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Summary

Biological aging is associated with a reduction in the reparative

and regenerative potential in tissues and organs. This reduction

manifests as a decreased physiological reserve in response to

stress (termed homeostenosis) and a time-dependent failure of

complex molecular mechanisms that cumulatively create disor-

der. Aging inevitably occurs with time in all organisms and

emerges on a molecular, cellular, organ, and organismal level

with genetic, epigenetic, and environmental modulators. Indi-

viduals with the same chronological age exhibit differential

trajectories of age-related decline, and it follows that we should

assess biological age distinctly from chronological age. In this

review, we outline mechanisms of aging with attention to well-

described molecular and cellular hallmarks and discuss physio-

logical changes of aging at the organ-system level. We suggest

methods to measure aging with attention to both molecular

biology (e.g., telomere length and epigenetic marks) and phys-

iological function (e.g., lung function and echocardiographic

measurements). Finally, we propose a framework to integrate

these molecular and physiological data into a composite score

that measures biological aging in humans. Understanding the

molecular and physiological phenomena that drive the complex

and multifactorial processes underlying the variable pace of

biological aging in humans will inform how researchers assess

and investigate health and disease over the life course. This

composite biological age score could be of use to researchers

seeking to characterize normal, accelerated, and exceptionally

successful aging as well as to assess the effect of interventions

aimed at modulating human aging.
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‘Time is but the stream I go a-fishing in. I drink at it;
but while I drink I see the sandy bottom and detect
how shallow it is. Its thin current slides away, but
eternity remains’. – Henry David Thoreau, Walden.

Introduction

The number of individuals aged 60 or older will increase dramatically in

the next three decades. As the fastest growing age-strata worldwide, the

global population over 60 will surpass two billion by 2050: a 12-fold

increase from 1950 (United Nations Department of Economic and Social

Affairs Population Division 2013). In the 20th century, decreased

mortality and lengthening of average human lifespan shifted the

worldwide demographic structure toward the aged. This shift stemmed

initially from treatment of infectious diseases and subsequently cardio-

vascular disorders (Fries, 2005). However, an increase in late-life disability

has accompanied gains in healthy years lived (health span) and longevity

(Crimmins et al., 1994). Age represents the primary risk factor for

chronic diseases, including cardiovascular, malignant, and neurodegen-

erative conditions. Extremely aged individuals who survive in good health

to the end of the human lifespan are rare, and a fixed limit to human

lifespan may exist (Dong et al., 2016).

Biological aging is associated with a reduction in the reparative and

regenerative potential in tissues and organs. This reduction manifests as

decreased physiological reserve in response to stress (termed home-

ostenosis) and a time-dependent failure of complex molecular mecha-

nisms that cumulatively create disorder. Aging inevitably occurs with

time in all organisms and emerges on a molecular, cellular, organ, and

organismal level with genetic, epigenetic, and environmental modulators

(Fig. 1). Individuals with the same chronological age and their organs

exhibit differential trajectories of age-related decline, and it follows that

we should assess biological age distinctly from chronological age.

Understanding the molecular and physiological phenomena that drive

the complex and multifactorial processes underlying biological aging in

humans will inform how researchers assess and investigate health and

disease over the life course. In this review, we outline mechanisms of

aging with attention to well-described molecular and cellular hallmarks,

discuss normal human aging at the organ-system level, suggest methods

to measure biological age, and propose a framework to integrate

molecular and physiological data into a composite score that measures

biological aging in humans.

Search strategy and selection criteria

Findings for this review were identified by searches of MEDLINE, Current

Contents, PubMed, and references from relevant articles using the

search terms ‘aging’, ‘measurement’, and ‘assessment’. Abstracts and

reports from meetings were included only when they related directly to

previously published work. With exceptions for historical interest, only

articles published in English between 1980 and 2016 were included.

Molecular mechanisms of aging

The heritable contribution to aging is limited for most humans, with

genetics accounting for only 20–30% of lifespan variability in human

twin and founder population family studies (Mitchell et al., 2001;

Kenyon, 2010). However, heritable factors may represent a significantly
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larger contribution to lifespan at extreme ages, and the exceptionally

aged may offer an opportunity to find rare genetic variants associated

with longevity (Tan et al., 2010; Sebastiani et al., 2012). Regardless, no

single factor or molecular mechanism explains progressive age-related

homeostenosis. Inter-related molecular and cellular phenomena occur

during normal aging, intensify during accelerated or premature aging,

and can be mitigated to increase lifespan. L�opez-Ot�ın and colleagues

proposed nine so-called hallmarks of aging—genomic instability, telom-

ere attrition, epigenetic alterations, loss of proteostasis, deregulated

nutrient sensing, mitochondrial dysfunction, cellular senescence, stem

cell exhaustion, and altered intercellular communication—that frame

mechanisms underlying senescence (Lopez-Otin et al., 2013). As we

discuss in this section, many hallmarks suggest potential therapeutic

targets to restore age-associated functional decline and homeostenosis,

although potential therapies are not completely benign. Translation of

these hallmarks with surrogate measurements are important to include

in a composite biological age score (BAS) because of their direct

relationship with the molecular basis of aging (Fig. 2).

