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Abstract

Background: ROC (receiver operating characteristic) curve analysis is well established for assessing how well a
marker is capable of discriminating between individuals who experience disease onset and individuals who do
not. The classical (standard) approach of ROC curve analysis considers event (disease) status and marker value for
an individual as fixed over time, however in practice, both the disease status and marker value change over time.
Individuals who are disease-free earlier may develop the disease later due to longer study follow-up, and also
their marker value may change from baseline during follow-up. Thus, an ROC curve as a function of time is
more appropriate. However, many researchers still use the standard ROC curve approach to determine the
marker capability ignoring the time dependency of the disease status or the marker.

Methods: We comprehensively review currently proposed methodologies of time-dependent ROC curves which
use single or longitudinal marker measurements, aiming to provide clarity in each methodology, identify software
tools to carry out such analysis in practice and illustrate several applications of the methodology. We have also
extended some methods to incorporate a longitudinal marker and illustrated the methodologies using a sequential
dataset from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver.

Results: From our methodological review, we have identified 18 estimation methods of time-dependent ROC
curve analyses for censored event times and three other methods can only deal with non-censored event times.
Despite the considerable numbers of estimation methods, applications of the methodology in clinical studies
are still lacking.

Conclusions: The value of time-dependent ROC curve methods has been re-established. We have illustrated the
methods in practice using currently available software and made some recommendations for future research.

Keywords: ROC curve, Time-dependent AUC, Biomarker evaluation, Event-time, Longitudinal data, Software

Background
In a screening process, an appropriate marker is used
to provide information on the individual risk of disease
onset. Information and signalling of future disease iden-
tification may be given by a single continuous measure-
ment marker or a score. A single measurement could
be any clinical measure such as cell percentage in the
synthesis phase to detect breast cancer [1], CD4 cell
counts to detect AIDS [2] or HIV-1 RNA to detect HIV
[3]. A score from a regression of potential factors or
some other model to detect disease can also be used as

a marker. Chambless and Diao [4] used the score from
a logistic regression model, including several traditional
and newer risk factors, to detect Coronary Heart Dis-
ease (CHD). Lambert and Chevret [5] used the prog-
nostic score of four covariates (age, platelet count,
prothrombin time, and serum alpha-fetoprotein level)
to predict compensated cirrhosis patients’ survival and
also used a score of three baseline characteristics (age,
white blood cell and performance status) to predict
event-free survival (EFS) in acute leukaemia patients.
Moreover, some studies used a published score as a
marker in which the score considers the most important
mortality predictors of a certain disease. For example, the* Correspondence: a.kamarudin@liverpool.ac.uk
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Framingham risk score is used for cardiovascular
patients [6] and the Karnofsky score is used for lung
cancer patients [7].
The decision from a diagnostic test is often based

on whether the marker value exceeds a threshold
value, in which case the diagnosis for the individual is
“diseased” and “non-diseased” otherwise. There is a
possibility that the diagnostic test gives a positive re-
sult for a non-diseased individual or a negative result
for a diseased individual. The sensitivity is defined as
the probability of a diseased individual being pre-
dicted as having the disease (true-positive) and the
specificity as the probability of a non-diseased indi-
vidual being predicted as not having the disease
(true-negative). These probabilities change as the
threshold value for the marker changes and the value
or range of threshold values chosen depends on the
trade-off that is acceptable between failing to detect
disease and falsely identifying disease with the test
[8]. In relation to this, the receiver operating charac-
teristic (ROC) curve is a tool that simply describes
the range of trade-offs achieved by a diagnostic test.
ROC curve analysis is extensively used in biomedical
studies for evaluating the diagnostic accuracy of a
continuous marker. It is a graphical display which
plots sensitivity estimates (probability of a true posi-
tive) against one minus specificity (probability of a
false positive) of a marker for all possible threshold
values. The performance of a marker is evaluated by
the area under the ROC curve (AUC) in which a
higher AUC value indicates a better marker perform-
ance. The AUC is also equal to the probability of a
diseased individual having a higher marker value than
a healthy individual [8]. It is usually assumed that a
higher marker value is more indicative of disease [8, 9]
and we assume this for the rest of this article.
Recent research has incorporated time dependency

in the sensitivity and specificity in disease (event)-
time data for individuals instead of using the standard
ROC curve approach. Such methods are proven more
effective; however, these methods are still under-used
in medical research. Once the time-dependent setting
has been applied, the disease status is observed at
each time point which yields different values of sensi-
tivity and specificity throughout the study.
Let Ti denote the time of disease onset and Xi is a

marker value (usually the value at baseline) for individual
i, (i = 1,…, n). Define the observed event time, Zi =min(Ti,
Ci), where Ci is a censoring time, and let δi be the
censoring indicator taking value 1 if an event (dis-
ease) occurs and 0 otherwise. Let Di(t) be the disease
status at time t, taking values 1 or 0. Hereafter, we
will refer to X as a “marker”, but X may also denote
a risk score computed from a regression or some

other model, or a published score. For a given thresh-
old c, the time-dependent sensitivity and specificity
can defined respectively by

Se c; tð Þ ¼ P Xi > cjDi tð Þ ¼ 1ð Þ
Sp c; tð Þ ¼ P Xi≤cjDi tð Þ ¼ 0ð Þ:

Using the above definitions, we can define the corre-
sponding ROC curve for any time t as ROC(t) which
plots Se(c,t) against 1-Sp(c,t) for thresholds c and time-
dependent AUC is defined by

AUC tð Þ ¼
Z ∞

−∞
Se c; tð Þd 1−Sp c; tð Þ½ �

with 1−Sp c; tð Þ½ � ¼ ∂ 1−Sp c;tð Þ½ �
∂c dc:

The AUC is equal to the probability that the diag-
nostic test results from a randomly selected pair of
diseased and non-diseased individuals are correctly
ordered [10, 11].
Heagerty and Zheng [12] proposed three different defi-

nitions for estimating the above time-dependent sensi-
tivity and specificity for censored event-times, namely
(1) cumulative/dynamic (C/D), (2) incident/dynamic
(I/D) and (3) incident/static (I/S) and these are ex-
plained by referring to the illustrations in Fig. 1(a)
and (b) below. Figure 1(a) and (b) illustrate the cases
and controls that contribute to the three definitions
of sensitivity and specificity (C/D and I/D with the
baseline marker, and I/S with both the baseline and
longitudinal markers), with closed circles indicate in-
dividuals who had an event, open circles indicate in-
dividuals who had censored event-times.

Cumulative sensitivity and dynamic specificity (C/D)
At each time point t, each individual is classified as a
case or control. A case is defined as any individual
experiencing the event between baseline t = 0 and
time t (individual A, B or E in Fig. 1a) and a control
as an individual remaining event-free at time t (indi-
vidual C, D or E in Fig. 1a). The cases and controls
are changing over time and each individual may play
the role of control at the earlier time (when the event
time is greater than the target time, i.e. Ti > t) but
then contributes as a case for later times (when the
event time is less than or equal to the target time,
i.e.Ti ≤ t).
The cumulative sensitivity is the probability that an

individual has a marker value greater than c among
the individuals who experienced the event before
time t (individual A or B in Fig. 1a), and the dynamic
specificity is the probability that an individual has a
marker value less than or equal to c among those
event-free individuals beyond time t (individual D or
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F in Fig. 1a). Thus the sensitivity and specificity at
time t and the resulting AUC(t) can be defined as

SeC c; tð Þ ¼ P Xi > cjTi≤ tð Þ
SpD c; tð Þ ¼ P Xi≤cjTi > tð Þ

AUCC;D tð Þ ¼ P Xi > XjjTi≤ t;Tj > t
� �

; i≠j:

It is more appropriate to apply the C/D definitions
when there is a specific time of interest that is used
to discriminate between individuals experiencing the
event and those event-free prior to the specific time.
This type of discrimination has more clinical rele-
vance than the other definitions (I/D and I/S) and
hence C/D definition has commonly been used by
clinical applications [5, 13]. However, since some in-
dividuals may contribute as controls at an earlier
time and then contribute as cases later, this definition
uses redundant information in separating cases and
controls [5].

