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ABSTRACT

In this review, we give an overview of recent litera-
ture on the structure and stability of unimolecular
G-rich quadruplex structures that are relevant to
drug design and for in vivo function. The unifying
theme in this review is energetics. The thermody-
namic stability of quadruplexes has not been stu-
died in the same detail as DNA and RNA duplexes,
and there are important differences in the balance of
forces between these classes of folded oligonucleo-
tides. We provide an overview of the principles of
stability and where available the experimental data
that report on these principles. Significant gaps in
the literature have been identified, that should be
filled by a systematic study of well-defined quadru-
plexes not only to provide the basic understanding
of stability both for design purposes, but also as it
relates to in vivo occurrence of quadruplexes.
Techniques that are commonly applied to the deter-
mination of the structure, stability and folding are
discussed in terms of information content and
limitations. Quadruplex structures fold and unfold
comparatively slowly, and DNA unwinding events
associated with transcription and replication may
be operating far from equilibrium. The kinetics of
formation and resolution of quadruplexes, and
methodologies are discussed in the context of
stability and their possible biological occurrence.

INTRODUCTION

G-quadruplexes of repeat sequences of the kind AGnTm
spontaneously fold into stable compact structures in solu-
tion, especially in the presence of K+. The resulting struc-
tures are compact, resistant to DNAses, generally have
high melting temperatures, and appear to be dominated
by the presence of the so-called G-quartet stacks
(Figure 1). Such sequences are found in telomeres, and
at a surprisingly high frequency in other parts of the
genome, especially in promoters (1,2). There is now an

immense literature on both the biology and physical prop-
erties of such sequences (3–6). The literature through the
mid-1990s has been reviewed in a book (7). It is now
believed by some that G-quadruplex oligonucleotide
structures are important biological regulators, both in
DNA and RNA (3–6,8–17).

There have been recent reviews of G-quadruplexes,
focusing mainly on the structural aspects of observed
quartets (18–24) or on telomerase biology (25).

The wider interest in such structures has been high-
lighted by numerous sessions in international conferences
(cf. ACS Pacifichem 2005 Chemical Congress, Honolulu,
Hawaii, USA, and recently a 2.5 day conference ‘First
International Meeting on DNA Quadruplex DNA’ held
in Louisville April 2007, devoted entirely to G-quadruplex
DNA). This meeting covered a wide area of topics, and
was widely reported [(13); http://pubs.acs.org/cen/cover-
story/85/8522cover.html]. However, that meeting did not
focus on or address the problems of stability and kinetic
control of the possible structures, even though this may be
of great biological relevance. It has been reported that
there are 26 possible topologies of G-quadruplexes, yet
only a few (6) have been observed in vitro (19), raising
the question of what determines the stability, whether
kinetic or thermodynamic, of allowable structures?
Although there is a significant literature on the stability
and kinetics of quadruplex structures (26,27), the relation-
ships between the observed stability, kinetics and struc-
tures have not been addressed recently.

The physical chemistry of G-quadruplexes is complex
and fascinating. Despite a large body of published work
on structure and other properties, our understanding of
their basic physical properties is rather limited. Of the
more than 1300 papers mentioning G-quadruplexes since
the late 1980s, a modest fraction has been devoted to their
physical properties. This includes more than 90 structures
that have been deposited in the protein data bank
(June 2008).

Even for short sequences comprising 3–4G-quartets, it
is not known what determines their structures in terms of
sequence space, experimental conditions, thermodynamics
and kinetics. In part, this may be attributed to the ad hoc
and piecemeal individual approaches to the problem,
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which is sufficiently complex that it requires the concerted
efforts of teams of researchers having complementary
skills to analyze systematically a wide range of properties
on the same set of systems, using agreed upon parameter
variation. This point will be taken up further in the
Discussion section.

In this review, we focus on the stability and kinetics of
intramolecular quadruplexes by mining the literature for
information on the stability and dynamics of such struc-
tures, the multiple conformations that are routinely
observed (28–30) highlighting the empirical difficulties
and any problems with design and analysis. In particular,
we attempt to address the following questions regarding
quadruplex formation that are directly amenable to
experimental and computational methods:

1. What are the possible structures of G-quadruplexes?
2. What are the relative stabilities of such structures?

3. What are the likely forces (energies) that are respon-
sible for their stability?

4. What determines whether these structures form
in vitro?

5. What are the possible consequences of G-quadruplex
formation?

6. How might in vitro understanding inform about the
cellular context?

To begin to answer these questions, we will provide a brief
overview of the current state of knowledge including struc-
tural data, thermodynamics and kinetics of quadruplex
formation in vitro, the influence of sequences and solution
conditions as well as considerations related to sample his-
tory and preparation, and relation to possible conditions
in vivo such as macromolecular crowding, water activity
and protein binding.
Here, we will focus mainly on the unimolecular (fold-

back) structures for practical reasons, namely these are the
ones studied in greatest detail, are the most likely forms to
exist in vivo and because the physical chemistry is much
easier to analyze (structures are independent of concentra-
tion, faster and concentration independent kinetics, rever-
sible concentration-independent thermodynamics and
easier to determine detailed conformations).
The implications of these features for biological activity

and design will be addressed. Finally, we propose that
a consortium be established to analyze this problem sys-
tematically, using accepted standards of experimental
design, and suggest the guidelines for establishing such a
consortium.