Mouse and human data implicate genomic instability in accelerated

aging (Burtner & Kennedy, 2010) with myriad exogenous agents (e.g.,

radiation and xenobiotic compounds) as well as endogenous processes

(e.g., DNA replication errors and reactive oxygen species [ROS]) causing

damage to DNA (Hoeijmakers, 2009). Cumulative genomic damage

disturbs homeostasis and impacts health span (Moskalev et al., 2013).

Genome maintenance represents a potential therapeutic target, as

augmenting mitotic regulators involved with chromosomal segregation

such as BubR1 improves health span in mice (Baker et al., 2013).

Although malignant transformation as a consequence of genomic

manipulation remains a concern, high-level expression of BubR1 reduced

tumorigenesis in transgenic mice.

Telomeres, the chromatin tips responsible for preventing degradation

at chromosomal ends, shorten and become increasingly susceptible

to damage with age (Blackburn et al., 2006). Most mammalian

somatic cells lack telomerase—a specialized DNA polymerase responsible

for repairing telomeres after cell division—which results in

replication-dependent sequence loss at chromosomal ends, often

leading to replicative senescence (the Hayflick limit) (Hayflick & Moor-

head, 1961; Jiang et al., 2008). Accordingly, telomerase overexpression

increases median lifespan in mice (Bernardes de Jesus et al., 2012).

However, in vivo evidence of the causal role telomerase plays in aging

remains controversial, as telomerase knockout mice demonstrate no

overt phenotype and reduced longevity only after multiple generations

(Rudolph et al., 1999). In humans, deficiencies in the telomerase

complex cause a variety of age-related pathologies, including prema-

turely gray hair, pulmonary fibrosis, liver disease, and aplastic anemia

(Armanios & Blackburn, 2012). Gene therapy encoding telomerase

components may hold promise to halt or even reverse telomere

shortening in humans (Ramunas et al., 2015). However, gene therapy

remains in its infancy with ongoing concerns regarding oncogenesis

(Hacein-Bey-Abina et al., 2003).

Epigenetic alterations—heritable changes in phenotype that are

independent of DNA sequence mutations—occur with aging and impact

cellular function (Sen et al., 2016). Overall, global heterochromatin loss

and redistribution occur with an increase in transcriptional noise (Bahar

et al., 2006; Tsurumi & Li, 2012). Specifically, H4K16 acetylation and

H4K20 and H3K4 trimethylation increase, while H3K9 methylation and

H3K27 trimethylation decrease with age (Han & Brunet, 2012). Further,

deleting the H3K4 and H3K27 methylation complexes extends lifespan in

worms and flies (Greer et al., 2010; Siebold et al., 2010). The role DNA

methylation at cytosine-phospho-guanine islands plays in aging remains

less clear, with age-associated global gene-activating hypomethylation

but gene-repressive hypermethylation at tumor suppressor gene loci

(Maegawa et al., 2010). Large-scale genomewide DNA methylation-

based epigenetic analyses using a variety of cell types and tissues have

identified an ‘epigenetic clock’ that is closely correlated with healthy

aging (Horvath, 2013). Unlike cumulative DNA damage and many other

hallmarks of aging, epigenetic alterations are ostensibly reversible and

embody promising pharmacologic targets for therapies designed to

promote healthy aging. DNA methyltransferase and histone deacetylate

inhibitors represent two potential drug classes (So et al., 2011; Wang

et al., 2013), although significant refinement in enzyme isoform

specificity will be required to limit off-target effects of these compounds

including immunomodulation (Wang et al., 2015).

Protein homeostasis (proteostasis) becomes impaired with aging and

enhanced proteostasis can maintain the integrity of the proteome and

delay mammalian senescence (Zhang & Cuervo, 2008; Koga et al.,

2011). The two key proteolytic pathways responsible for protein quality

control—the autophagy–lysosomal system and the ubiquitin–protea-

some system—become hypofunctional with aging (Calamini et al.,

2012; Tomaru et al., 2012). Therapies aimed at promoting healthy

aging could target the proteostasis system (Calamini et al., 2012), as

deubiquitylase inhibitors and proteasome activators augment clearance

of harmful protein in human cells (Lee et al., 2010). Of note, the

proteasome activator characterized by Lee et al. displayed dose-

dependent and drug target-independent toxicity (hypoproliferation) in

cultured cells, suggesting that further pharmacologic refinement of

proteasome activators may be needed.