Incident sensitivity and dynamic specificity (I/D)
A case for I/D definition is defined as an individual
with an event at time t (individual A in Fig. 1a) while
the control is an event-free individual at time t. (indi-
vidual C, D or F in Fig. 1a). In this definition, there
are individuals neither a control nor case (when the
event time is less than the target time, i.e. Ti < t, indi-
vidual B or E in Fig. 1a). Each individual who had an
event may play the role of control at the earlier time
(when the event time is greater than target time, i.e.
Ti > t) but then contributes as a case at the later inci-
dent time (when the event time is the same as the
target time, i.e.Ti = t).
The incident sensitivity is the probability that an indi-

vidual has a marker value greater than c among the indi-
viduals who experience the event at time t (individual A
in Fig. 1a) and the dynamic specificity is the probability
that an individual has a marker value less than or equal
to c among the individuals that remain event-free at

Fig. 1 a Illustration for cases and controls of C/D, I/D and I/S (baseline) definitions. C/D: A, B and E are cases and C, D and F are controls; I/D: Only A is
the case and C, D and F are controls; I/S: Only A is the case and D and F are controls. b Illustration for cases and controls of I/S (longitudinal) definitions.
Only A is the case and D and F are the controls
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time t (individual D or F in Fig. 1a). The sensitivity, spe-
cificity and resulting AUC(t) are defined as

SeI ¼ P Xi > cjTi ¼ tð Þ
SpD ¼ P Xi≤cjTi > tð Þ
AUCI;D tð Þ ¼ P Xi > XjjTi ¼ t;Tj > t

� �
; i≠j:

The I/D terminology is more appropriate when the exact
event time is known and we want to discriminate between
individuals experiencing the event and those event-free at a
given event-time, i.e. Ti = t. The incident sensitivity and dy-
namic specificity are defined by dichotomizing the riskset at
time t into cases and controls and this is a natural compan-
ion to hazard models [12]. In addition, these definitions
allow an extension to time-dependent covariates and also
allow time-averaged summaries that directly relate to a fa-
miliar concordance measure c-statistic [12]. This is a special
advantage of the I/D definition, since in many applications
no a prior time t is identified, thus a global accuracy sum-
mary is usually desired. The concordance summary is a
weighted average of the area under the time-dependent
ROC curve and it is defined by Heagerty and Zheng [12] as

Cτ ¼
Z τ

0
AUCI;D tð Þwτ tð Þdt

where wτ tð Þ ¼ 2f tð ÞS tð Þ=W τ;W τ ¼
Z τ

0
2f tð ÞS tð Þdt ¼ 1−

S2 τð Þ: The Cτ has slightly different interpretation from
the original concordance and it is the probability that
the predictions for a random pair of individuals are con-
cordant with their outcome, given that the smaller event
time occurs in (0, τ).

Incident sensitivity and static specificity (I/S)
A case for I/S definition is defined as an individual with an
event at time t (individual A in Fig. 1a, while the control is
an event-free individual through a fixed follow-up period,
(0, t*) (individual D or F in Fig. 1a). This incident sensitivity
and static specificity is usually used when a researcher at-
tempts to distinguish between individuals who have an event
at time t and those ‘long term survivors’ who are event-free
after a suitably long follow-up time, characterized by Ti ≥ t*.
The rational of using the fixed follow-up is because the end
point t* is pre-specified and it is considered a long enough
time to observe the event. For example, t* = 2 years is typic-
ally used in screening for breast cancer since it is assumed
that the individual was free from subclinical disease if the
clinical disease does not emerge by two years after screening
[6]. The sensitivity and specificity can be defined by

SeI c; tð Þ ¼ P Xi > cjTi ¼ tð Þ
SpS c; t�ð Þ ¼ P Xi≤cjTi > t�ð Þ:

As illustrated in Fig. 1a, the controls are static and do
not change (individuals D and F), and each individual

only contributes once as a case or as event-free individ-
ual within the fixed follow-up (0, t*).
The I/S definition can also be used in studies in which

individuals are followed up for a fixed time period with
repeated biomarker measurements. However, not all lon-
gitudinally measured marker values of the individual will
be used, but only a marker value at a particular visit
time s instead of using the baseline marker value [6, 14].
Since some studies may not have a regular visit time
schedule, the visit times may differ for each individual.
Thus, the time lag between the visit time and the time
of disease onset, Ti − s, which is commonly termed by
the “time prior to event”, is the main interest. The I/S
definition with a longitudinally measured marker is illus-
trated in Fig. 1b, assuming that a marker value is mea-
sured at visit time s. The sensitivity and specificity are
defined based on a time lag t = Ti − s. The incident sensi-
tivity is the probability of test positive with the marker
at t time units prior to the event for an individual that
has an event at Ti (individual A in Fig. 1b). The static
specificity is the probability that an individual is
remained event free by t* time units after the marker is
measured (individual D or F in Fig. 1b). We use Y in-
stead of X to represent the longitudinal marker measure-
ments in order to distinguish with the baseline marker
value. Let Yik be the biomarker value obtained from indi-
vidual i at sik; i = 1,…, n; k = 1,…, Ki where sik is the
marker measurement time of individual i at the kth visit
time. The sensitivity and specificity can be defined by:

SeI c; tð Þ ¼ P Y ik > cjTi−sik ¼ tð Þ
SpS c; t�ð Þ ¼ P Y ik ≤cjTi−sik > t�ð Þ:

The above definitions facilitate the use of standard
regression approaches for characterizing sensitivity and
specificity because the time prior to event Ti − sik can
simply be used as a covariate.
Blanche et al. [13] have reviewed methodologies of

time-dependent ROC curve analysis under the C/D def-
inition only; however, in this article, we have undertaken
a comprehensive review of the current estimation
methods under each definition and also identify add-
itional methods, aiming to provide clarity for each meth-
odology. We illustrate how each method is implemented
on a time-varying disease status or over a time course of
a longitudinal marker using a sequential dataset from
Mayo Clinic trial in primary biliary cirrhosis (PBC) of
the liver. We identify the software that implements
current methods in practice and the need for further
methodologies.

Benefits of time-dependent ROC curve analysis
In the standard ROC curve analysis, the individual’s dis-
ease status is defined once a marker value is measured
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and it is assumed to be fixed for the whole study period.
The study period is usually take a long follow-up and
during this, the individual without disease earlier may
have the disease. In contrast, the disease status of an in-
dividual is observed and updated at each time point in
time-dependent ROC curve analysis. With additional in-
formation of time of disease onset for each individual, a
ROC curve can be constructed at several time points
and the marker’s predictive ability can be compared.
Thus, time-dependent ROC curve is an efficient tool in
measuring the performance of a candidate marker given
the true disease status of individuals at certain time
points. In general, a baseline marker value is used for
computing the predictive ability but it can become
weaker as the target time gets further from the baseline.
In longitudinal studies, the marker is measured several

times within a fixed follow-up. If a marker measurement
has ability to signify a pending change in the clinical sta-
tus of a patient, then a time-dependent ROC curve on a
time-varying marker can be used to guide key medical
decisions.

Challenges of time-dependent ROC curve analysis
The most common problem is censoring, in which some
individuals may be lost during the follow-up period. If
the censored individuals are ignored, the estimation of
the sensitivity and specificity may be biased as the infor-
mation from the individual before censoring may con-
tribute to the estimation. In a time-dependent ROC
curve analysis, the sensitivity and specificity are defined
at each time point, where not all individuals are equally
informative, and their contributions differing according
to the aims and definitions used. A longitudinal bio-
marker brings an additional challenge to take account of
the marker measurements at a number of visits for each
individual. In the I/S definition, not all marker values
are used but only the most recent, which is assumed
more reliable for predicting the disease status [6, 14].
Other time-dependent ROC curve approaches currently
proposed for a longitudinal marker either assume non-
censored event-times or ignore censored individual
records.

Methods
We have used MEDLINE (Ovid), Scopus and the inter-
net to search for relevant papers for our review. We re-
stricted our search to English language published papers
between years 1995 to August 2016 to ensure all
methodology papers of time-dependent ROC curves
analysis were included. A total of 332 papers were found
and 24 of these discussed time-dependent ROC curve
methodology. The remaining 308 papers included only
an application of standard or time-dependent ROC
curves. For each methodology paper, the following

details were extracted: definition of sensitivity and speci-
ficity (whether C/D, I/D, I/S or other), estimation
method, type of estimation (non-parametric, semi-
parametric or parametric), limitations and availability of
software. Only 16 methodology papers are within the
scope of this review, and out of the 16 methodology pa-
pers, 10 (63%) discussed methodologies along the lines
of the C/D definition. Three papers (19%) proposed
methodologies based on the I/D definition, only one
paper (6%) proposed methodology based on the I/S and
another two papers (12%) proposed other methodologies
for longitudinal marker measurements. Full details of
the review are available as Additional file 1.
Table 1 summarised the estimation methods for each

definition with their respective advantage and disadvan-
tage and software tools. We discuss the methodologies
proposed under each definition in detail in the subse-
quent sections.