QUADRUPLEX TOPOLOGIES AND STRUCTURES

There have been several excellent reviews of G-quadruplex
structures published recently (18–24). J. L. Huppert
maintains a website http://www.quadruplex.org/?view=
quadbase including information and access to an algo-
rithm for locating putative quadruplex sequences (PQS)
in genomic data.
We provide a brief overview here for the purpose of the

subsequent discussion of their properties in solution.
G-quartets are based on the formation of a (nearly)

square planar array of four guanine bases, as shown in
Figure 1A and B. Although the structure appears to be
stabilized by a hydrogen-bonding network involving
N7:N2H and O6:N1H, this is unlikely to be the source
of the thermodynamic stability of such structures in the
solution state (see Thermodynamics and kinetics section).
Indeed, the central core of the G-quartet produces a spe-
cific geometric arrangement of lone pairs of electrons from
the four GO6, which can coordinate a monovalent ion of
the correct size, such as Na+ or K+. Generally, these
structures do not form in the absence of such ions. The
smaller Na+ ion can sit in the plane formed by these
atoms, whereas the larger K+ requires a nonplanar
component, which may in fact lie between two such
G-quartets, as shown in Figure 2. In fact, this allows addi-
tional coordination of the metal ions, i.e. to satisfy the
usual hexacoordinate stereochemistry of the alkali metal
ions. In order to accommodate this stereochemistry, the

A

B

C

Figure 1. Chemical structures of G-quartets and quadruplexes.
(A) Anticonformation (top left) and syn conformation (top right)
of guanosine. (B) Inosine (left) and 7-deazaG (right) variations.
(C) G-quartet with metal ion coordination to GO6.
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individual nucleobases may dome out of the plane some-
what (31), to an extent balanced by the stacking energies
(see Thermodynamics and kinetics section for more
detail).
Indeed, a feature of G-quadruplex structures is that

they comprise a stack of two or more G-quartets, [or tet-
rads for those who prefer Greek roots (OED), (7)], linked
by the phosphodiester backbone and stabilized by specific
monovalent ion binding. In the context of a unimolecular
structure, the organization of the chain direction (reading
50 to 30) gives rise to a large number of possible topologies.
Figure 3 displays some basic topologies. These topolo-

gies impose certain constraints in local structures includ-
ing the syn/anticonformation about the glycosyl bond of
the quartet quanines (Figure 1).

Overview of possible and actual structures

Even within the context of a small sequence space, the
possible structural diversity of folding topologies of quad-
ruplex structures is high (32,33). It has been reported that
the total number of possible topologies is 26 different folds
for molecules that comprise three loops with contiguous
G-quartet strands (33). However, this does not take into
account the recently reported unexpected fold of the c-kit
promoter quadruplex structure (34) in which the strands
contributing to the G-quartets are not contiguous. Of the
original 26 folds, only six have been experimentally deter-
mined, namely the all ‘parallel’ double chain reversal loops
[dA(GGGTTA)3GGG: K+ form] (35), all lateral loops
d(GGTTGGTGTGGTTGG) (36), lateral, lateral, double
chain reversal loops d(GGGCGCGGGAGGAATTGGG
CGGG) (37), double chain reversal, lateral, lateral loops
d(TTA(GGGTTA)3GGGA) (38), lateral, diagonal, lateral
loops dA(GGGTTA)3GGG (39), diagonal, double chain
reversal, diagonal loops d(GGTTTTGGCAGGGTTT
TGGT) (40) (Figure 3) (33).
Of the 96 structures (as of May 2008), deposited in

the protein databank many of them are actually similar,

with the same sequences in different environments. In
the case of the human telomere repeat, d(GGGTTA)n,
there are 208 possible structures when the eight possible
quartet orientation combinations are considered with
the 26 possible folds. Experimentally, only four actual
structures have been determined for the human telomere
repeat; the other two topologies that have been determined
were for different sequences. These are the original NMR
derived basket fold from Patel [dA(GGGTTA)3
GGG:Na+ form (39)], the all-parallel (double chain rever-
sal) loop crystal structure derived fold from Parkinson

Figure 2. Stacked quartets with coordinated monovalent ion.
(A) Parallel stacked quartets with Na+ stabilization (purple spheres)
from (d(TGGGGT)4), (B) parallel stacked quartets with K+ stabiliza-
tion (green spheres) from (dA(GGGTTA)3GGG), (C) d(TGGGGT)4
stacking in space filling representation, (D) dA(GGGTTA)3GGG stack-
ing in space filling representation. Loops have been removed from C
and D for clarity.

Figure 3. Observed quadruplex topologies. (A) All ‘parallel’ double
chain reversal loops (dA(GGGTTA)3GGG: K+ form) (35), (B) all
lateral loops d(GGTTGGTGTGGTTGG) (36), (C) lateral, lateral,
double chain reversal loops d(GGGCGCGGGAGGAATTGGGC
GGG) (37), (D) double chain reversal, lateral, lateral loops d(TTA(G
GGTTA)3GGGA) (38), (E) lateral, diagonal, lateral loops dA(GGGT
TA)3GGG (39), (F) diagonal, double chain reversal, diagonal loops
(dGGTTTTGGCAGGGTTTTGGT) (40), (G) NMR-derived hybrid 1
(dAAA(GGGTTA)3GGGAA) (41) and (H) the NMR-derived hybrid 2
(dTTA(GGGTTA)3GGGTT) (42). Guanines are shown as green, thy-
mine as blue and adenine as red oblongs.
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and Neidle [dA(GGGTTA)3GGG: K+ form (35),
the NMR-derived hybrid 1 (dAAA(GGGTTA)3GGG
AA: K+ form (41)] and the NMR-derived hybrid 2 (dT
TA(GGGTTA)3GGGTT: K+ form (42) folds reported by
Yang and Patel (38,43) as shown in Figure 3. These repre-
sent the remarkable diversity in single-chain topology. The
dA(GGGTTA)3GGG:Na+ form has loops of lateral,
diagonal and lateral. The hybrid 1 has loops from the 50