Deregulated nutrient sensing represents an important and potentially

druggable hallmark of aging, as anabolic signaling causes accelerated

aging and caloric restriction extends lifespan in murine and nonhuman

primate models (Colman et al., 2014; L�opez-Ot�ın et al., 2016; Vermeij

et al., 2016). Nutrient sensing systems, including the amino acid-sensing

mammalian target of rapamycin (mTOR) as well as low-energy state

detectors (AMP kinase and the sirtuins), contribute to the aging process

(Houtkooper et al., 2010). The sirtuin family of NAD-dependent protein

Fig. 1 Biological aging is a multifactorial process. The molecular hallmarks of

aging and organ-specific physiological function are both influenced by genetic,

epigenetic, and environmental factors. Metastatic aging may contribute to

differential aging in remote tissues through a paracrine mechanism.
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deacetylases may promote healthy aging in yeast, flies, and mice

(Houtkooper et al., 2012), and compounds that raise NAD+ levels may

restore lost mitochondrial function and promote longevity (Gomes et al.,

2013). In addition, the insulin and insulin-like growth factor 1 (IGF-1)

signaling (IIS) pathway, which targets the FOXO transcription factors and

mTOR complexes, represents an extremely well-conserved pro-aging

pathway (Kenyon, 2010; Barzilai et al., 2012). Mutations that reduce the

level or function of growth hormone, the IGF-1 receptor, or intracellular

pathway components including AKT, mTOR, and FOXO closely associate

with longevity in model organisms as well as humans (Arum et al.,

2014). However, aging mouse models display decreased IIS activity,

which raises the possibility that IIS activity represents a defensive

response to systemic damage (Schumacher et al., 2008). Strikingly, mice

fed the mTOR inhibitor rapamycin in late life experienced extension of

median and maximal lifespan, supporting a role for mTOR signaling and

pharmacologic inhibition in lifespan regulation (Harrison et al., 2009).

The long-term effects of rapamycin administration, including sex-

dependent differences in outcomes, remain incompletely defined

(Fischer et al., 2015).

Mitochondrial dysfunction in the form of decreased respiratory chain

efficiency, resulting electron leak, and diminished ATP production may

contribute to senescence (Green et al., 2011). A significant body of data

supports ROS as a cause of accelerated aging (Harman, 1965). However,

recent evidence suggests that limited oxidative stress may actually be

beneficial to health span (Hekimi et al., 2011) and that mitochondrial

ROS impart advantageous effects on healthy cellular function (Sena &

Chandel, 2012) up to a threshold (Hekimi et al., 2011). Compelling

evidence demonstrates that therapies designed to improve fitness could

exploit mitohormesis—the concept that repeated low-level toxic expo-

sures can trigger a beneficial compensatory mitochondrial response that

ultimately leads to augmentation in cellular fitness (Haigis & Yankner,

2010).

With aging, there exists a propensity for stable cell cycle arrest known

as cellular senescence (Hayflick & Moorhead, 1961; Collado et al.,

2007). DNA damage (independent of telomeres) and derepression of the

INK4/ARF locus induce cellular senescence and occur with advancing

age. INK4/ARF locus expression of p16INK4a and p19ARF acts as a cellular

checkpoint that critically prevents propagation of damaged and possibly

malignant cells. As a biomarker, protein levels of p16INK4a and p19ARF

correlate with chronological age remarkably well in humans and model

organisms with a large difference (up to an order of magnitude)

comparing young and old tissues (Krishnamurthy et al., 2004; Ressler

et al., 2006). The correlation holds for almost all tissues examined.

However, from a functional perspective, accumulation of senescent cells

may ultimately become deleterious when regenerative capacity grows

exhausted and progenitors cannot replace senescent cells. For example,

stem cell attrition occurs in multiple tissues with aging, and DNA

damage, p16INK4a expression, and telomere shortening cause decreased

hematopoietic stem cell proliferation (Sharpless & DePinho, 2007).

Therapeutic removal of p16INK4a-positive cells could extend healthy

lifespan (Baker et al., 2016).

