) workstation;  

(6) video recording system; (7) TV screen; (8) control station. Reproduced with permission 

from BTS Bioingenieering. 

 

Moreover, successful gait analysis systems based on wearable sensors have been commercialized, 

such as the widely used Xsens MVN [71], which uses 17 inertial trackers situated in the chest, upper 

and lower limbs to perform motion capture and six degrees of freedom tracking of the body with a 

wireless communicated suit (Figure 12). 

Figure 12. Commercial WS system based on inertial sensors: Xsens MVN. Reproduced 

with permission from Xsens. 
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Another commercial package is the wireless M3D gait analysis system (Figure 13) developed by 

Tec Gihan Co [72], which uses motion sensors on the lower leg, the thigh, the waist and the back and 

wearable force plates on the toes and the heels. M3D force plates measure three component forces and 

three moments along three orthogonal axes and include an accelerometer, a 3-axis gyroscope sensor 

and a 3-axis geomagnetic sensor. A similar wireless system, composed of 9 inertial sensors situated in 

the lower limbs and wearable force plates with wireless 6-axial force sensors, was presented by 

INSENCO Co. under the name Human Dynamics Analysis (HDA) [73]. 

Figure 13. WS system based on (a) inertial sensors and (b) wearable force plates. 

Reproduced with permission from Tec Gihan Co. 

 

4. Discussion 

The present paper aims to provide a description of technologies and methods used for gait analysis, 

covering both semi-subjective and objective approaches. This section includes a discussion of the 

different methods. Firstly, semi-subjective and objective methods are compared. On the second and 

third subsections, we discuss the specific characteristics of NWS and WS systems separately, 

highlighting the most recent developments. Subsection 4 presents an analysis of the advantages and 

disadvantages of objective methods, contrasting NWS with WS. Subsection 5 offers a discussion based 

on the criteria that determine the various user or group profiles that benefit from gait analysis. Finally, 

taking into account the analysis of the limitations shown by the different models, areas for future 

research are put forth. 

Thirty two articles based on original research from 2012 and 2013 were reviewed for this paper, 

plus several technological and clinical reviews from the same years. 40% of these articles were related 

to NWS systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% 

corresponded to other WS systems as shown in Figure 14. 
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Figure 14. Classification of the reviewed papers published in 2012 and 2013. 

 

4.1. Comparison of Semi-Subjective and Objective Methods 

In clinical conditions, gait analysis has traditionally been conducted through semi-subjective 

methods based on observation of patients by one or more specialists who evaluated various gait 

parameters. The advantage of these methods is that they do not require special equipment and only 

need a trained specialist to carry out the test. However, the subjective nature of the evaluation affects 

the accuracy, exactitude, repeatability and reproducibility of the measurements. Objective methods 

which use advances in technological development on sensors have appeared, with a view to more 

accurately quantifying the different parameters that characterise the human gait. These methods give 

more accurate evaluation data, making it possible to obtain information which cannot be provided by 

simply watching a patient walk. Examples include the GRF, the force exerted by the different muscles 

and angles of body segments on the different joints. A recent study [74] compared the results of one 

healthy subject’s gait analysis results at seven different laboratories and showed that the different 

methods used in the various laboratories correctly measured the gait parameters. The differences found 

were generally lower than the established minimum detectable changes for gait kinematics and kinetics 

for healthy adults, thus marking promising progress in objective quantification of these parameters.  

The two main approaches of these objective techniques are based on WS and NWS. It cannot be 

stated that one is better than the other because each one has different characteristics that make it more 

suitable for certain types of study.  

4.2. Analysis of Characteristics of NWS Systems 

The NWS-based methods are conducted in laboratories or controlled conditions where data retrieval 

devices such as cameras, laser sensors or ToF, pressure platforms or mats have been placed and set to 

measure gait variables as the subject walks on a clearly defined walkway. The advantage of these 

systems is that they isolate the study from external factors which could affect the measurements, thus 

allowing a more controlled analysis of the parameters being studied and obtaining high repeatability 

and reproducibility levels.  

One of the NWS methods that shows promising results and is increasingly being used is the ToF, 

due to its characteristics in comparison to other image depth measurement systems. One of the newest 
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applications of this technology is its use in higher resolution calculation of pressure in comparison with 

the 4 sensors/cm
2
 pressure measurement systems, as demonstrated recently by Samson et al. [42]. 