end of the double chain reversal, lateral and lateral,
whereas hybrid 2 has lateral, lateral and double chain
reversal loops. These represent the remarkable diversity
in single-chain topology, and raise three important ques-
tions. First, how is the topology affected by the coordinat-
ing cation; second, how do the loop regions determine the
topological fold; third, why have so few been observed
in the laboratory—is it a lack of sequence space coverage,
thermodynamics or kinetics; and fourth, to what extent is
the environment, crystalline or otherwise, a suitable biolo-
gical mimic? As Figure 3 shows, the different topologies
vary greatly not only in the planarity and stacking of the
bases in the quartets, but also in the disposition of bases in
the connecting loops.

We will attempt to shed light on some of these questions
in the following sections. The human telomere studies
have attempted to focus on structures that may be biolo-
gically relevant. However, in all of these studies, including
others on promoter regions, the sequences that have been
used are short single quadruplex-forming sequences out
of context with respect to the long-flanking (duplex)
sequences. In most cases, single or multiple flanking
bases have been added, that may or may not be part of
the natural flanking base sequences, so as to obtain a
single species that can be examined by NMR or X-ray
crystallography. The question as to whether these modifi-
cations force the topology into something different from
the original context is unknown. In reality, there may be

several topologies present, or other interactions such as
quadruplex-binding proteins that stabilize a particular
fold and are absent present in the structural studies.
However, much of this information is not available so
cannot be expected to be included in the current structural
studies. These considerations are discussed in greater
detail below.

Why is it so difficult to force a distinct topology? The
major problem with designing sequences for specific topol-
ogies is that the loops of 1–3 bases can easily span the
distance needed for a lateral or double-chain reversal
loop for up to a four G-quartet stack. Typically, loops
of 3–4 bases are needed for a diagonal. In the case of
the human telomere repeat d(TTAGGG)n, this makes
all 26 topologies theoretically accessible.
It should be noted for the all parallel high resolution

(0.95 Å) crystal structure (44) d(TGGGGT)4 has the fol-
lowing distances: O30 top stack to O50 bottom stack for
three G-quartet stacks is 7.3–7.9 Å: O30 top stack to O50

bottom stack for four G-quartet stacks is 11.1–12.2 Å, O50

to O50 of the adjacent same stack 14–15 Å, O30 to O30 of
adjacent same stack 15–16 Å, O50 to O50 of the opposite
same stack 19–21 Å, O30 to O30 of opposite same stack
20–22 Å (Table 1). Furthermore, the topology-dependent
groove widths (Figure 1) give rise to different electronic
distributions from the negatively charged phosphates.
This is shown in Figure 4, which shows the space filling
models colored by electrostatic potential calculated for
150mM K+ using the Poisson–Boltzmann program
APBS (45,46). These three representative structures dem-
onstrate that shape, electrostatics and topology are inti-
mately linked. The double chain reversal ‘propeller’
structure (Figure 3, bottom) is a flat, plate like object
compared to the other topologies, which appear more
globular in shape. Indeed, the propeller structure stands
out among all the topologies so far solved experimentally
in terms of its overall shape, groove structures and elec-
trostatic potential, suggesting that it should have physical
properties that are readily distinguishable from all of
the other folds as a group (not shown). Using the APBS
program, we have calculated the electrostatic energy of
different conformations of the human telomere sequence
d(GGGTTAGGGTTAGGGTTAGGG). The parallel
form was calculated to be 2769 kcalmol�1, hybrid 1
2904 kcalmol�1, hybrid 2 2925 kcalmol�1 and basket
form 2867 kcalmol�1. In order to compare the same
number of nucleotides and thus atoms, the flanking
bases were truncated. This shows that the electrostatic
energy (essentially due too the unfavorable interactions
between the closely spaced phosphodiesters) is high, and
differs by up to 156 kcalmol�1 for these three conforma-
tions. For comparison the energy of an unfolded strand
that was subjected to molecular dynamics and then energy
minimized was 1842 kcalmol�1. Although this represents
only one possible instance of an ensemble of conforma-
tions, it is expanded with respect to the folded conforma-
tions, and shows a much lower unfavorable electrostatic
energy, as expected. These values imply that the folding
has to overcome a rather large electrostatic energy that
must be compensated by other forces. In part, this is

Table 1. Loop distances as defined by O30-O50 distancesa

PDB Code Sequence Loop 1 Loop 2 Loop 3

143D dA(GGGTTA)3GGG (39)
type: antiparallel basket

12.1
l

19.7
d

14.3
l

148D d(GGTTGGTGTGGTTGG) (36)
type: antiparallel chair

12.3
l

13.8
l

12.0
l

1I34 dGGTTTTGGCAG
GGTTTTGGT) (40)

type: hybrid

19.0
d

11.3
r

20.4
d

1KF1 dA(GGGTTA)3GGG) (35)
type: parallel

10.8
r

11.3
r

9.7
r

2HY9 dAAA(GGGTTA)3GGGAA (41)
type: hybrid

11.1
r

16.2
l

11.5
l

2JPZ dTTA(GGGTTA)3GGGTT (42)
type: hybrid

15.8
l

12.6
l

11.9
r

2F8U d(GGGCGCGGGA
GGAATTGGGCGGG) (37)