Naïve estimator of time-dependent ROC curve analysis
Many studies have used an empirical estimator as a
basis for comparison with other estimation methods.
This estimator only considers observed events and, the
sensitivity and specificity are calculated by the ob-
served proportions of true-positives and true-negatives
respectively.
If a dataset does not have any censored events (that is,

if all individuals have either experienced the event or
remained event-free over the study follow-up and not
left the study), the sensitivity at time t is estimated as
the proportion of the individuals with marker value
greater than threshold c, (i.e. Xi > c) among individuals
experiencing the event before t. The specificity at time t
is given by the proportion of the individuals with marker
value less than or equal to c, (i. e. Xi ≤ c) among event-
free individuals beyond time t. When there are censored
event-times, the above estimators are computed by re-
moving all the censored individuals before time point t.
The sensitivity and specificity and the resulting AUC(t)
can be estimated as follows

bSe c; tð Þ ¼
Xn

i¼1
δiI Xi > c;Zi≤tð ÞXn

i¼1
δiI Zi≤ tð Þ

cSp c; tð Þ ¼
Xn

i¼1
I Xi≤c;Zi > tð ÞXn

i¼1
I Zi > tð Þ

dAUC tð Þ ¼
Xn

i¼1

Xn

j¼1
δiI Zi≤ t;Zj > t

� �
I Xi > Xj
� �

Xn

i¼1
δiI Zi≤ tð Þ

Xn

j¼1
I Zj > t
� �

where i and j are the indexes of two independent indi-
viduals, and I(.) is an indicator function. However, this
estimation is often biased as it ignores the censoring
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distribution. The specificity estimate is consistent if cen-
soring is independent of Xi and Ti, while the sensitivity
and AUC estimates may be biased since Ti will usually
depends on Xi [13].

Cumulative sensitivity and dynamic specificity (C/D)
Ten estimation methods have been proposed under C/D
definition, and these are discussed in CD1 – CD8 below.
CD8 describes three estimation methods.

(CD1) Kaplan-Meier estimator of Heagerty et al. [1]
Heagerty et al. [1] used the Kaplan-Meier estimator of
the survival function [15] to estimate the time-
dependent sensitivity and specificity. Using Bayes’ The-
orem, the two quantities are defined by

bSe c; tð Þ ¼ 1−Ŝ tjXi > cð Þ� �
1−F̂ X cð Þ� �

1−Ŝ tð Þ ;

cSp c; tð Þ ¼ Ŝ tjXi≤cð ÞF̂ X cð Þ
Ŝ tð Þ

where Ŝ(t) is the estimated survival function, Ŝ(t|Xi > c)
is the estimated conditional survival function for the
subset defined by X > c and F̂ X cð Þ is the empirical distri-
bution function of the marker, X.
However, this estimator yields non-monotone sensi-

tivity and specificity, and not bounded in [0, 1]. This
problem is illustrated by the authors using a hypothet-
ical dataset, and is due to the quadrant probability

estimator P̂ Xi > c;Ti > tð Þ ¼ Ŝ tjXi > cð Þ 1−F̂ X cð Þ� �
not

necessarily producing a valid bivariate distribution as
the redistribution to the right of the probability mass
associated with censored observations will change as the
conditioning set (X > c) changes. Another problem is that
it is not robust to marker-dependent censoring since the
conditional Kaplan-Meier estimator, Ŝ(t|Xi > c), assumes
the censoring process does not depend on the marker.

(CD2) nearest neighbour estimator of Heagerty et al. [1]
The problems of the CD1 estimators motivated Heagerty
et al. [1] to develop an alternative approach based on a bi-
variate survival function. This improved methodology uses
the nearest neighbour estimator of the bivariate distribu-
tion of (X, T), introduced by Akritas [16]. As mentioned
earlier, CD1 is not robust to marker-dependent censoring;
however, censoring often depends on the marker. Thus,
the independence of time-to-event and censoring time
cannot be assumed and they are more likely independent
conditionally on the marker. In this model-based ap-
proach, the probability of each individual is modelled for a
case by 1 − S(t|Xi) and for a control by S(t|Xi) [13]. Akritas
[16] proposed using the following model-based estimator

for the conditional survival probability called the weighted
Kaplan-Meier estimator and is defined by

Ŝλn tjXið Þ ¼
Y

a∈Tn ;a≤t

1−

X
j
Kλn Xj;Xi

� �
I Zj ¼ a
� �

δjX
j
Kλn Xj;Xi

� �
I Zj≥a
� �

8<
:

9=
;

where Kλn Xj;Xi
� �

is a kernel function that depends
on a smoothing parameter λn. Akritas [16] uses a
0/1 nearest neighbour kernel, Kλn Xj;Xi

� � ¼ I
−λn < F̂ X Xið Þ−F̂ X Xj

� �
< λn

� �
where 2λn ∈ (0, 1) rep-

resents the percentage of individuals that are in-
cluded in each neighbourhood (boundaries). The resulting
sensitivity and specificity are defined by

bSe c; tð Þ ¼ 1−F̂ X cð Þ� �
−Ŝλn c; tð Þ

1−Ŝλn tð Þ ;

cSp c; tð Þ ¼ 1−
Ŝλn c; tð Þ
Ŝλn tð Þ

where Ŝλn tð Þ ¼ Ŝλn −∞; tð Þ . The above estimates of the
sensitivity and specificity will produce ROC curve esti-
mates that are invariant to monotone transformations of
the marker. Both sensitivity and specificity are monotone
and bounded in [0, 1]. Further, as contrast to CD1, this
nonparametric method is efficient as a semi-parametric
method and allows the censoring to depend on the marker
space [16]. Heagerty et al. [1] used bootstrap resampling
to estimate the confidence interval for this estimator. Mo-
tivated by the results gained by Akritas [16], Cai et al. [17],
Hung and Chiang [2] and Hung and Chiang [18] discusses
the asymptotic properties of CD2. They have established
the usual

ffiffiffi
n

p
-consistency and asymptotic normality and

concluded that bootstrap resampling techniques can be
used to estimate the variances. In practice, it is suggested
that the value for λn is chosen to be O n−

1
3

� �
[1]. Song and

Zhou [19] extended the method to incorporate covariates
other than those variables contained in the marker for
constructing the ROC curves within this CD2 method-
ology. They have also explored their model by incorporat-
ing an ID mechanism.

(CD3) Kaplan-Meier like estimator of Chambless and Diao [4]
Chambless and Diao [4] highlighted the problem with the
direct estimation of time-dependent sensitivity, specificity
and AUC when the event status is not known at time t for
individuals censored prior to t. They proposed a “Kaplan-
Meier like” estimator that needs recursive computation
using the riskset at each ordered event time, and mimics
the Kaplan-Meier estimator. Blanche et al. [13] slightly re-
vised the original estimation for the ease of computation.
Let tk be the kth observed ordered event time and tm be
the last observed event time before target time t. The
sensitivity and specificity are defined by
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bSe c; tð Þ ¼
Xm

k¼1
I Xd kð Þ > c
� �

Ŝ tk−1ð Þ−Ŝ tkð Þ� �
1−Ŝ tmð Þ

cSp c; tð Þ ¼
F̂ X cð Þ−

Xm

k¼1
I Xd kð Þ≤c
� �

Ŝ tk−1ð Þ−Ŝ tkð Þ� �
Ŝ tmð Þ

where d(k) is the index of the individual who experi-
ences an event at time tk, I(Xd(k) > c) estimates P(Xi >
c|tk − 1 < Ti ≤ tk) and I(Xd(k) ≤ c) estimates P(Xi ≤ c|tk − 1

< Ti ≤ tk). Ŝ(tk) is the Kaplan-Meier survival function
at time tk and Ŝ(tk − 1) − Ŝ(tk) estimates P(tk − 1 < Ti ≤ tk).
An advantage of this method is the sensitivity is

monotone and bounded in [0, 1]. A nice property of this
nonparametric estimator is that it does not involve any
smoothing parameter, unlike CD2. Chambless and Diao
[4] have compared CD3 with the c-statistic gained from
the logistic regression model of baseline values in a
simulation study and apparently it shows little bias. In
order to compute variances and confidence intervals of
this estimator, Chambless and Diao [4] suggested using
bootstrap re-sampling.