Table 2 shows a comparison of the different depth measurement techniques, with the mention of 

specific accuracy levels obtained in the literature. We can observe that ToF and Infrared Thermography 

demand the use of more expensive data acquisition equipment. Camera triangulation method can be 

performed without the need of special videocameras, but demand high computational cost due to the 

stereoscopic calculation algorithms needed to calculate the distance and position of the analysed 

subject. Structured light methods have become popular, in part due to the price and availability of the 

sensors in comparison to other image processing technologies. 

Accuracy has been presented according to the results found in the literature. As each of the 

reviewed systems analysed different gait characteristics and had different objectives, the accuracy 

corresponds to the specific results of the reference. 

Table 2. Characteristics of different depth measurement methods. 

Method Advantages Disadvantages Sensor Price (€) Ref. Accuracy 

Camera 

Triangulation 

- High image resolution 

- No special conditions in terms 

of scene illumination 

- At least two cameras needed 

- High computational cost 
400 to 1,900 [11,39] 70% [39] 

Time of Flight 

- Only one camera is needed 

- It is not necessary to calculate 

depth manually 

- Real-time 3D acquisition 

- Reduced dependence on scene 

illumination 

- Low resolutions 

- Aliasing effect 

- Problems with reflective surfaces 

239 to 3,700 [41] 

2.66% to 

9.25% (EER) 

[41] 

Structured Light 

- Provide great detail 

- Allows robust and precise 

acquisition of objects with 

arbitrary geometry and a with a 

wide range of materials 

- Geometry and texture can be 

obtained with the same camera 

- Irregular functioning with motion 

scenes 

- Problems with transparent and 

reflective surfaces 

- Superposition of the light pattern 

with reflections 

160 to 200 [36,37] 
<1% (Mean 

diff) [37] 

Infrared 

Thermography 

- Fast, reliable & accurate 

output 

- A large surface area can be 

scanned in no time 

- Requires very little skill for 

monitoring 

- Cost of instrument is relatively high 

- Unable to detect the inside 

temperature if the medium is separated 

by glass/polythene 

- Emissivity problems 

1.000 to 18.440 [38] 78%–91% 

NWS methods are usually more expensive due to the need to set up the measurement laboratory. 

However, new low-cost, portable systems which do not require that any sensors be attached to the 

body have been developed, such as the Kinect sensor. Recent studies have shown the validity of this 

device for gait analysis. Clark et al. [37] compared the results obtained with the Kinect sensor and 

those obtained with a marker-based 3D motion analysis (3DMA) system, observing that the lateral trunk 

lean angle data obtained from the Kinect system performing individualized calibration (P < 0.001) 
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showed an error of only 0.8 ± 0.8°. In another recent study, Gabel et al. presented a gait analysis 

system based on the same sensor which also measured stride intervals more accurately using 

information from the entire body [36] thus proposing an inexpensive markerless system for continuous 

gait tracking at home.  

A different type of NWS systems are those based on floor sensors. They can be very useful because 

patients can walk on them wearing shoes, barefoot or with a walking stick, according to how the 

patient usually walks. There is no need to carry other devices. The patient only has to walk on the 

device to obtain results. Analysis of the results makes it possible to know the pressure intensity and 

pressure time at each point. The main problem of these systems is their limited size, making it 

impossible to collect much data successively from the same patient. It is usually possible to take only  

4 or 5 steps in a straight line. For this reason, the patient has to walk on the mat for a long time to 

obtain valid statistical data. Furthermore, depending on the length of the mat, the patient has to take 

care to place his/her feet carefully so that the device obtains an impression of the whole step. This can 

change the way patients normally walk, affecting the repeatability of the measurements.  

The biggest disadvantage of NWS systems is that they do not allow evaluation and monitoring of 

the patient’s gait during his/her everyday activities, thus extrapolating the conclusions from a short 

time of study that does not reflect the patient’s real condition. 

4.3. Analysis of Characteristics of WS Systems 

In contrast to the disadvantages of NWS systems, the WS systems based on development of new 

miniaturised sensors and wireless communication systems such as Bluetooth or Zigbee have made it 

possible to obtain measurements of the different aspects of the human gait in real time by placing 

devices on different parts of the body to evaluate gait during the patient’s everyday activities outside 

the laboratory. Moreover, sensors such as pressure and bend sensors, accelerometers and gyroscopes 

may be used with in-lab analysis to provide cheaper gait analysis systems that can be deployed 

anywhere. Fields like wearable gait retraining could enable benefits from laboratory retraining systems 

to extend to a broad portion of the population, which does not live near or have access to laboratory 

gait retraining testing facilities [75]. 