15.8
l

12.8
l

6.0
r

2GKU d(TTA(GGGTTA)3GGGA) (38)
type: hybrid

11.9
r

17.2
l

8.8
l

aThese are taken from the first structure in the PDB files for NMR
structures, therefore are part of the ensemble of structures that satisfy
the spatial constraints. l, lateral; r, double chain reversal; d, diagonal.
Distances are in Å.
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likely to arise from ion condensation and specific ion
binding, as discussed in more detail below.
The conclusion is that although these are pioneering

studies, there are insufficient numbers of different struc-
tures even to begin to elucidate what the rules are for
obtaining the different folds. This has important conse-
quences as techniques such as circular dichroism (CD),
that are being used to examine quadruplex ‘folds’, are
not definitive due to the paucity of different structures
from which conclusions have been drawn (47). Some of
these conclusions may well be true, but we do not cur-
rently have the data to support them fully. This point
will be explored in more detail below.

Methods of determining structures

There are many approaches, both direct and indirect, to
determining conformations of macromolecules at various
levels of resolution. Although high-resolution structures
(i.e. at or near atomic resolution) are desirable for discuss-
ing and designing experiments at the molecular level, in
some instances low-resolution information can be suffi-
cient for a particular problem, such as for fold or topology
determination, or simply for quality control, i.e. verifica-
tion that a particular structure is present and the purity
of the structure. Here, we give a brief overview of the
techniques commonly used for nucleic acids (NAs)

conformational analysis, with an emphasis on the advan-
tages and pitfalls in the quadruplex arena.

Atomic resolution. There are three main methodologies in
use to assess the 3D structures of quadruplexes at atomic
resolution: single crystal diffraction, which has to date
provided more than 50 structures including those with
bound ligands, high-resolution solution state NMR
(30 structures) (24), and molecular modeling with relaxa-
tion. The highest resolution structures are obtained by
X-ray diffraction, and in one case there is a sub-Å resolu-
tion structure that is a valuable resource for detailed anal-
ysis of bonding (44). NMR produces significantly poorer
definition structures than crystallography. Some of this is
real (dynamics, exchanging conformations) and some of it
reflects the limitations of the methodology (18,19,48,49).
Crystallography produces the structure of the form that
actually crystallizes under the given conditions, whereas
other methods in principle measure the broader ensemble
properties. Nevertheless, for both NMR and X-ray stu-
dies, it is the norm to manipulate the sequences to improve
the yield of crystals or to reduce the number of competing
conformations that are present (and that thus interfere
with, e.g. spectral and structural analysis). Generally
speaking, published NMR structures have been obtained
only after considerable sequence manipulations, and/or in
the presence of a fairly substantial background of aggre-
gated material (cf. higher order structures) as well as alter-
native conformations, which often are present at the 10%
or greater level (17,28,49,50). The significance of this
observation will be taken up later.

Although de novo modeling is at the mercy of the qual-
ity of force fields and how to deal with electrostatics (spe-
cific and nonspecific) (51–53), modeling does not have to
worry about alternative conformations per se, and has the
advantage that it deals with individual energy terms, i.e.
allows parsing of terms that are not accessible to experi-
ment (51–57). Advances in the quality of the force fields
used have improved the overall quality of the calculations,
though the loops remain particularly problematic
(52,53,56–58). However, when combined with, for exam-
ple biophysical data, reliable and valuable models of
complex structures can be generated (59).

Spectroscopy. The electronic spectroscopies have long
been used to characterize the structures of quadruplexes
(60), as well as provide a convenient sensitive signal for
monitoring transitions or ligand binding. The latter is
uncontroversial. CD spectra are routinely used, along
with electrophoresis, to assign folds (29,59–65). However,
the interpretation of optical properties such as hypochro-
micity or the shape and sign of CD bands (cf. Figure 5) is
controversial (47). Although the CD spectra of A-, B- and
Z-DNA are quite different and have been backed by
theoretical calculations (66–69), the situation with
G-quadruplexes is much less clear. An empirical study
that has been much cited showed CD spectra of different
structures. However, the authors pointed out that there
was no simple relationship between fold and shape of
the CD spectrum (47). Although there have been ab
initio calculations of the CD of proteins and NAs duplexes

Figure 4. Topologies give rise to radically different structural
appearance. Structures and electrostatic potential colored surfaces of
the parallel (top), ‘basket’ lateral, diagonal, lateral loop (middle) and
the all double chain reversal (bottom) topologies. The electrostatic
surfaces are colored red (�10 kT/e) to blue (10 kT/e) and the bases
are guanine in green, thymine in blue, and adenine in red.
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(69,70), there has been little work on the theoretical ana-
lysis of quadruplex CD. Calculations for an antiparallel
DNA d(G4T4)4 (71) showed an essentially conservative
CD spectrum in the range 220–320 nm with a maximum
at 260 nm and a minimum at 245 nm (zero crossing at
250 nm) that only slightly resembled the experimental
spectrum (whose structures were not independently veri-
fied). More recently, Gray et al. (72) have carried out
calculations for two stacked quartets in which the quartets
have the same or opposite polarities for hydrogen bonding
(i.e. clockwise or anticlockwise cf. Figure 1). These quar-
tets can stack such that they both have the same polarity
or opposite polarity, and specifically the rotation angle
between the stacks which gives rise to quite different stack-
ing interactions, which is a major determinant of the inten-
sity and shape of the CD spectrum, and specifically the
rotation angle between the stacks. The calculated CD
spectra of these two simple states are quite different. The
same polarity stacks show a minimum at 235 nm, a max-
imum at 260 nm (zero crossing at 250 nm) and a second,
broad positive band at �295 nm (similar to the spectrum
often attributed to the parallel conformation). The oppo-
site polarity stacks however gave an inverted spectrum
with a quasi conservative spectrum having a minimum
at 265 nm, a maximum at 295 nm and a zero crossing
at �280 nm (often attributed to the antiparallel con-
formation (cf. Figure 5B). As the authors pointed out,