Senescent cells display a characteristic secretory profile—the senes-

cence-associated secretory phenotype—that contributes to low-level

systemic inflammation (so-called inflammaging) and likely facilitates the

spread of pro-senescence signals through tissues and systemically alters

the extracellular matrix in parallel (Kuilman et al., 2010). These factors

enable a senescence messaging system (SMS) and include interleukins,

IGFBP3, plasminogen activator inhibitor-1 (PAI-1), and transforming

growth factor-b (Kuilman & Peeper, 2009; Capell et al., 2016; Ozcan

et al., 2016). In addition to paracrine signaling that results from the

senescence-associated secretory phenotype, accumulation of tissue

damage and failure of the immune system to clear damaged proteins,

pathogens, and compromised or malignant cells promote inflammaging

(Senovilla et al., 2012). Metastatic aging—in which aging in one tissue

accelerates aging in other tissues (Lavasani et al., 2012)—may occur via

gap junctions and ROS signaling and via miRNAs secreted into the blood

that promote senescence in remote tissues (Grillari & Grillari-Voglauer,

2010; Nelson et al., 2012). Finally, heterochronic parabiosis and knock-

out murine experiments provide additional supportive evidence of a

distinct proteomic signature of senescence with alterations in circulating

systemic factors (e.g., GDF-11, CCL11, Klotho, b2 microglobulin);

however, emerging evidence questions the role GDF-11 plays in aging

mice (Conboy et al., 2005; Villeda et al., 2011; Eren et al., 2014;

Laviano, 2014; Sinha et al., 2014; Brun & Rudnicki, 2015; Smith et al.,

Fig. 2 Conceptual derivation of a biological age score (BAS) that combines molecular markers derived from measures of the molecular hallmarks of aging (represented here

in blue, e.g., telomere length and gene-specific DNA methylation) and measures of physiological function (represented here in red, e.g., FEV1 and e’ velocity) that are

longitudinally assessed throughout the life course. Potential mathematical modeling approaches for integrating individual components into a composite BAS include multiple

linear regression, principal component analysis, and Klemera and Doubal’s method with derivation and validation in population-based data sets. The BAS graph depicts three

hypothetical aging trajectories: 1) normal ager, 2) super ager, and 3) accelerated ager with colored areas representing confidence intervals and demonstrating overlap at

young ages. The aging lines are depicted hypothetically as straight lines, but the trajectory of biological aging is not known.
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2015). Therapeutic administration or blockade of SMS components

could ameliorate inflammaging in humans, although significant concerns

persist regarding off-target effects including skeletal and cardiac muscle

wasting (Harper et al., 2016).

The interplay of the above mechanisms and pathways contribute to

aging on an organismal level and offer potential parameters to include in

a composite assessment of biological age as well as targets for therapies

aimed to counter age-related functional decline and morbidity. In

addition to targeted interventions, understanding the molecular mech-

anisms underpinning senescence could translate into biomarkers of

biological age (Table 1).

Organ-level physiological changes of aging

Physiological aging involves a progressive detrimental change in maximal

organ function with differential trajectories across organ systems (Fig. 3)

(Shock, 1956). Importantly, multiple factors including genetics, environ-

mental conditions, and developmental programming determine maximal

organ function, which varies significantly between individuals (Lange

et al., 2015). Aging affects all organ systems and must be assessed

through a variety of physiological measures, as aging varies greatly

organ-to-organ and person-to-person and results in impaired reserve

capacity and limited ability to respond to stress. While there appears to

be an organ-specific or organ-differential resilience and vulnerability of

aging, frailty refers to the cumulative decline and increasing homeostatic

imbalance that precedes the ultimate consequence of aging: death

(Fries, 2005).

Cardiovascular

The aging cardiovascular system displays decreased compliance of the

aorta and large vessels (Vaitkevicius et al., 1993). This increased arterial

stiffness results in a widened pulse pressure with raised systolic blood

pressure (due to increased resistance to blood ejection from the left

ventricle [LV]) and lowered diastolic pressure (due to a more rapid

pressure decrease in diastole). Subsequent changes include increases in

LV afterload, mass, wall thickness, and LV end-diastolic volume. Further

alterations in calcium influx cause reduced LV compliance and delayed

LV relaxation or decreased diastolic function as assessed by Doppler

echocardiography parameters (e.g., E-wave/A-wave velocity ratio, septal

and lateral e’-wave velocity depth) (Sun et al., 2004). Intrinsic heart rate

declines due to both atrial pacemaker cellular loss (50–75% by age 50)

and His bundle fibrosis (Cheitlin, 1989). Fibrosis and calcification occur at

the aortic valve cusp bases, annular valvular rings, and fibrous trigones.