Trends clearly point to more research focusing on the development of wearable gait analysis 

systems, such as the instrumented insole developed by Howell et al. [55], who demonstrated that the 

insole results for ground reaction force and ankle moment highly correlated with data collected from a 

clinical motion analysis laboratory (all >0.95) for all subjects. Insole pressure sensors have proven to 

be an inexpensive accurate method to analyse the various step phases [51]. 

One of the most promising and widely used wearable sensors in recent studies is the inertial sensor. 

In the following paragraphs, we present an account of studies that demonstrate the validity and wide 

range of applications of this type of sensor in recent researches. 

Studies such as Anna et al.’s [57], in which they contrast gait symmetry and gait normality 

measurements obtained with inertial sensors and 3D kinematic measurements and clinical assessments, 

demonstrate that the inertial sensor-based system not only correlates well with kinematic 

measurements obtained through other methods, but also corroborates various quantitative and 

qualitative measures of recovery and health status. This type of sensor has also proven to be very 
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useful to create fall-risk prediction models with a high degree of accuracy (62%–100%), specificity 

(35%–100%) y sensitivity (55%–99%), depending on the model, as shown in the study by  

Howcroft et al. [76]. Adachi et al. developed a walking analysis system that calculates the ground 

reaction force, the pressure centre, reactions and movement of each joint and the body orientations 

based on portable force plates and motion sensors. They compared a 3D motion analysis system  

with their system and showed its validity for measurements of ground reaction force and the pressure 

centre [77]. Novak et al. have recently developed a system based on inertial and pressure sensors to 

predict gait initiation and termination. They demonstrated that both types of sensors allow timely  

and accurate detection of gait initiation, with overall good performance in subject-independent  

cross-validation, whereas inertial measurement units are generally superior to pressure sensors in 

predicting gait termination [78]. 

Inertial sensors can be used to estimate walking speed by various methods, which are described in 

the review by Yang and Li [79].With a view to improving the usability of these systems, studies such 

as Salarian et al.’s [80] focus on reducing the number of sensors that have to be placed on the body. 

They have also have managed to estimate movements of thighs from movements of shanks to reduce 

the number of sensing units needed from 4 to 2 in the context of ambulatory gait analysis. 

As inertial sensors have been integrated in commercial mobile devices, a wide range of applications 

that use them to offer simple inexpensive gait analysis systems have appeared for use in fields such as 

telemedicine and telerehabilitation [81]. Cases in point include the one developed by Kashihara et al. [82] 

and Susi et al.’s [83] work on motion mode recognition and step detection. Given the potential of these 

mobile devices for widespread use, these developments make it possible to provide many people with 

gait analysis systems.  

Moreover, novel research works have developed gait analysis systems using technologies that have 

not been traditionally applied in this field. For instance, a novel research conducted by Chen et al. [84] 

proposed a locomotion mode classification method based on a wearable capacitive sensing system as 

alternative to EMG, measuring ten channels of capacitance signals from the shank, the thigh, or both, 

with a classification accuracy of 93.6% on able-bodied subjects. Other research investigated the 

possible application of Ultra Wide Band (UWB) technologies in the field of gait analysis, such as the 

system developed by Qi et al. [85], which uses two UWB transceivers situated near the heel and toe to 

monitor the vertical heel/toe clearance during walking. They calculated toe-off, toe-strike, heel-strike 

and heel-off gait events by detecting the propagation delay from the reflected signals from the ground, 

and demonstrated the feasibility of the method comparing it with an ultrasound system with a 

correlation value of 0.96. 

However, WS systems have certain disadvantages. In systems using accelerometers and gyroscopes 

to estimate speed and the distance travelled, there is a tendency to use the direct integration method 

with 2D or 3D IMUs, which leads to an amplification of the measurement error, making this one of the 

disadvantages of this technique. Analysis of inertial sensor signals is computationally complex and 

presents the problem of excessive noise. It is difficult to accurately calculate the paths and  

distances travelled.  

A further disadvantage is the need to place devices on the subject’s body, which may be 

uncomfortable or intrusive. In clinical conditions, accelerometers give a great deal of information. 