the intensities of the calculated spectra seem to be substan-
tially in error. It is our contention that until either accu-
rate calculations can be done, in which the influence
of quartet rotation, additional induced CD from looped
bases are systematically accounted for or a rigorous
empirical database can be generated, in which the CD
spectra of quadruplex samples whose structure has been
unequivocally determined on that sample under the same
conditions, the interpretation of CD in structural terms is
unwise as it amounts to a circular argument.

Use of fluorophores. The 2-aminopurine is a fluorescent
base that is a common replacement for A or G and is
relatively unperturbing (except in a G-quartet in this
instance). This base can be incorporated during the synth-
esis of an oligonucleotide, and be used to report on events
in or near loops for example, or as a measure of solvent
exposure (61) by emission properties and the influence of
externally titrated quenchers (Stern–Volmer analysis).
Other fluorophores can be incorporated in loops or at
the free 50 and 30 ends. The latter may permit more flex-
ibility in what can be used, although aromatic groups at
the ends of quadruplexes can ‘end paste’ and stabilize the
structure (18,28,73).
The fluorescent properties can be used to monitor

unfolding transitions, either as the quantum yield changes,
shift in emission maximum or often most reliably by
changes in anisotropy, with due care from the influence
of temperature on the fluorescent properties. If a donor
and acceptor pair can be introduced at different positions,
the fluorescence resonance energy transfer (FRET) effi-
ciency can be monitored as a function of temperature to
probe thermodynamic and kinetic stability (unfolding
should decrease the FRET) (74–76), though stabilization
by end-pasting for example needs to be considered
(18,28,73). FRET may also be used as a poor man’s struc-
tural probe, i.e. by measuring several pairwise distances.
In general, one would label the folded oligonucleotide to
avoid influencing the final structure during refolding. This
could be achieved using labels containing the maleimido
group, which reacts with phosphorothioate groups that
can be incorporated at any desired DNA backbone
position.
This requires careful choice of donor/acceptor pairs,

and due care needs to be taken to account of the orienta-
tion factor k2. The use of 2/3 (complete orientational ran-
domization of the emission dipole over the fluorescence
lifetime) without independent evidence is not recom-
mended. However, the fluorescence anisotropy can pro-
vide limits on the values of k2, as described in detail
many years ago (77,78). Distances between ends of various
structures were provided in Figure 1 for small (three-
stack) quadruplexes. FRET would have to be able to
discriminate reliably between distances close to 10 Å and
distances close to 20 Å. This would necessitate choosing
FRET pairs with R0-values close to these distances. As the
recovered distance R is R0(1�E/E)1/6 the error in R is
determined mainly by errors in R0, i.e. in (k2)1/6.
Although 0< k2< 4 using a value of 2/3 means the
maximum error in the upper limit is 34% (for k2=4).
If anisotropy measurements were able to limit k2 to say

Figure 5. Absorbance and CD spectra. UV absorbance (A) and circular
dichroic (B) spectra of the human telomere quadruplex sequence
50AGGG(TTAGGG)3 in phosphate buffer (pH 7.0) containing
200mM NaCl. Spectra obtained at 208C are indicated by the solid
line and correspond to the fully folded quadruplex form. Spectra
obtained at 958C are indicated by the dotted line, and correspond to
the denatured, unfolded form.
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0.1–3 for example, the error in the distance would be
<30%, which might be adequate to discriminate between
some folds. Single molecule FRET has been used recently
to estimate the distribution of conformational states in the
human telomere sequence (30).
However, the lower end is short for FRET. A similar

approach that is active over this distance range is electron
spin resonance (ESR), in which the dipole–dipole interac-
tion between two spin labels can be measured, as has been
done extensively on rhodopsin for example (79,80) and
more recently NAs (81).
NMR can also be used spectroscopically to assess quad-

ruplex formation simply by measuring the exchangeable
protons in the 10–12 p.p.m. range. For well-behaved,
small complexes, there GN1H protons and the GNH2

protons can be counted, aided by the difference in the
spectra between H2O and D2O. In G-quadruplexes, the
exchange of imino protons with solvent is exceedingly
slow (49) and takes days to exchange for deuterium in
D2O solvent (49). This is quite unlike DNA duplexes or
triple helices, where the imino protons typically exchange
in seconds or minutes (49,82). The extreme kinetic stability
of the imino protons is associated with low amplitude
fluctuation of the quartets, which do not permit access
of water or base, and further correlated with the very
high thermodynamic and kinetic stability of the quadru-
plex structure as a whole (see below).
Patel’s group and others have pioneered the use of low-

level 15N enrichment in the G (83) and which has been
successfully used by other groups (17). Each G is system-
atically substituted with a 15N-labeled nucleotide at a few
percentage enrichment (the natural abundance of 15N is
0.37%). As 15N has a spin 1/2, it causes a predictable
splitting of the attached N1H hydrogen due to the one
bond scalar coupling. This coupling can be exploited to
edit a 1H spectrum, so that only the imino proton attached
to 15N (rather than 14N) is detected. This of course can
provide an unequivocal assignment, as well as a count of
the GN1H that are involved in hydrogen-bonding struc-
ture, and whether they are in fact in a unique environment.
H-bond donors and acceptors can also be determined

with such a labeled system. This is because in NAs where
H-bonding involves N–H:::N interactions, the covalent
character of the H-bonds contains a scalar coupling inter-
action between the donor and acceptor N, which is of the
order of a few hertz in Watson–Crick and Hoogsteen bases
pairs, and can this be readily detected as a splitting in the
NMR spectrum. This has been used to great advantage in
DNA duplexes, triplexes and quadruplexes (84–91).