Finally, aged individuals demonstrate decreased responsiveness to b-
adrenergic receptor stimulation in cardiomyocytes, decreased reactivity

to baroreceptor and chemoreceptor output, and increased circulating

catecholamines resulting in reduced exercise tolerance and decreased

cardiac output (Davies et al., 1996). These changes increase the heart’s

vulnerability to development of age-related cardiovascular pathology

including hypertension, congestive heart failure, atrioventricular block,

and aortic stenosis. Additionally, atherosclerosis is linked to premature

biological aging with senescent cells identified in coronary artery disease

plaques (Wang & Bennett, 2012).

Pulmonary

Lung function represents one of the few consistently reliable physiolog-

ical markers of aging. With advancing age, peak aerobic capacity falls

with a greater than 20% decline per decade after age 70 (Fleg et al.,

2005). The lungs lose elastic tissue, which causes decreased surface area

available for gas exchange (increased anatomic dead space) as alveolar

ducts enlarge (Gillooly & Lamb, 1993). Chest wall compliance decreases

and dominates the increase in lung compliance; functional residual

capacity decreases as a result of the fall in total respiratory system

compliance. Forced vital capacity (FVC) declines 0.15-0.30 L per decade

in nonsmoking men, and the forced expiratory volume in one-second

(FEV1) falls 0.20–0.30 L/s per decade with a steeper decline in the 7th

and 8th decades (Xu et al., 1995). Physiological restriction may result for

Table 1 Biomarkers of aging derived from the hallmarks of aging (Lopez-Otin

et al., 2013)

Hallmark of aging Biomarkers

Telomere attrition Blood leukocyte-derived telomere length

Telomere dysfunction-induced proteins

Epigenetic alterations H4K16 acetylation; H4K20 and H3 K4, K9,

and K27 methylation

DNA methylation patterns

Noncoding RNA patterns (e.g., microRNA

expression profiles)

Loss of proteostasis Proteomics

Amyloid-b-derived diffusible ligands (ADDLs)

Deregulated nutrient sensing Insulin-like growth factor-1 (IGF-1)

Metabolomics

Mitochondrial dysfunction Number of mitochondria

Mitochondrial DNA copy number

Mitochondrial protein levels

Cellular senescence and

pro-inflammatory cytokines

(altered intercellular

communication)

SMS: PAI-1, IGFBP-3, IL-6, TGF-b

IL-1b, TNF-a

p16INK4a and p19ARF

p53, p21

Senescence-associated b-galactosidase (SABG)

Youth-associated (GDF-11) and age-associated

(CCL11, Klotho, b2 microglobulin) circulating

factors

Fig. 3 Relative rates of decline of organ-specific physiological function. Different

organ systems may carry a specific vulnerability to age (i.e., the cardiovascular

system appears to suffer biological aging more rapidly than the gastrointestinal

system).
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some individuals, although population mean total lung capacity does not

change significantly with age. Residual volume increases by about 10%

per decade due to an increased closing volume: the lung volume at

which small airways in dependent lung zones begin to collapse during

exhalation. Ventilation–perfusion mismatching increases with age, as

airways in the better-perfused dependent lung zones have an increased

likelihood of closure during exhalation. Diffusion capacity decreases

around 5% per decade, although hypoxemia does not typically develop.

Further, advancing age is associated with a diminished central drive to

the respiratory muscles in response to hypoxemia, hypercapnia, and

mechanical load; exercise training may attenuate this hyporesponsive-

ness. Collectively, the above changes in combination with decreased

respiratory muscle strength and reduced efficacy of mucociliary clear-

ance result in increased susceptibility to pneumonia (Enright et al.,

1994).

Renal

The kidneys develop a diffuse glomerulosclerosis with age (up to 30% by

age 75) (Nyengaard & Bendtsen, 1992); remaining glomeruli display

impaired filtering ability. Only 3% of donor kidneys from 18–29-year-

olds and over 70% from 70 to 77-year-olds contain nephrosclerosis.

Creatinine clearance falls 7.5–10 mL per decade on average with a large

variance. Serum creatinine, however, may remain constant due to

decreased production with age. Cystatin C may therefore represent a

more accurate renal function marker in the elderly (Christensson &

Elmstahl, 2011). Aged individuals maintain fluid and electrolyte balance

in the absence of a significant challenge; however, stress can impair

maximal diluting and concentrating ability in older individuals (Chris-

tensson & Elmstahl, 2011). In addition, the aging kidney demonstrates a

decreased ability to acidify urine and excrete an acid load. Renal plasma

flow decreases with age due in part to increased local vasodilating

prostaglandin concentration (Ungar et al., 2000). The renal vascular

system undergoes spiraling of the afferent arterioles and intimal fibrosis

(Tracy et al., 1988) as well as shunt development between afferent and

efferent arterioles.