However, it is not enough to diagnose diseases such as Parkinson’s or others in which gait disorders 
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are an indicator because many balance and gait impairments observed are not specific to each disease. 

Nor have they been related to specific pathophysiologic biomarkers, as noted in the conclusions related 

to Parkinson’s disease by Horak and Mancini [86]. Wireless gait analysis systems normally store 

information on SD cards or transmit it with technologies such as Bluetooth or Zigbee, which requires 

high energy consumption. The most commonly used energy sources are lithium batteries and if gait is 

to be monitored over a long period of time, the duration of the batteries may be a problem.  

4.4. NWS and WS Systems: A Comparison 

This section presents a comparison between the general advantages and disadvantages of NWS and 

WS systems taking into account different factors, such as power consumption, limitations, price and 

parameter measurement range (Table 3), and a more detailed comparison of the current specific 

techniques of each approach with a classification depending on type, application, accuracy, price and 

ease of use (Table 4). 

Table 3. Comparison between NWS and WS systems. 

System Advantages Disadvantages 

NWS 

- Allows simultaneous analysis of multiple gait parameters 

captured from different approaches 

- Non restricted by power consumption 

- Some systems are totally non-intrusive in terms of 

attaching sensors to the body 

- Complex analysis systems allow more precision and have 

more measurement capacity 

- Better repeatability, reproducibility and less external factor 

interference due to controlled environment. 

- Measurement process controlled in real time by  

the specialist. 

- Normal subject gait can be altered due to 

walking space restrictions required by the 

measurement system 

- Expensive equipment and tests 

- Impossible to monitor real life gait outside 

the instrumented environment 

WS 

- Transparent analysis and monitoring of gait during daily 

activities and on the long term 

- Cheaper systems 

-Allows the possibility of deployment in any place, not 

needing controlled environments 

- Increasing availability of varied miniaturized sensors 

- Wireless systems enhance usability 

- In clinical gait analysis, promotes autonomy and active  

role of patients 

- Power consumption restrictions due to 

limited battery duration 

- Complex algorithms needed to estimate 

parameters from inertial sensors 

- Allows analysis of limited number of gait 

parameters 

- Susceptible to noise and interference of 

external factors not controlled by specialist 
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Table 4. Classification of existing gait analysis systems. 

Method Ref. Application Accuracy Price (€) Ease of Use 

W
ea

r
a
b

le
 S

en
so

rs
 

Inertial sensors [57–60,71,72,73, 

76,77,78,79,82] 

Segment position 

Step Detection 

Stride length 

Angle Coeff. Mult. Corr. > 0.96 

[71] 

<%5 for median values 

Stride length error −0.8  ± 6.6 [80] 

91.30 [87] Complex algorithms. Sensible to 

interferences 

GRF plates [53–54,56, 

72,73] 

Step Detection 

GRF 

Gait Phase Detection 

10% of the range of GRF [56] 17,180 for one  

foot [72]  

Bigger size than pressure sensors 

(less usability) 

Easy to analyse data 

Pressure sensors [51,52,55] Foot Plantar Pressure 

Distribution 

Gait Phase Detection 

Step Detection 

Pressure correlation R > 0.95 (with 

clinical motion analysis laboratory 

measures) 

14.58 [87] Simple algorithms. Easy to setup in 

shoe/insole. Highly nonlinear 

response 

EMG [65] Muscle Electrical Activity 

Gait Phase Detection 

SNR = 0.25 microvolt @ 200 Hz 

[Brainquiry] 

35–350 [88] Need specific knowledge on 

electrode setup. Sensible to 

interferences 

UWB [85] Step Detection 

Gait Phase Detection 

Correlation R = 0.96 (with 

ultrasound system measures) [85] 

Not specified Measurement situation on 

shoe/foot is critical 

Ultrasound [63,64] Step Length 

Gait Phase Detection 

Not Specified 20.44 [89] Sensible to interferences. Sensor 

situation is critical 

Goniometer [61,62] Joint Angles 

Step Detection 

R = 0.999 with measures taken 

with mechanical Goniometer [61] 

9.46 [87] Easy to setup and analyse data, but 

low hysteresis. 
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Table 4. Cont. 