(CD4) alternative estimator of Chambless and Diao [4]
CD1 estimates the conditional survival functions
S(t|X > c) using the Kaplan-Meier method under the
subset defined by X > c. Thus, for a large threshold
value c, the subset for X > c may be small for estimat-
ing the conditional Kaplan-Meier estimate. However,
in clinical applications, this “tail” survival function is
often of interest [4]. In order to solve this problem,
Chambless and Diao [4] proposed an alternative esti-
mator, CD4, which is a model-based estimator like
CD2, but differs in the way of estimating the survival
function. CD4 estimates the coefficients of risk factors
from a Cox proportional hazards model and then
these coefficients are used to estimate the survival
function while CD2 uses nearest neighbour estimator
of S(t|X > c). The proposed sensitivity and specificity
are defined by

bSe c; tð Þ ¼ E 1−S tjXið Þð ÞI Xi > cð Þ½ �
E 1−S tjXið Þ½ � ;

cSp c; tð Þ ¼ E S tjXið ÞI Xi < cð Þ½ �
E S tjXið Þ½ �

where X here is a score from a survival function. This
estimator requires the use of a score X from a survival
function [4] instead of the raw marker value or score
from other model. So, CD4 is readily available if X is a
score produced from a survival model but if X is from
an external source, then we need to fit a survival model
and produce the equivalent score [4]. Chambless and
Diao [4] suggested estimating the conditional survival

function S(t|Xi) under a Cox model and replacing the
expected values by sample means. Therefore, CD4 is im-
mediately available at any given time. Further, CD4 also
produces monotone sensitivity and specificity given the
survival function holds the property that the score is
produced from a survival model. Simulation study by
Chambless and Diao [4] showed that CD4 is more ef-
ficient than CD3, as long as the survival model is not
misspecified [20]. As with CD2, this model-based esti-
mator also allows censoring to depend on the marker.
The disadvantage of CD4 is that it is not invariant to
an increasing transformation of the marker (as the
score X from a survival function) which is a desirable
property of ROC curve estimator [13] and for this
reason Blanche et al. [13] choose not to compare this
method to the others and the authors will not com-
pare here too.

(CD5) Inverse probability of censoring weighting
CD5 was proposed by Uno et al. [21] and Hung and
Chiang [18] and modifies the naïve estimator by adding
weights to the observed marker values and time of dis-
ease onset in a subsample of uncensored individuals
before time t. The weights are the probabilities of being
uncensored when calculating the sensitivity:

bSe c; tð Þ ¼
Xn

i¼1
I Xi > c;Zi≤ tð Þ δi=nŜc Zið Þ� �

Xn

i¼1
I Zi≤ tð Þ δi=nŜc Zið Þ� �

where Ŝc(Zi) is the Kaplan-Meier estimator of the sur-
vival function of the censoring time Ci at the ith ob-
served event-time Zi. As discussed by Blanche et al. [13],
the above estimate of sensitivity is the same as in CD3
although this is not mentioned by the authors. The spe-
cificity remains the same as in the above specified naïve
estimator. CD5 produces monotone sensitivity and spe-
cificity and are bounded in [0,1] [13].

(CD6) Conditional IPCW
CD6 is a modified version of IPCW that uses the
weights that are the conditional probability of being
uncensored given the marker, instead of the marginal
probability of being uncensored [13]. This nonparamet-
ric estimator is robust to marker dependent censoring as
previous model-based estimators CD2 and CD4. The
sensitivity and specificity are estimated by

bSe c; tð Þ ¼
Xn

i¼1
I Xi > c;Zi≤ tð Þ δi=nŜc ZijXið Þ� �

Xn

i¼1
I Zi≤tð Þ δi=nŜc ZijXið Þ� �

cSp c; tð Þ ¼
X

i¼1

n
I Xi≤c;Zi > tð Þ 1=nŜc tjXið Þ� �

Xn

i¼1
I Zi > tð Þ 1=nŜc tjXið Þ� �

where Sc(t|Xi) = P(Ci > t|Xi) is the censoring survival
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probability that may be estimated using a Cox model.
However, Blanche et al. [13] suggested using the non-
parametric weighted KM estimator as discussed in CD2,
in order to estimate the survival function Sc(t|X) which
is also monotone and bounded in [0, 1].

(CD7) Weighted AUC (t)
Lambert and Chevret [5] used a similar approach to
Heagerty and Zheng [12] and proposed a time-
dependent weighted AUC estimator restricted to a fixed
time interval (τ1, τ2) and defined as:

dAUC
C;D

ωτ1τ2
¼ 1

Ŝ τ1ð Þ−Ŝ τ2ð Þ

	X
τ1≤ ið Þ≤τ2

dAUC
C;D

t ið Þ
� �

Ŝ t ið Þ
� �

−Ŝ t i−1ð Þ
� �n o


;

where t(i) are the ordered distinct failure times for which,
if t(1) > τ1, it is assumed that t(0) = τ1, Ŝ(t), is the Kaplan-

Meier estimate of the survival function and dAUC
C;D

tð Þ
is a nonparametric estimator of a C/D time-dependent
AUC such as CD2or CD5 or any other estimator. The
value τ2 can be allocated as the value slightly below
the maximum expected follow-up time if no clinically
motivated choice is specified [22]. Bootstrap resam-
pling is used to compute the confidence intervals of
CD7. Since this weighted AUC is defined under C/D,
it is not directly related to concordance measures, un-
like the integrated AUC that will discuss under I/D
definition. However, the proposed estimator is better
understood by physicians and also closer to the clin-
ical setting since most clinical studies want to distin-
guish between individuals who fail and individuals
who survive the disease from baseline to any particu-
lar time t. It is easy to implement since it can use
any C/D estimators.

(CD8) Viallon and Latouche [20] Estimators
Viallon and Latouche [20] proposed several estimators
of the time-dependent AUC relying on different estima-
tors of the conditional absolute risk function. The condi-
tional absolute risk function is estimated under the
standard Cox proportional hazard model (VL Cox), an
Aalen additive model (VL Aalen) or using the condi-
tional Kaplan-Meier estimator (VL KM). The estimator
of the time-dependent AUC is defined by

AUCn tð Þ ¼
Xn

i¼1
i
n F̂ n t;Xið Þ−

Xn

i¼1
F̂ n t;Xið Þ

n o2
=2Xn

i¼1
F̂ n t;Xið Þ 1−

Xn

i¼1
F̂ n t;Xið Þ

n o
where n is the number of individuals and Xk denotes the
kth order statistic attached to the marker X1, X2,…, Xn.

The conditional absolute risk is defined by F(t; X = x) =
P(T ≤ t|X = x) and its estimator denoted by F̂ n t;X ¼ xð Þ
is estimated as below.
VL Cox: Consider the Cox model [23] under the con-

ditional hazard rate λ(t; X = x) = λ0(t)exp(αx) where λ0
denotes the baseline hazard rate, and α is the log hazard
ratio pertaining to X = x. The conditional cumulative

hazard rate of T = t given X is denoted by Λ t;X ¼ xð Þ

¼
Z t

0
λ u;X ¼ xð Þdu . Then the estimator of the condi-

tional absolute risk function for VL Cox is given by

F̂ n;Cox t;X ¼ xð Þ ¼ 1−exp −Λ̂0 tð Þ exp α̂xð Þ� �
:

VL Cox is very similar to the estimator proposed by
Heagerty and Zheng [12] that will be introduced in
method ID1 but it does not involve the computation of
the bivariate expectation [20].
VL Aalen: For the Aalen additive model [24], the

conditional hazard rate λ(t; X = x) takes the form β0(t)
+ β1(t)x. Thus the estimator of the conditional absolute
risk function for VL Aalen is given by

F̂ n;Aalen t;X ¼ xð Þ ¼ 1− exp −β̂0 tð Þ−β̂1 tð Þx
� �

:

VL KM: A nearest-neighbour type estimator of condi-
tional absolute risk function is used for VL KM and is
defined by

F̂ n;KM t;X ¼ xð Þ ¼ 1−
Y

Zi≤t; δi¼1

Kln Xi; xð ÞX
j
I Zj≥Zi−
� �

Kln Xj; x
� �

8<
:

9=
;

where ln is the smoothing parameter of the 0/1 symmet-
ric nearest neighbour kernel Kln [16].
VL estimators are straightforward to implement since

they just plug-in the estimates of the conditional absolute
risk function into the time-dependent AUC estimator.
This plug-in nature allows their theoretical properties to
follow the other established estimators of the conditional
absolute risk function. Moreover, it is advisable to use
CD8 compared to CD2 in the situations where the inde-
pendence assumption between censoring time C, and the
pair (T, Z) might be violated [20].