Hydrodynamics. Hydrodynamic techniques such as sedi-
mentation velocity and translational diffusion mea-
surements, as well as those techniques that supply
information about the rotational diffusion (e.g. NMR)
give information about molecular size/shape and hydra-
tion. For simple bodies where the departure from spheri-
cal symmetry is modest, the frictional properties can be
described by (66):

Dt ¼
kT

6��ahFt
and Drot ¼

RT

6�VFr
1

where, Dt, Drot are the diffusion coefficients for translation
and rotation, respectively, Z is the solvent viscosity ah is
the hydrated radius of the particle, V is the hydrated
volume and Ft and Fr are asymmetry parameters
that are unity for a sphere. Analytical and semi-analytical
expressions exist for the dependence of F on the
axial ratio for ellipsoids of revolution and cylinders
(66,92–96). Thus, translational diffusion coefficients scale
as the inverse of the linear dimension (cube root of mass
or volume), whereas rotational diffusion scales as the
inverse cube of the linear dimension. As the asymmetry
increases, e.g. in the formation of ellipsoid of rotation or
cylindrical symmetry, Frot deviates more quickly from
unity than Ft as the axial ratio increases (66).

Although the number of parameters that can be deter-
mined is small, and they relate to global properties, it is
now possible to measure hydrodynamic parameters with
very high precision, even in presence of a distribution of
species. Both dynamic light scattering (DLS) and sedimen-
tation velocity experiments provide an estimate of the most
probable frictional coefficient, the effective width of the
particle distribution, as well as the fraction of species of
significantly different size/shape. NMR, and under appro-
priate circumstances, fluorescence anisotropy can provide
complementary rotational friction data, which when com-
bined offer a rather critical test of the correctness of a
proposed structure. This is because hydrodynamic param-
eters can be calculated with reasonable accuracy using
bead models (97,98). If the coordinates of proposed struc-
ture are available (or of a family of structures), then the
hydrodynamic properties can be calculated, and compared
with the experimental values. Those models that lie well
outside of the experimental values, within the limitations of
the model approach itself, can be rejected. This general
approach, in conjunction with other spectroscopic data,
was used to demonstrate that the widely used X-ray crystal
structure of the human telomere (99) is not the dominant
form in free dilute solution (61).

The same approach can be used also to calculate other
hydrodynamic and mechanical properties of macromole-
cules, including rotational diffusion constants and mass
distributions such as the radius of gyration. Rotational
diffusion [cf. Equation (1)] is in general more sensitive to
size and shape than translation diffusion, but is often more
difficult to measure. In order to compare observed and
calculated hydrodynamic properties, it is necessary to
know the partial specific volume (psv) of the particle
under the conditions of interest, as well as the effect of a
hydration layer on the frictional properties. Whereas for
proteins, the simple weighted sum of tabulated psv for the
constituent amino acids generally is sufficient for calcula-
tion of psv (100), there is no such approach that is accu-
rate for NAs structures, so the value is either assumed
based on a small number of published measurements for
different NAs (66,101), or can be measured. For duplex
DNA, the psv is typically in the range 0.55–0.58ml/g in
100mM KCl (101). However, the psv for quadruplex
structure is not accurately known, but could be measured
either from density increments (102) or by sedimentation
in two or more solvents of different density [e.g. H2O
versus D2O (101)]. The latter method is of lower accuracy.
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For a psv of �0.6ml/g, an error of 1% produces an error
of around 1.5% in the buoyancy terms (1=psv.r).
A second source of uncertainty is how to treat the hydra-
tion layer. This is discussed in detail in the publications
on the programs for calculating frictional properties
(97,98,103). In effect, it seems to amount to adding a
monolayer of solvent to the anhydrous particle, or an
increase in the radius of the diameter of an electrostricted
water molecule (�2.5–2.8 Å) (103–105). In practice, this is
achieved by varying the bead size in the calculations.
Clearly, such calculations need to be carefully calibrated
for distinguishing small variations within a series of
related structures. Additional size and shape information
can be obtained by static light scattering or SAXS, such as
the radius of gyration, maximum dimension and full-
shape analysis using the entire scattering curve (106,107),
which can reduce many of the uncertainties at a global
level of analysis. Despite these limitations, hydrodynamic
methods could become a very valuable means for rapidly
assessing particular models and for quality control of
quadruplexes to be used in any study for which the
conformation(s) needs to be known.