Immune and hematologic systems

The aging immune system displays progressive changes collectively

described as immunosenescence; these changes result in increased

susceptibility to infection, malignancy, and autoimmunity. The adaptive

and innate immune systems both exhibit functional decline with aging,

although innate immunity appears better preserved (Weiskopf et al.,

2009). Pro-B-cell production declines with less striking changes in T-cell

precursors. Regulatory T cells lose their suppressive function (Tsaknaridis

et al., 2003) and accumulate in visceral adipose tissue. Indeed, age-

associated chronic inflammation is associated with an inflammatory

signature within visceral adipose tissue (Lumeng et al., 2011).

The aging immune system carries a greater likelihood of clonal

expansion and hematologic malignancy (Jaiswal et al., 2014). Bone

marrow mass decreases and undergoes fatty replacement with a

resultant decrease in total bone marrow hematopoietic tissue (Geiger

& Rudolph, 2009). This decrease in bone marrow mass leads to a loss of

functional reserves, reduced hematopoiesis with hypoproliferative

hematopoietic stem cells, and increased incidence of anemia and

myeloid diseases. However, iron flux, red cell lifespan, total white blood

cell count, and blood volume do not decline with age. Platelet

responsiveness increases as do multiple coagulation factor levels

(Franchini, 2006).

Neurologic function

Cognitive decline with aging is multifactorial and related to changes in

structure as well as synaptic plasticity. Cerebral tissue atrophy and

diminished cerebral perfusion result in significant white matter loss, but

neuronal dropout varies by brain region with little or no loss in some

regions (Bertoni-Freddari et al., 1996). In addition, dopaminergic signal-

ing demonstrates a progressive decrease in signaling via the D2 receptor

(Roth & Joseph, 1994). Functional MRI studies demonstrate less-

coordinated activation in brain regions focused on higher-order cognitive

functions, which suggests a global loss of integrative function with aging

(Andrews-Hanna et al., 2007). Gene expression profiling studies show

that significant changes in synaptic gene expression contribute to altered

higher-order integration (Jiang et al., 2001). These alterations in synaptic

plasticity and loss as well as impaired neurogenesis may predispose aged

individuals to neurodegenerative disorders such as Alzheimer’s disease

and Parkinson’s disease (Loerch et al., 2008).

Other organ systems

Aging modifies the digestive, hepatic, and endocrine systems to varying

degrees. The digestive system undergoes only modest changes with

time, and normal aging does not cause malnourishment. Micronutrient

absorption in the small intestine may decrease with age but not to a level

that impairs homeostasis. Liver mass decreases 20–40% with age, and

hepatic blood flow declines (Zoli et al., 1989). Serum albumin may fall

slightly, but routine liver chemistries do not change with time

(Rahmioglu et al., 2009). The aging liver displays decreased vitamin K-

dependent clotting factor synthesis (Froom et al., 2003). Alterations in

metabolism influence lifespan in experimental models and potentially

embody high-yield translational targets. Insulin resistance and physio-

logical declines in circulating insulin-like growth factor characterize the

aging process (Barzilai et al., 2012). Further, aging results in decreased

b-cell regeneration in pancreatic islets (Sartori et al., 2014). Metabo-

lomics approaches have identified a potential longevity signature

characterized by increased levels of circulating citric acid cycle interme-

diates (Cheng et al., 2015).

Finally, the musculoskeletal, integumentary, sensory, and behavioral

systems undergo a multitude of changes with aging. Muscle mass and

contractile force decrease and may limit mobility (Delbono, 2011). Age-

related loss of muscle mass (sarcopenia) occurs along with qualitative

changes in muscle characterized by fat and connective tissue infiltration.

Findings from the AGES-Reykjavik study suggest that muscle composi-

tion may be associated with mortality risk (Reinders et al., 2015, 2016).

Skin changes include epidermal thinning, decreased dermal elasticity,

and diminution of subdermal fat that result in increased susceptibility to

trauma and infection (Elewa et al., 2015). Progressive miosis, decreased

corneal transparency, and increased lens rigidity cause presbyopia and

decreased visual acuity (Salvi et al., 2006). Sensory cell loss and cochlear

neuron dropout lead to presbycusis (Gates & Mills, 2005). Finally, healthy

behavior change becomes less likely with age, seemingly as a result of

alterations in social networks among older adults (Tucker et al., 2004).