Method Ref. Application Accuracy Price (€) Ease of Use 

N
o
n

 W
ea

r
a
b

le
 S

en
so

rs
 

F
lo

o
r 

S
en

so
rs

 

GRF plates AMTI, Kistler Step Detection 

GRF 

Gait Phase detection 

±0.1% of load [AMTI] 30,000 [AMTI] Need for the subject to contact center 

of plate for correct measurement 

Pressure sensor 

mats and platforms 

[47–49] Plantar Pressure Distribution 

Gait Phase detection 

Step Detection 

Gait Recognition 

80% recognition rate [47] 

2.5 to 10% EER in recognition [49] 

72% step detection rate [48] 

4,000–54,000 [depending on 

number of sensors and 

specifications] 

Limitations of space, indoor 

measurement, and patients ability to 

make contact with the platform 

Im
a
g
e 

P
r
o
ce

ss
in

g
 

Single camera 

image processing 

[27–32] Individual Recognition 

Segment Position 

77.8% recognition rate [27] 400–1,900 [depending on 

camera specifications] 

Simple equipment setup. 

Complex analysis algorithms 

Time of Flight [41,42] Segment Position 

Gait Phase Detection 

Foot Plantar Pressure Distribution 

Individual Recognition 

2.66%–9.25% EER recognition [41] 200– 3,700 [depending on 

sensor specifications] 

Only one camera needed 

Problems with reflective surfaces 

Stereoscopic 

Vision 

[11,39] Gait Phase Detection 

Segment position 

Individual Recognition 

70.18% recognition rate [39] 200–9,000 [depending on 

camera specifications] 

Complex calibration. High 

computational cost 

Structured Light [36,37] Segment Position 

Gait Phase Detection 

Correlation R=0.89 with inertial and 

pressure sensor measures [36] 

Angle measurement  

error = −0.8  ± 0.8° [37] 

160–200 [depending on 

sensor specifications] 

Complex calibration. Lower sensor 

cost related with other image 

processing systems 

IR Thermography [38] Gait Phase Detection 

Segment position 

Individual Recognition 

78%–91% recognition [38] 8,000 to 100,000 [8 camera 

laboratory as BTS Gaitlab] 

Need to take into account emissivity, 

absorptivity, reflectivity, 

transmissivity of materials 
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Observing the results found in the literature, we can conclude that although all gait analysis 

methods can be used for general analytical purposes, when higher accuracy is needed in the detection 

and analysis of more specific parameters, it is necessary to choose the adequate method. The 

approaches that allow simultaneous, in-depth analysis of a higher number of parameters are the NWS 

systems on a laboratory environment, and more specifically those which are based in a combination of 

several of the described techniques, such as marker or markerless based image processing, EMG, 

inertial and floor sensors. However, the latest developments in WS allow cost-effective, non-intrusive 

methods which offer convenient solutions to specific analytical needs. 

4.5. Collective-Oriented Gait Analysis System Classification 

One of the key criteria to keep in mind when comparing the different gait analysis methods is the 

target user or group profile. The system chosen must accurately measure the key gait parameters for 

that particular group. When focusing on the clinical applications of gait analysis, the end users can be 

divided into the following groups: (a) patients with neurological diseases; (b) patients suffering from 

systemic diseases such as cardiopathies; (c) patients with stroke sequelae and (d) the elderly. Each of 

these groups shows different characteristics for gait-related disorders. Patients suffering from 

neurological diseases such as Parkinson’s show short step length, shuffling gait and some patients 

experience freezing of gait (FoG), a sudden and unexpected inability to start or continue walking that 

can be responsible for falls [90]. In these cases, image-based NWS systems may offer more accurate 

step length results than inertial sensor-based WS systems in which the estimated step length gives an 

error due to double integration of accelerometer signals. In patients with cardiopathies, slow gait is one 

of the most common indicators among post-AMI older adults and is associated with increased  

all-cause readmission at one year, according to [91]. Therefore, the methods used to assess the 

condition of patients suffering from this type of ailment should achieve high accuracy measurements 

of velocity. Again, in the case of inertial sensor systems, the inertial sensor measurement error is 

unavoidable, especially for miniature sensors. Therefore, an appropriate method should be chosen. 