Electrophoresis. Electrophoretic mobility is commonly
used to assess the number of states present and the
kinds of folded structures that may be present (62).
Unlike duplex DNA, where the mobility essentially
tracks according to the number of base pairs, at least for
moderate length oligonucleotides, such that the size can be
estimated by comparison with a ladder of known lengths,
this is not true of small quadruplexes, which have a more
compact structure. Electrophoretic mobility is partly a
hydrodynamic phenomenon, and it also depends on the
net effective charge of the molecule and the nature of the
gel which determines the frictional resistance to motion
(108,109). However, for DNA and RNA duplexes, as
the net charge scales with the number of base pairs, cali-
bration is straightforward, unless there are deviations
from the rigid cylinder such as in for A-tract structures.
As the interest here is the degree of curvature, this requires
a very different calibration (110,111). Small quadruplexes
do have a high formal negative charge, but many are also
relatively squat (globular) compared with DNA duplexes
or a DNA triplexes, making the shape and net charge
distribution more difficult to estimate (but see Figure 4
for comparison of shapes and charge distributions).
Furthermore, the degree of ion condensation (112,113)
for such structures may be small (112–116), so that the
effective charge-independent of Debye–Hückel screening
may be relatively high compared with a duplex form,
where the condensed fraction leaves a net charge of
around 0.24 e� per phosphate (109,112,113,117). The
clear exception is the propeller structure (Figure 4)
which is more asymmetric, and thus the degree of ion
condensation for this structure may well differ signifi-
cantly from the other structures. This is considered in
greater detail in Thermodynamics and kinetics section. It
is notable that the structures shown in Figures 3 and 4 are
mostly rather compact and appear roughly spherical,
whereas the parallel propeller structure appears as a
plate, and thus would impart considerably greater

hydrodynamic drag than the antiparallel and mixed
hybrid structures (61). Further, the electrostatic potential
energy profile of these structures varies markedly, suggest-
ing that the effective charge could be substantially differ-
ent for these structures. The electrophoretic mobility
under a single set of conditions is therefore not necessarily
a reliable indicator of size per se, one of the things for
which it is actually routinely used (59,60,62,64). Again,
as for CD, due caution should be used without a reliable
set of mobility markers whose structures have been
verified for those particular samples.

Chemical modification. Inosine or 7-deaza-dG (Figure 1)
substitution for G is expected to disrupt hydrogen bond-
ing and therefore the stability of quadruplexes (118,119).
Inosine will also decrease the H-bonding in Watson–Crick
GC base pairs, whereas 7-deazadG will not. However, the
rather different electronic structure of 7-deazadG indicates
that H-bonding disruption can be only part of the story
(57), which is in part why several substitutions have to
be made to disrupt the structure (56,57,118,120–123).
Although one intramolecular H-bond is lost by substitu-
tion there are also changes in the numbers of water mole-
cules that are involved, indicating that there may be a
significant entropic component (124). The effect of single
or double inosine substitutions at various positions in a
22 nt the human telomeric sequence was studied in both
K+ and Na+ buffers (119). For the single substitutions,
the loss of stabilization free energy at 310K ranged from
2.2 to 3.1 kcalmol�1 in K+ buffer, and from 1.4 to
2.6 kcalmol�1 in Na+ buffer with a difference on average
of 0.5–2.5 kcalmol�1 for the two forms (albeit at different
total concentration of cation). As the apparent enthalpy
change also decreased by the substitutions, clearly inter-
actions other than H-bonding are affected.
DMS footprinting is a commonly used technique for

detecting bases involved in G-quartets [(118,125,126)
others]. The N7 can be methylated if it is accessible to
solvent and not involved in intramolecular hydrogen
bonds, as in the classical G-quartet (Figure 1). The inter-
pretation of the rate constant for modification however
relies on assumptions about the mechanism of the reaction
and what determines the chemical reactivity. This requires
very careful calibration against authentic structures. As
such, its main use is corroboration, in conjunction with
other low-resolution techniques.

THERMODYNAMICS AND KINETICS

It is often stated that G-quadruplex structures are unusu-
ally stable, but rarely is it said with respect to what. In
fact, the intramolecular quadruplexes are not thermody-
namically more stable than some other intramolecular NA
folds. For example, the stability of DNA duplexes of the
same number of nucleotides, at 1M strand concentrations,
is of comparable stability as intramolecular quadruplexes
containing three quartets (127) (and see below). Similarly,
�G(310) of stabilization of short RNA hairpins (17 nt,
loop size >5) in 100mM salt is typically >5 kcalmol�1,
(128) and much higher where the loop is of the type
GNRA or UUCG (129,130). As will be shown below,
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for intramolecular G-quadruplex folds of �22 nt, the
�G(310) of stabilization under similar salt conditions is
comparable to or lower than of intramolecular DNA
duplexes. However, the unfolding kinetics are very slow
compared with DNA or RNA hairpin kinetics (see below).
The basic thermodynamic relationships that are rele-

vant to quadruplex stability can be summarized as:

�G ¼ �RT lnðKÞ ¼ �H� T�S 2

@�H

@T
¼ �Cp 3

@�S

@T
¼

�Cp

T
4

where, �G is the Gibbs free-energy change, T is the abso-
lute temperature �H and �S are the enthalpy and entropy
changes, respectively. For practical purposes, �G is
equivalent to �A, the Helmholtz free-energy change, in
condensed media. �Cp is the change in heat capacity,
which can be seen to be a more fundamental quantity
than �H or �S. Equations (2–4) show how the experi-
mentally accessible thermodynamic parameters depend on
temperature. �H and �S are not independent, as mea-
surement of �G, usually from an equilibrium constant
[Equation (2)] and enthalpy (e.g. by calorimetry) automa-
tically assigns �S. Furthermore, from Equations (3 and 4)
the temperature dependence of �G is �G0+�Cp (T�T0)
�T�Cpln(T/T0), where the superscript 0 refers to a refer-
ence temperature. A nonzero Cp implies that �H and �S
respond differently to temperature. In the context of
G-quadruplex unfolding, it is observed that �H is positive
at T=Tm, which means that �S is also positive at this
temperature. If �Cp for unfolding is also positive, as is
expected for denaturation in general, then �H decreases
with decreasing temperature, leading to conclusion that at
some sufficiently low temperature, the enthalpy change
becomes zero, and also the concept of a temperature of
maximum thermal stability, i.e. both cold and hot dena-
turation. This will be considered further in the section on
measuring thermodynamic parameters, below.
The parameters may also depend on other extrinsic