Comprehensive assessement of biological aging

Chronological age offers limited information regarding the complex

processes driving biological aging. Individuals with the same chronolog-

ical age vary greatly in health and in disease and disability prompting the

utility of defining a ‘biological age’. The conceptualization of such a

biological age distinct from chronological age has been proposed by
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many researchers with measures as crude as functional ‘frailty’ and as

sophisticated as patterns of DNA methylation (Borkan & Norris, 1980;

Ravindrarajah et al., 2013; Weidner et al., 2014; Marioni et al., 2015).

While much research has focused on quantification of biological aging, a

comprehensive and integrative score incorporating molecular biomarkers

and physiological functional parameters is lacking. Current strategies to

assess systemic biological age carry significant limitations as individual

parameters to accurately reflect an individual’s global homeostenosis

have been elusive. Further, biological plausibility suggests that no single

biomarker is likely to suffice given the underlying multisystem nature of

the aging process with changes occurring on a molecular and organ-

based level underscoring the utility of an aggregate score of biological

aging. Scoring systems require careful integration of molecular markers

(surrogates of the hallmarks of aging) with longitudinal physiological

functional measures, yet little consensus exists regarding optimal

methods for creation and evaluation of a composite biological age

score (BAS).

In human populations, identifying and characterizing successful agers

who remain disease-free at advanced age with physiological function

significantly above their age cohort represent a promising approach to

derive and validate a BAS (Fig. 2). Centenarians exemplify an exceptional

survival phenotype who delay disability and disease until an average age

of 93 years (Andersen et al., 2012). However, centenarians are rare,

making it difficult to enroll meaningful sample sizes and answer

important research questions. Moreover, longevity and healthy aging

may not be synonymous, making lifespan a complicated phenotype to

study in addition to the burden of cost and time using this approach.

Data from the Leiden Longevity Study and the Long Life Family Study

suggest that compression of morbidity into later years accelerates with

the age of the cohort (Westendorp et al., 2009; Newman et al., 2011).

The result is an oftentimes lengthy period of health before age-

associated morbidity develops at old age. Therefore, in any cohort,

identifying subclinical disease can help ensure that data sets accurately

classify successful aging, delayed morbidity, and increased longevity

rather than age-associated disease states (Fries, 2005).

Investigators have proposed composite scoring systems in epidemi-

ologic studies such as the National Health and Nutrition Examination

Survey (NHANES). The derivation cohort for the NHANES-based measure

of biological age contained more than 9000 participants aged 30–

75 years at baseline and integrated physiological and biochemical

markers at a single time point (Levine, 2013). The Dunedin Study birth

cohort, which identified differences in the pace of aging in young adults

over a decade, utilized the NHANES score (Belsky et al., 2015). The

Healthy Aging Index in the Cardiovascular Health Study and the

Modified Physiological Index in the Health, Aging, and Body Composi-

tion Study, represent additional examples of cohort-derived scores that

correlate with chronological age yet lack integration of existing novel

markers derived from the molecular hallmarks of aging, which connote a

true biological age (Ludwig & Smoke, 1980; Baker & Sprott, 1988).

Several limitations of existing scores impede current investigations,

including small sample sizes, limited testing of variables, omission of

novel molecular markers, lack of participant-level longitudinal follow-up

with repeated measures in the same individual, and dearth of popula-

tion-level replication and validation in clinical settings for predictive

ability.

We propose a conceptual framework for a composite BAS, which

integrates available molecular measurements based on the hallmarks of

aging (Table 1) and functional organ physiology measurements (Table 2)

across the life course. Comprehensive and repeated assessments over

time of existing and emerging molecular biomarkers and organ-specific

functional measures in longitudinal epidemiologic cohorts in parallel

with the use of sophisticated bioinformatics methodologies are needed

to derive a global BAS. Conceptually, the BAS represents an integrated

biomarker signature that assesses systemic aging on a population level

(Cohen et al., 2015). Criteria for inclusion of molecular and physiological

parameters into a composite score require that the individual parameters

be independently associated with aging and provide additive information

when combined. In general, components of the BAS should be i) highly

correlated with chronological age, ii) predict organ-system and global

age-related decline, and iii) be minimally invasive, readily observable, and

reliably measured. Investigation into the optimal parameters used to

derive a BAS will require collection and analysis of data sets that include

successful agers without morbidity as well as accelerated agers with

genetic progeroid syndromes, inflammatory pathologic conditions (e.g.,

human immunodeficiency virus, autoimmune disease states, chronic

kidney disease), and disease-related morbidity. Derivation and validation

of a BAS will require multiple types of study designs including

observational prospective population-based cohorts, leveraging large

sample sizes with repeated measures over several decades as well as

case–control studies and family-based studies to incorporate less

Table 2 Measures of organ-specific changes in physiological function

Organ system Measures of organ-specific function

Cardiovascular Brachial pulse pressure

LV mass

Relative wall thickness

Echocardiographic parameters (E/A, e’)