Incident sensitivity and dynamic specificity (I/D)
There are three estimation methods proposed under the
I/D definition, these are discussed in ID1 – ID3 below.
Specific notation: Let Ri(t) = I(Zi ≥ t) denote the at-risk

indicator. Let ℛi(t) = (i : Ri(t) = 1) denote the individuals
that are in the riskset at time t, which ℛt

1 = (i; Ti = t), are
individuals with the event (cases) and ℛt

0 = (i; Ti > t) are
individuals without the event (controls). Let nt = |ℛt

0| be
the size of the control set at time t and dt = |ℛt

1| the size
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of case set at time t. Note that the riskset at time t can
be represented as ℛt = (ℛt

1 ∪ℛt
0).

(ID1) Cox regression
Heagerty and Zheng [12] used the standard Cox regres-
sion model to estimate the sensitivity and specificity by
the following three steps:

(i) Fit a Cox model λ0(t)exp(Xiγ) where γ is the
proportional hazard regression parameter. In
order to relax the proportionality assumption,
use a regression-smoothing method to estimate
the time-varying coefficient γ̂ tð Þ and use it to
estimate sensitivity in (ii) instead of y.

(ii)The sensitivity can be evaluated using γ̂ tð Þ from (i)
as follows

bSe c; tð Þ ¼
X

i
I Xi > cð Þπk γ̂ tð Þ; tð Þ:

Here πi(γ(t), t) = Ri(t)exp(Xiγ(t))/W(t) are the weights
under a proportional hazard model and W(t) = ∑iRi(t)
exp(Ui

Tβ) with time-invariant covariates Ui.

(iii)The specificity can be estimated empirically as
follow

cSp c; tð Þ ¼ 1−
X

k
I Xk > cð Þℛ

0
i tð Þ
nt

:

Heagerty and Zheng [12] suggested using flexible
semiparametric methods such as locally weighted max-
imum partial likelihood (MPL) by Cai and Sun [25] as
the regression-smoothing method in (i), and simple local
linear smoothing of the scaled Schoenfeld residuals [26]
for reducing the bias [12].
The sensitivity is consistent for both the proportional

and non-proportional hazards models whenever a con-
sistent estimator of γ̂ tð Þ is used [27]. Since the specificity
is an empirical distribution function calculated over the
control set, it is consistent provided the control set rep-
resents an unbiased sample [12]. It is suggested that the
computation of standard errors and confidence intervals
is carried out using the nonparametric bootstrap based
on resampling of observations (Xi, Zi, δi) [12].

(ID2) weighted mean rank
ID2 was proposed by Saha-Chaudhuri and Heagerty [28]
and is based on the idea of ranking the individuals in the
riskset by their respective scores. The proposed time-
dependent AUC is based on local rank-based cy given
time t, an estimator of AUC(t) is defined by

A tð Þ ¼ 1
ntdt

X
i∈ℛ1t

X
j¼ℛ0t

1 Xi > Xj
� �

:

However, frequently, only a small number of individ-
uals experience the event at t, and therefore the infor-
mation on the neighbourhood is needed in order to
estimate the marker concordance at t which is defined
by

WMR tð Þ ¼ 1
N t hnð Þj j

X
tj∈N t hnð Þ

A tj
� � ð1Þ

where N t hnð Þ ¼ tj : t−tj
�� �� < hn

� �
denotes a neighbour-

hood around t. This is a nearest-neighbour estimator of
the AUC and can be generalized to

dAUC tð Þ ¼
X
j

Khn t−tj
� �

: A tj
� � ð2Þ

where Khn is a standardized kernel function such thatX
j
Khn t−tj

� � ¼ 1. Eq. (1) is a smoothed version of Eq. (2)

and it is based on local U-statistics summaries. Saha-
Chaudhuri and Heagerty [28] suggested integrated mean
square error (IMSE) as a potential method to select an op-
timal bandwidth.
Under certain conditions, Saha-Chaudhuri and

Heagerty [28] showed that WMR(t) follows a normal
distribution. It is suggested that this variance estima-
tor for inference can be used in practice since it is
simple and does not require resampling methods.
Moreover, Saha-Chaudhuri and Heagerty [28] also
provided the details of large sample properties of this
estimator, and then the construction of a confidence
interval for WMR(t) using the asymptotic properties
is straightforward. Although it is desirable to obtain
the simultaneous confidence bands for the function
WMR(t), the theory may not be applicable in this
case since the limiting process may not possess an in-
dependent increment structure. Instead, a simulation
of a Gaussian process while keeping the estimates of
ID2 fixed is needed to approximate the distribution
of the Gaussian process and to estimate the quantiles.
ID2 also has the advantage to be potentially robust
since the relative bias remains significantly lower than
for the ID1estimator.

(ID3) fractional polynomial
As the ID2 method is computationally intensive, espe-
cially in the selection of the bandwidth, Shen et al.
[29] proposed a semi-parametric time-dependent AUC
estimator which is easier and more applicable when
comparing and screening a large number of candidate
markers. The suggested model used fractional
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polynomials [30], the parameters of which are esti-
mated by using a pseudo partial-likelihood function.
Denote η(.) as the link function, e.g. the logistic func-

tion. AUC(t)is modelled directly as a parametric function
of time t using fractional polynomials of G degree:

η AUC tð Þð Þ ¼
XG
g¼0

βgt
pgð Þ ð3Þ

where for g = 1,…, G, and

t pgð Þ ¼ tpg if pg≠0
ln tð Þ if pg ¼ 0

�

p1 ≤… ≤ pg are real-valued powers, and β0,…, βg are
unknown regression parameters. The choice of powers is
from the set (-2, -1, -1/2, 0, ½, 1, 2) as suggested by Royston
and Altman [30]. Unlike the conventional polynomial, the
fractional polynomial is flexible and can mimic many func-
tion shapes in practice [30]. In order to construct the
pseudo partial-likelihood, consider two types of events on
each riskset R(tk) derived from the observed data which are
defined by

e1 Xi;Xj; Zi; Zj
� � ¼ Xi > XjjZi ¼ tk ; δi ¼ 1; j∈R tkð Þ� �

e2 Xi;Xj; Zi; Zj
� � ¼ Xi≤XjjZi ¼ tk ; δi ¼ 1; j∈R tkð Þ� �

where event e1(Xi, Xj, Zi, Zj) and e2(Xi, Xj, Zi, Zj) are re-
spectively called a concordant and a discordant events as
e1(Xi, Xj, Zi, Zj) occurs if individual j has smaller marker
value than individual i, and e2(Xi, Xj, Zi, Zj) occurs if in-
dividual j has greater marker value than individual i,
given that individual j has longer survival. For each event
time tk, the counts of the two types of events are given by

n1 tð Þ ¼
X
j

I j : Xi > XjjZi ¼ tk ; δi ¼ 1; j∈R tkð Þ� �
n2 tð Þ ¼

X
j
I j : Xi≤XjjZi ¼ tk ; δi ¼ 1; j∈R tkð Þ� �

:

Note that at each time point tk, conditional on riskset
R(tk), the count n1(tk) follows a distribution with prob-
ability equal to AUC(tk). The pseudo partial-likelihood is
constructed by multiplying all probabilities of observing
concordant and discordant counts over all of the risksets
from the observed event times as below

L βð Þα
YK

k¼1
AUC tk ; βð Þn1 tkð Þ 1−AUC tk ; βð Þf gn2 tkð Þ:

Maximizing this pseudo partial-likelihood yields par-

ameter estimates β̂ . Then the time-dependent AUC esti-
mate is obtained from Eq. (3) as a smooth function of
time t and β. In practice, the integrated AUC is always
of interest for the I/D definition and it can be defined byZ τ

0
ω t; τð ÞAUC t; β̂

� �
dt . When the weight function

ω(t; τ) is invariant to time, the integrated AUC can be

viewed as the global average of the AUC curve [29]. One
major advantage of this estimator compared to ID2 is
that the proposed method estimates the entire curve as
a function of t and β while ID2 just uses a point-wise ap-
proach to estimate AUC. Further, this method is under-
standable and it is easier to make inference since it is a
“regression-type” method, with covariates being func-
tions of time. In estimating the integrated AUC, the ID3
method is more convenient since it uses an analytical
expression while ID2 computation is more complex
since the kernel-based estimation procedure has to be
repeated N times, and also the selection of bandwidths
has to be considered. However, Saha-Chaudhuri and
Heagerty [28] decreased the computational burden by cal-
culating the integrated AUC as an average of AUC(t) at 10
time points, which can lead to approximation errors.