Stroke patients often from suffer abnormal patterns of motion which alter the velocity, length of the 

stride, cadence, and all phases of the gait cycle [92], especially due to decreased velocity on the 

hemiplegic side, which is strongly associated with the clinical severity of muscle weakness. As 

velocity improved, these abnormal movements decreased. For this reason, study of muscular activity 

through use of techniques such as EMG is especially important in these cases. Lastly, gait disorders 

associated with ageing-related diseases may also be due to multiple factors, as shown in detail in the 

work by Jahn et al. [93]. This study indicates that a broad approach should be taken when analysing 

gait characteristics in the elderly. Therefore, although minor differences exist between the 

appropriateness of the different methods for each target group, we cannot indicate key factors that 

make it possible to link each group with the most suitable method.  

4.6. Considerations for Future Research 

In view of the advantages WS systems show when measuring and evaluating the human gait, 

interfering as little as possible with the subject’s daily activities, and in order to overcome the present 

limitations of gait measurement systems, future research should focus on four different areas: (1) new 
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sensors for in-depth parameter analysis; (2) power consumption; (3) miniaturization; and (4) signal 

processing algorithms. Each of the areas is detailed below. 

Area 1 refers to the need for new wearable sensors that make it possible to quantify a higher number 

of gait parameters to reach the capacity and accuracy of NWS systems. More specifically, new sensors 

which provide more accurate measurements of segment position/orientation and velocity, joint angles, 

pressure distributions, step recognition and length, among others, are needed. Work should also be 

done to determine the most promising sensor locations for each research purpose. On area 2, work 

should focus on the development of technologies allowing for greater working autonomy and extended 

duration of energy sources in order to carry out analyses over long time periods. Power consumption is 

an important limitation of the current gait analysis systems, and it interferes directly with the capacity 

of the system to measure and monitor the gait parameters over long time periods. Future research 

should intend to develop new energy supply systems with extended battery life duration, and  

energy-efficient gait analysis systems which need less energy to perform their functions. Emphasis 

should also centre on area 3, miniaturisation of the measuring and communication systems to create 

fully non-intrusive invisible systems, which can then be totally integrated in the outfit or in the 

person ś body enhancing the usability of the current systems. The miniaturization of sensors would 

allow combining different sensor types in a single device able to measure a wider range of parameters. 

Finally, future research should also focus on the development and improvement of signal processing 

and analysis algorithms (area 4) to make it possible to classify gait disorders reliably and match the 

different gait parameter measurement patterns with the different diseases indicated, thus contributing 

to early diagnosis and monitoring of rehabilitation processes. The current movement tracking 

algorithms based on the application of Kalman filters and Direction Cosine Matrix (DCM) to data 

acquired from gyroscopes and accelerometers should be improved. 

5. Conclusions 

In the last decades, interest in obtaining in-depth knowledge of human gait mechanisms and 

functions has increased dramatically. Thanks to advances in measuring technologies that make it 

possible to analyse a greater number of gait characteristics and the development of more powerful, 

efficient and smaller sensors, gait analysis and evaluation have improved. In contrast to the traditional 

semi-subjective methods which depend on the specialist’s experience, the different parameters being 

studied can now be objectively quantified. These new methods have great impact in various fields  

such as human recognition, sports, and especially in the clinical field, where objective gait analysis 

plays an important role in diagnosis, prevention and monitoring of neurological, cardiopathic and  

age-related disorders. 

This article presents a general review of the different gait analysis methods. A series of parameters 

have been extracted from the description of the key human gait parameters, of which we highlight the 

time-space group due to its importance from the clinical point of view. These parameters include 

walking speed, stride and step length, swing and stance times, etc. force-related parameters such as 

GRF, muscle force and joint momentum. Special importance is given to the parameters measured and 

monitored over long periods of time such as distance travelled and autonomy regarding number and 

duration of the stops, which can only be measured during daily activities using wearable sensors. 
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Commonly used semi-subjective techniques such as TUG and Timed 25-foot Walk were then analysed 

due to their widespread application. We can conclude that the objective techniques classified as image 

processing, floor sensors and wearable sensors have characteristics that make them efficient and 

effective for different types of needs. The latest research on gait analysis comparing the advantages 

and disadvantages of the different systems leads us to conclude that, although objective quantification 

of the different parameters is rigorously carried out, these studies do not cover the need to extend the 

measurement capacity of WS systems in order to provide gait information obtained during users’ daily 

activities over long time periods. For this reason, areas for future research focused on the development 

of specific pathology-oriented systems aimed at prevention and evolution monitoring are proposed. 
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