Pulse wave velocity

Augmentation index

Aortic valve calcification

Heart rate variability

Respiratory Peak aerobic capacity

Spirometry (FEV1, FVC, FEV1/FVC ratio)

Lung volumes (TLC, FRC, RV)

DLCO

Quantitative ventilation–perfusion scanning

Renal Cystatin C

Creatinine clearance

Immune Immune risk profile (assessment of T-cell proliferation

in response to mitogens, B-cell numbers, CD4:CD8

T-cell ratio, and CMV serologic status)

Bone marrow Hemoglobin

Neurocognitive Mini-mental status examination

Cognitive battery

Functional MRI

Digestive and hepatic Vitamin K-dependent clotting factor levels

Endocrine Thyroid biochemical tests

Fasting glucose

Insulin

Circulating estrogen and testosterone levels

Musculoskeletal Hand grip strength

Unipedal stance test of balance

Grooved pegboard test of fine motor coordination

SF-36 physical functioning scale

Integumentary Skin elasticity

Thickness

Wrinkle parameter

Sensory Visual acuity

Auditory test

Retinal microvascular damage (arteriovenous ratio)
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common phenotypes of interest, including successful agers and accel-

erated agers with nongenetic and genetic conditions.

Optimal mathematical modeling using various methodologies such as

multiple linear regression, principal component analysis, and Klemera

and Doubal’s method to derive scoring systems will require head-to-

head comparisons (Takeda et al., 1982; Nakamura et al., 1988; Klemera

& Doubal, 2006). The use of regression equations will be helpful in

initially identifying individual components to be included in the BAS.

However, given that aging is a systemic process composed of interde-

pendent processes, redundancies in selected aging parameters may

exist. The use of principal component analysis will be critical to

determine the number of components or biomarkers to include to

create the most parsimonious model and exclude overlap in contribution

of molecular markers and physiological parameters. Standardizing the

process of creating and evaluating longevity phenotypes with a BAS will

accelerate research that endeavors to define healthy aging mechanisms,

identify interventions to promote health span, and allow translation and

validation of therapies that promote healthy aging.

Future directions

Humans are mortal, and natural limits to lifespan will inevitably persist.

While aging cannot be escaped (Gompertz, 1825), postponing senes-

cent changes and disease onset offers the potential to extend fitness,

vitality, and years lived free of morbidity and frailty. While there is

evidence for modulation of lifespan in preclinical models and animal

species via genetic and pharmacologic interventions, translation of

these findings in human populations is needed. Here, we discuss the

limited scientific database regarding mechanisms and physiological

changes of aging and describe a framework to capture the complexity

of the aging process in a novel integrative score of biological aging. A

comprehensive view of biological aging is particularly germane at this

time when randomized clinical trials are being discussed and planned

with the intention of testing the therapeutic benefit of drugs such as

metformin on human aging (Albert Einstein College of Medicine of

Yeshiva University 2015; Longo et al., 2015). Integrating novel molec-

ular assays derived from the hallmarks of aging and physiological

measurements will help develop a composite BAS for use as a complex

quantitative phenotype to translate mechanistic findings of biological

pathways into humans. While conclusive methods to measure biolog-

ical age remain debatable, deriving a BAS will serve multiple purposes:

i) propel aging research at the molecular and cellular level, ii) quantify

aging in human cohorts, iii) provide a more robust index of the effects

of private gene mutations and specific polymorphisms on aging and

longevity, and iv) facilitate efficacy studies of therapies designed to

promote healthy aging in humans. Following derivation of a composite

BAS, prospective validation will be required to assess its accuracy in

predicting development of disease, disability, and death. To that end,

longitudinal research efforts such as the United States Precision

Medicine Initiative seeking to enroll 1 million participants and the

European MARK-AGE Consortium with 3200 enrolled participants are

seeking to define a set of human aging biomarkers (Burkle et al.,

2015). Next-generation sequencing, proteomics, and metabolomics

show great promise to advance our understanding of complex

biological processes. These technologies carry the potential to identify

distinct aging signatures; however, they require additional investigation

in epidemiologic studies prior to integration into a contemporary BAS.

Although discovery of the fountain of youth remains elusive and

unlikely, the outlook to characterize and mitigate age-related morbidity

is optimistic.
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