Incident sensitivity and static specificity (I/S)
There is only one estimation method proposed under
the I/S definition found from the methodological review
and one extended method which are discussed below.

(IS1) Marginal regression modelling approach
Cai et al. [6] proposed an estimation approach using
marginal regression modelling which was first proposed
by Leisenring et al. [31] that accommodates censoring.
Let the data for analysis be given by ((Yik,Ui, Zi, δi, sik), i
= 1,…, n; k = 1,…, Ki), where Ui denote the vector of co-
variates associated with Yik and let Tik be the time lag
between the measurement time and the event time, i.e.
Tik = Ti − sik Cai et al. [6] modelled the marginal prob-
ability associated with (Yik,Tik,Ui) and the sensitivity
and specificity are defined by marginal probability
models,

Se t; sik ;U i;c
� � ¼ P Y ik > cjTik ¼ t;U i;sik

� �
¼ gD ηα0 t; sikð Þ þ β0

0U i þ h0 cð Þf g
Sp t�; sik ;U i;c

� � ¼ P Y ik≤cjTik > t�;U i;sik
� �

¼ 1−gD ξα0 sikð Þ þ b00U i þ c0 cð Þf g

where gD and gD are specified inverse link functions,
h0 and c0 are baseline functions of the threshold c
that are completely unspecified. These nonparametric
baseline functions of c represent the shape and
location of the sensitivity and specificity functions
while the parameters β0 and b0 quantify the covariate
effects on them and ηα0 and ξα0 are the time effects.
The dependence on time for sensitivity is through the
parametric functions ηα0(t, s) =α '0 η(t, s) and ξα0(sik) =α '0 ξ(s)
where η and ξ are vectors of polynomial or spline
basis functions.
Let Ψ0 = (Η0(.) = [h0(.), c0(.)] ', θ0 = [α '0, β '0, α '0, b '0]) de-

note all unknown parameters. Cai et al. [6] considered
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the marginal binomial likelihood function based on the
binary variable I(Yik ≥ c) and it is defined by

Yn

i¼1

YK

k¼1
pik y;Ψð Þf gI Y ik≥cð Þ 1−pik y;Ψð Þf g I Y ik<cð Þ

and the corresponding score equation is solved to esti-
mate the nonparametric baseline functions, Η0(c). Fur-
ther, θ0 is estimated by solving the integration of the
corresponding score equation. Cai et al. [6] also pro-
posed an approach that ignores censored observations.
Simulation studies [6] showed that the above method

provides reasonably unbiased estimates of model pa-
rameters of sensitivity and specificity. The approach
which includes the censored observations is always
more precise than the one that excludes the censored
observations.

(IS2) extended Cox regression
The main difference between I/D and I/S definitions
is related to the controls. The controls in I/D are
changing based on the target time whereas in I/S,
controls are static survivors beyond a fixed time. This
difference has motivated us to extend the Cox Re-
gression method (ID1) to incorporate a longitudinally
repeated marker using the I/S definition. A marker
value at a particular visit time s is considered. Thus,
we have changed the definition of the riskset as those
individuals beyond target time by including those be-
yond a fixed follow-up. However, as I/S is not based
on classification of the riskset at time t like I/D, this
extended method cannot be said as a natural com-
panion to hazard models. We have also extended the
current software of ID1 (see Section for Software
below) by redefining the riskset according to the I/S
definition. The extended software can also be used
with the baseline value of the marker.

Additional methods for longitudinal outcomes
Three estimation methods have been proposed for a lon-
gitudinal marker in addition to those described above
under I/S definition, although some do not incorporate
censoring. These estimation methods are discussed
below. An extension of the C/D definition for a longitu-
dinally repeated marker is suggested as a fourth method.
Specific notation: Let n ¼ nD þ nD denote the total

number of individuals which is the summation of the
where nD is the total number of cases and nD is the
total number of controls. Let Uik

T = vec(Ti, sik) =UD

denote the vector of covariates associated with Uik.
The total number of longitudinally repeated marker

values for cases is ND ¼
XnD

i
K i . The time prior to

an event is defined as the time lag between the meas-
urement time and the event time: Tik = Ti − sik as

above. Similarly for controls, let Yjl be the biomarker
value obtained from individual j at the lth visit time
sjl with j ¼ nD þ 1; …; nD þ nD and l = 1, …, Lj. Let
UT

jl ¼ vec sjl
� � ¼ UD denote the vector of covariates

associated with Yjl. The total number of longitudinally

repeated marker values for controls is ND ¼
Xn

D

j
Lj .

Thus, the total number longitudinally repeated marker
values in study is N ¼ ND þ ND .

(AD1) Linear mixed-effect regression model
Etzioni et al. [32] proposed the use of a linear random-
effect regression model of serial marker measurements
as a function of time prior to event, which was originally
proposed by Tosteson and Begg [33] by using ordinal re-
gression models in order to estimate the time-dependent
ROC curve statistics. This approach involves modelling
the marker values and uses the model parameter esti-
mates to induce an ROC curve at a particular time. The
ROC is defined by

ROC t; pð Þ ¼ SD a0 tð Þ þ a1 tð ÞS−1
D

pð Þ
h i

ð4Þ

where t is the time prior to event, p is the false positive
rate, Sp is one minus the cumulative distribution func-
tion for cases and sD is one minus the cumulative distri-
bution function for controls. Suppose cases and controls
are from the same location-scale family S,μD and SD are
the mean and standard deviation of Yik, and μD and sD
are the mean and standard deviation of Yjl. Then α0(t)
and α1(t) are defined by

a0 tð Þ ¼ μD−μD
sD

a1 tð Þ ¼ sD
sD

:

To estimate α0(t) and α1(t), Zheng and Heagerty [9]
fitted the following linear mixed effect models for cases
and controls:

Case : Y ik ¼ b0i þ b1isik þ β0 þ β1sik þ β2Tik

þβ3sikT ik þ εik

ð5Þ
Control : Y jl ¼ b0j þ b1jsjl þ β0 þ β1sjl þ εjl ð6Þ

Where εik ~N(0, σD
2 ) and (β0, β1, β2, β3) ~N[(β0

D, β1
D, β2

D,

β3
D), VD] for cases and εjl eN 0; σ2

D

� �
and β0; β1

� � eN
βD0 ; β

D
1

� �
;VD

h i
for controls. VD. and VD are variance-

covariance matrices for cases and controls respect-
ively. Of note, only Eq. (5) includes the time prior to
event (Tik) but not Eq. (6) since controls are those
individuals who do not experience the event. Param-
eter estimates from Eqs. (5) and (6) are used to
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induce the ROC estimates in Eq. (4) using estimated
α0(t) and α1(t). For a given s and t, μD, μD , sD and sD
are estimated by

μ̂D ¼ UDβ
D; μ̂D ¼ UDβ

D ; ŝD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2D þUDVDUT

D

q
and ŝD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2D þUDV

DUD
T

q
where UD ¼ 1 s t st½ �; βD ¼ β̂0 β̂1 β̂2 β̂3

h iT
;UD ¼ 1 s½ � and βD ¼ β̂0 β̂1

 �T
:

(AD2) Model of ROC as a function of time prior to disease
Pepe [34] proposed the use of a regression model for the
ROC curve itself, and similarly Etzioni et al. [32] pro-
posed using a ROC model directly as a function of time
prior to event. The model is defined by

ROC t; pð Þ ¼ Φ γ0 þ γ1Φ
−1 pð Þ þ αt

 �
where p is the false positive rate, Φ is one minus the
normal cumulative distribution function. At each time t,
it is assumed that the ROC is of the binormal form as in
Eq. (4) and the ROC curves at different t are related
through a linear effect on the intercept. In terms of (4),
a0(t) = γ0 + αt and a1(t) = γ1. The parameters γ0,γ1 and α
can be estimated by the following steps

(i) Construct a dataset of {(Yik, Yjl), D = I(Yik ≥ Yjl)}
(ii)Calculate the quantile p in the control population

(control observations in each pair as defined in step
1 above). It can be estimated by the empirical
cumulative distribution function in the control
sample.

(iii)The indicator I(.) in step 1 is estimated conditional
on p in step 2. Thus, the ROC(p) is estimated by
fitting a generalized linear model to data I(.), where
the family is binomial, the link is probit and the
covariates are Φ-1(p) and Tik.

There are a few advantages of this method compared
to the first method in which the range of setting of this
method is much broader [34]; the range of models that
allowed for the ROC curve is broader; the model can
include the interactions between p and U; the distribu-
tions of the test result in cases and controls do not need
to be derived from the same family. Indeed, no assump-
tions are made regarding the distribution of marker for
controls but only on the relationship between cases and
controls which made through the ROC curve model.

(AD3) Semi-parametric regression quantile estimation
Zheng and Heagerty [9] proposed a semi-parametric
regression quantile approach which is an extension to
the parametric approach of Heagerty and Pepe [35] to

construct time-dependent ROC curves. The definition of
the ROC curve at time t has the same form as Eq. (4)
but since in [9], the positive test is defined as a marker
value less than c, thus true positive is defined in terms of
the cumulative distribution function instead of the sur-
vival function. The ROC curve at time t is estimated by
the conditional empirical quantile function of Yik|Uik, as
from a location-scale family and defined as follow:

ROC t; pð Þ ¼ F a0 tð Þ þ a1 tð ÞG−1 pð Þ �
where F and G are the baseline distribution functions of
case and control models as follow

Case : Y ik ¼ μD U ikð Þ þ σD U ikð Þ�D U ikð Þ
Control : Y jl ¼ μD U jl

� �þ σD U jl
� �

�D U jl
� �

where μDσD, μD and σD are the location and scale func-
tions. Instead of using a quasi-likelihood method to
estimate μD,σD, μD and σD [35], Zheng and Heagerty [9]
used regression splines. In order to estimate the condi-
tional baseline distribution function F and G, Zheng and
Heagerty [9] proposed using an empirical distribution
function of the standardized residuals if the baseline
functions are independent of covariates, and to consider
the symmetrized nearest neighbour (SNN) estimator
[36] if the baseline functions are smooth functions of
covariates. Thus, this semi-parametric estimation method
gives greater flexibility than the parametric method [32]
by allowing separate model choices for each of the
key distributional aspects.

(AD4) Cumulative/Dynamic definition extending for a
longitudinal marker
Zheng and Heagerty [14] proposed a generalization of
CD1 by Heagerty et al. [1] for longitudinal marker
measurements. The key idea was the same as for the IS2
method in which the most recent marker is used to
discriminate between cases prior to time t from controls
after time t. Contrasted with CD1, it is no longer just
the baseline marker or prognostic information that will
be used but the updated information. The proposed
sensitivity and specificity take the same form of CD1.

In order to estimate the distribution function F̂ Y cð Þ
(see CD1), Zheng and Heagerty [14] used the semi-
parametric regression quantile method for longitudinal
data [35]. For the bivariate survival function, S(c, t), and
the marginal survival function, S(t), Zheng and Heagerty
[14] used a partly conditional hazard model as proposed
by Zheng and Heagerty [37].
Motivated by the above methodology, we have ex-

tended CD2 to incorporate the most recent marker
value instead of baseline marker value. CD2 is chosen
rather than CD1 because CD1 produces non-monotone
sensitivity or specificity. The sensitivity and specificity
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are defined the same as CD2. This extended CD2 (de-
noted as ECD2) is assumed to have all the advantages of
CD2 with an extra advantage of using the most recent
marker value which is more reliable in depicting current
status of an individual.

Software
The current software for computing the time-dependent
ROC curves are available as R packages. These are
briefly described below.

survivalROC
The survivalROC [38] package estimates CD1and CD2.
The R documentation includes worked examples using
the built-in dataset called mayo (Primary Biliary Cirrho-
sis (PBC) dataset from Mayo Clinic). The estimators can
be chosen by the type of method “KM” or “NNE” in the
function syntax.

survAUC
The package [39] provides a variety of functions to esti-
mate time-dependent true/false positive rates and AUC
for censored data. The AUC.cd can be used to calculate
CD4 and it is restricted to Cox regression. The estimates
obtained from this function are valid as long as the Cox
model is specified correctly. The values returned by this
function are AUC, integrated AUC and times at which
the AUC are evaluated.

timeROC
The package [40] provides the functions to compute
confidence intervals of AUC and tests for comparing
AUC of two markers measured on the same individuals.
Both CD5 and CD6 estimators can be computed by this
package. It is also capable of allowing for competing
risks event times.

survival, timereg and prodlim
The Basehaz function in the “survival” package [41] in R
is used to obtain the VL Cox estimates which uses the
baseline hazard under a Cox model. The Aalen function
in the “timereg” package [42] can be used to estimate
the conditional absolute risk under VL Aalen; it returns
estimated coefficients β0 and β1. The VL KM estimator
can be computed using the “prodlim” package [43]. For
the selection of the smoothing parameter ln, a direct
plug-in method can be used by setting ln to 0.25 n− 1/5.

risksetROC
This risksetROC package [44] estimates the time-
dependent ROC curves under I/D definition and pro-
duces accuracy measures for censored data under
proportional or non-proportional hazard assumption
of ID1 estimator.

Results
Examples of applications
Among the three definitions for sensitivity and specifi-
city, C/D has been the most commonly applied in clin-
ical papers (69/308, 22%). The I/D definitions have been
applied in 14 papers (4.6%) while none was found for
the I/S definitions. The detail on the review strategy is
presented as a CONSORT diagram (Additional file 1:
Fig. S1A) with a brief description of the process and the
discussion about the remaining papers. Since the publi-
cation by Heagerty and Zheng [12] who introduced the
three definitions, the number of clinical papers that used
an I/D methodology has been increased (Additional file
1: Fig. S1B). Lung, breast and liver cancer are the most
common areas for the application of C/D and I/D
(Additional file 1: Fig. S1C). Some of the applications
of C/D and I/D from cancer are described below.
Lu et al. [45] aimed to determine a robust prognostic

marker for tumour recurrence as 30% of Stage I non-
small cell lung cancer (NSCLC) patients will experience
the tumour recurrence after therapy. They used time-
dependent ROC curve analysis to assess the predictive
ability of gene expression signatures. The recurrence-
related genes were identified by performing a Cox
proportional hazards analysis. A 51-gene expression
signature was validated as highly predictive for recur-
rence in Stage I NSCLC with AUC values greater
than 0.85 from baseline up to 100 months of follow-
up. The highest AUC values have been seen after
60 months to 100 months of follow-up with AUC(t)
= 0.90, implying the 51-gene expression signature is a
better marker in discriminating between Stage 1
NSCLC patients who will experience tumour recur-
rence up to 60 months and patients who will not ex-
perience tumour recurrence beyond 60 months of
follow-up. Lu et al. [45] concluded that this gene ex-
pression signature has important prognostic and
therapeutic implications for the future management of
these patients.
Tse et al. [46] has developed a prognostic risk pre-

diction model for silicosis among workers exposed to
silica in China using a Cox regression analysis to
screen the potential predictors. The score from this
model was then developed as a unique score system
which includes 6 covariates: age at entry, mean con-
centration of respirable silica, net years of dust ex-
plore, smoking illiteracy and number of jobs. This
score system was regarded as accurate in discriminat-
ing the workers with silicosis and healthy workers up
to 600 months of follow-up since the AUC values are
more than 0.80. These AUC values seems to decrease
from baseline AUC(t = 0) = 0.96 to the end of follow-
up AUC(t = 600) = 0.83 which indicates the discrimin-
ation potential of baseline score is diminished across

Kamarudin et al. BMC Medical Research Methodology  (2017) 17:53 Page 15 of 19



study follow-up. This study provides scientific guid-
ance to the clinicians to identify high-risk workers.
Yue et al. [47], [48] have used pre-treatment 18 F-

FDG-PET/CT imaging and combinatorial biomarkers re-
spectively to stratify the risk of TNBC (Triple-negative
breast cancer) patients. TNBC is considered as a high
risk disease and normally associated with poor survival.
A stratification of prognosis of this disease can help in
identifying the patients with good prognosis for less ag-
gressive therapy. The event-time outcome of the studies
was defined as the time to recurrence from TNBC dis-
ease. Time-dependent ROC curve was used to assess the
prognostic value of the biomarkers, EFGR and CK5/6 at
different cut-off points and the optimal cut-off was ob-
tained based on the AUC values. The cut-off values were
estimated by maximizing both sensitivity and specificity
of the event-time outcome. The optimal values of 15%
with AUC = 0.675 and 50% with AUC = 0.611 for EFGR
and CK5/6 were found respectively. AUC values ob-
tained were used as a basis of a decision rule. By using
the optimal cut-off value, the patients were stratified
into two different risk level groups which helps in select-
ing the appropriate treatment strategies for patients.
Desmedt et al. [49] have studied the performance of

the gene expression index (GGI) in predicting relapses
in postmenopausal women who were treated with tam-
oxifen (T) or letrozole (L) within the BIG 1-98 trial. The
predictive ability of GGI was estimated using time-
dependent AUC and has been plotted as a function of
time to characterize temporal changes in accuracy of the
GGI marker. They have calculated AUC(t = 24) = 0.73
which implies that 73% of the patients who relapse at
24th month have greater GGI score than patients who
relapse after 24th month. Further, AUC at = 27) was
found to be the highest which indicates that the max-
imal discrimination occurs near the median follow-up
time.
George et al. (2012) aimed to determine the pre-

dictive ability of lesions texture along with traditional
features in order to detect the early tumour response.
Texture features are important in detecting the pro-
gression of tumour among cancer patients, e.g. s
(18)F-fluorodeoxyglucose (FDG) followed with posi-
tron emission tomography (PET) estimates. The
event-time outcome was defined as the time to
tumour progression, which is the distance between
subspaces from baseline scan and follow-up scan.
Time-dependent ROC curve is used to obtain the
predictive ability of the weighted subspace-subspace
distance from the baseline and the follow-up scan as
a marker for predicting early tumour response. In a
study of 15 patients who had metastatic colorectal
cancer, the follow-up scan was taken at the first week
after the first dose of the treatment. As a result, a

concordance summary of 0.68 is found from the pre-
dictive model using weighted subspace-subspace dis-
tance metrics. This result helps as an added value in
using textural information for therapy response
evaluation.

Illustrative application
We have used sequential data from a randomized
placebo-controlled trial of the drug D-penicillamine
(DPCA) for the treatment of primary biliary cirrhosis
(PBC) conducted at the Mayo Clinic between 1974
and 1984 [50] in order to illustrate the performance
of the current methods in estimating the time-
dependent ROC curves. The event-time outcome of
this study is the time to death due to PBC liver dis-
ease. The original clinical protocol for the study spe-
cified visits at 6 months, 1 year, and annually
thereafter. We use a model score estimated from the
Cox model containing five covariates: log(bilirubin),
albumin, log(prothrombin time), edema and age as
the marker [12].
Table 2 shows the estimated AUC from several

methods at Year 1, Year 5 and Year 10 based on the
baseline value of the marker or the most recent value.
All methods show a decreasing of AUCs as the pre-
diction time is further from marker measurement
time. This evidenced the hypothesis we had earlier
that the discriminative power of the marker becomes
weaker with increasing prediction time. The methods
involving longitudinal marker measurements assume
that the marker value which is closest to the predic-
tion time is better in discriminating between the cases
and controls. ECD2 (discussed in AD4) used the last
value prior to each prediction time produces higher
values of AUC than CD2 with baseline marker meas-
urement. This is also true for IS2 which uses the last
marker prior to each prediction time and has higher
AUC values than the IS2 which uses baseline marker
measurement. The methods involving a longitudinal
marker are usually interpreted with respect to the
time lag between the last visit time and the prediction
time since each individual may have a different set of
visit times. Thus, the AUC values are produced in a
matrix when a longitudinal marker is referred and
uses the last value prior to each prediction time in
the estimation. As the time lag gets longer, the AUC
decreases due to the same reason with the baseline
value of a marker. The R software described previ-
ously was used to estimate these models.
The AD1 method used all available longitudinal

marker values for prediction of time-dependent ROC
curves. We fit the following models for case and
controls:
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Case : Y ik ¼ b0i þ b1iVTik þ β0 þ β1VTik þ β2TBEik

þβ3VTikTBEik þ εik ;

Control : Y jl ¼ b0j þ b1jVTjl þ β0 þ β1VTjl þ εjl;

where VT and TBE are longitudinal visit time and
time before event respectively. The parameter
estimates from the two above models are given in
Table 3 below. Say we want to estimate the time-
dependent ROC curve at five years prior to death
i.e. t = 5 for the marker measured at visit time
equal to ten years (i. e. s = 10), the means and
standard deviations for cases and controls are

estimated by μ̂D ¼ UD βD ¼ 0:373 , μ̂D ¼ UD

βD ¼ 0:492 , ŝD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
D þUD VD UT

D

q
¼ 1:207 ,

where VD ¼
	

0:593ð Þ2
−7:730� 10−5

−7:730� 10−5

3:448� 10−4ð Þ2


and

ŝ
D

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σD
2 þUD VD UD

T
q

¼ 1:217 where VD

¼
	

0:550ð Þ2
3:004� 10−5

3:004� 10−5

2:615� 10−4ð Þ2


.

The corresponding ROC curves are shown in Fig. 2
for 0, 1, 3 and 5 years prior to death at visit time at
10 years (year 0 implies that the death is occurred at
10 years since enrolment to the study). Figure 2 clearly
shows that the discrimination is better when the marker
is measured at times closer to death. The estimated
AUC value for five years before death is about 0.5, hence
it can be concluded that the marker is useless to be used
for discrimination between cases and controls at five
years before death.

Discussion and conclusions
Although C/D is the most commonly being applied, if
a researcher has a specific time point of interest in
order to distinguish between individuals with an event
and individuals without event at that time point, I/D
or I/S is more appropriate. Since I/S requires a fixed
follow-up to observe the clinical outcome of interest,
it can be applied in long follow-up studies with longi-
tudinally measured markers. C/D and I/D are usually
used for a single biomarker value while I/S can in-
clude a longitudinal biomarker. As the disease status

Table 2 Estimated time-dependent AUC for Year 1, Year 5 and Year 10

Definitions Marker time Method AUC (SD)

Year 1 Year 5 Year 10

C/D t = 0 Naïve 0.846 (0.023) 0.885 (0.022) 0.883 (0.030)

CD1 0.922 (0.041) 0.921 (0.021) 0.878 (0.027)

CD2 0.895 (0.056) 0.897 (0.024) 0.869 (0.028)

CD3 0.922 (0.042) 0.917 (0.020) 0.898 (0.031)

CD5 0.922 (0.042) 0.915 (0.021) 0.866 (0.028)

CD6 0.922 (0.038) 0.915 (0.020) 0.870 (0.030)

C/D Last value prior to: ECD2

Year 1 0.926 (0.039) 0.918 (0.019) 0.871 (0.027)

Year 5 - 0.911 (0.019) 0.910 (0.021)

Year 10 - - 0.899 (0.022)

I/D t = 0 ID1 0.845 (0.010) 0.791 (0.028) 0.692 (0.024)

ID3 0.893 (0.048) 0.757 (0.041) 0.716 (0.143)

I/S t = 0 IS2 0.939 (0.025) 0.836 (0.028) 0.698 (0.034)

I/S Last value prior to: IS2

Year 1 0.968 (0.003) 0.872 (0.024) 0.698 (0.043)

Year 5 - 0.957 (0.003) 0.698 (0.031)

Year 10 - - 0.768 (0.038)

Table 3 Parameter estimates for linear mixed effect model

Case Control

Fixed
Effect

β̂0 SEð Þ 1.139(8.865 × 10-2) -0.569 (0.043)

β̂1 SEð Þ -4.813 × 10-4(4.419 × 10-5) 2.906 × 10-4 (2.502 × 10-5)

β̂2 SEð Þ 2.283 × 10-4(5.696 × 10-5)

β̂3 SEð Þ -1.083 × 10-7(1.605 × 10-8)

Random
Effect

σ̂ int 0.593 0.550

σ̂VT 3.448 × 10-4 2.615 × 10-4

ρ̂ int;VT -0.378 0.209

σ̂Res 0.293 0.220
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of an individual may change during follow-up, the
biomarker values may also change, and hence, the
most recent marker value may be best related to the
current disease status of an individual. Thus, usage of
the most recent marker value prior to a target predic-
tion time t is acceptable as we discussed using the
extended methods.
The optimal cut-off is determined by choosing the

highest AUC value in which describes the marker has
the largest separation between cases and controls. In
general, the cut-off (also called as threshold) is chosen
based on the availability of the healthcare resources and
the level of disease severity.
None of the methods discussed earlier used a complete

history of longitudinal marker conditional on an event-
time. The approach of considering a more complete
record of each individual when estimating the ROC
summaries over time can be more appropriate. A joint
modelling framework in an attempt to estimate the
time-dependent ROC curve is recommended since it
considers the association between longitudinal marker
and the corresponding event-time processes. Further, it
is also suggested to assume the event times to be para-
metrically distributed which is then be easier to estimate
the survival function if a researcher is attempting to
extend for measurement error.
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