variables such as pressure, dielectric constant, ionic
strength, etc. Variation of these latter parameters can pro-
vide information about additional molecular properties
of the system, and indirectly about the forces involved in
stability. For intramolecular quadruplexes (single strand),
the parameters are independent of oligonucleotide concen-
tration, whereas for multiple strands, the entropy (and
thus �G) does depend on the deviation of the strand con-
centration from that in the chosen standard state, which
must therefore be specified carefully.

Thermodynamic methods

Temperature variation. By far, the commonest thermody-
namic variable used for characterizing NAs is tempera-
ture. If there is a difference in some signal S between the
folded and unfolded states, varying the temperature will
allow measurement of the transition between these states.
For a simple two-state transition, F,U, the population of

the states pf and pu will be related to the equilibrium con-
stant as

pf ¼
1

ð1þ KÞ
and pu ¼

K

ð1þ KÞ
5

In the limit that the enthalpy difference �H between the
states is independent of temperature, the equilibrium con-
stant is simply K(T)=K(ref)exp[�H/R(1/Tref� 1/T)]. Tref

is an (arbitrary) reference temperature and K(ref) is the
equilibrium constant at that temperature. For a pure
two-state transition, the value of �H is the thermody-
namic enthalpy difference, and is also known as the
van’t Hoff enthalpy. This can be derived by calculating
K(T) from the melting curves (provided that proper
upper and lower boundaries can be obtained), and from
a plot of ln(K) versus 1/T, the slope is �H/R. Frequently,
the observed melting curves are not so simple, in part
because the optical parameters [e.g. absorbance, CD or
fluorescence (74)] that are used to monitor the transition
are themselves temperature dependent, or the transition is
not two-state, which can give rise to baselines that are
not flat (see below). This is difficult to distinguish from
temperature effects on the molecular system itself, such as
low enthalpy transitions at lower temperature, or because
�H is not actually independent of temperature
[cf. Equation (3)]. In fact, there is no good reason
a priori to believe that the heat capacity of such systems
is the same in the folded and unfolded states, nor that the
heat capacity in these states is independent of temperature
(117,131). This is a complication to which we will return.
It is common therefore to use the temperature at which the
transition is 50% complete, i.e. Tm (the melting tempera-
ture). The Tm value has the advantage that it is the most
precisely determined melting parameter (see below). It is
usually determined from the derivative of the transition
curve with respect to temperature, which can under
some circumstances lead to an error such as when the
cooperativity is low (132,133). However, it is often inap-
propriately used as a surrogate for thermodynamic stabi-
lity. Where comparisons are to be made between systems,
the relevant thermodynamic parameter is �G at a chosen
reference temperature, such as 298K or 310K. For
an intramolecular system, the relationship between the
thermodynamic parameters is simple [Equations (2–4)].
At T=Tm K=1 and thus �G=0. �H can also be deter-
mined by curve fitting. It is easy to calculate �G at any
other temperature, i.e. as

�GðTÞ ¼ T ��H 1=Tm � 1=Tð Þ ¼ �H T=Tm � 1½ � 6

for �Cp 6¼ 0, the correction becomes: �G(T)=�H �T
(1/Tm� 1/T) [�H0+�Cp(T�Tm)]

Equation (6) shows that in fact the free-energy change
at the desired temperature is proportional to �H and to
the increase of Tm. Tm thus is related to �H and �G(310)
as Tm=310.�H/[�H��G(310)]. It also shows that Tm

is not a linear function of �H, although over a sufficiently
narrow range it may appear so (62). This in fact demon-
strates the simpler thermodynamics of a unimolecular
system, where Tm=�H/�S. However, measurements of
Tm are useful for additional thermodynamic analysis, as
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the variation with respect to salt concentration, water
activity, etc. can be analyzed (see below).

It should be noted that �H obtained from a van’t Hoff
analysis is not always equal to the true (calorimetric) �H
in these systems (134), and can be in error by more than a
factor of 2. Clearly, any attempt to establish a common
reference temperature under these conditions is suspect.
This is related to a combination of the presence of multiple
conformations, and the slow folding kinetics which
can lead to technical difficulties in measuring equilibrium
thermodynamic quantities, as described below.

Thermal denaturation monitored by spectroscopic
methods. Spectroscopic methods for monitoring melting
rely on there being a distinct difference in spectroscopic
properties between the folded and unfolded states, and
that there is (preferably) a linear dependence of the
signal on concentration, i.e. the Beer–Lambert law
holds, i.e. S=s.c, where c is the concentration and s is
the specific spectroscopic response, such as an absorption
coefficient. This is not obeyed when there are aggregation
events for example, or for instrumental reasons (e.g. stray
light). The latter does not affect NMR however.

Thermal denaturation (‘melting’) of G-quadruplex
structures is accompanied by distinctive changes in UV
absorbance or circular dichroic spectra, as shown in
Figure 5. These changes provide a convenient window
for monitoring denaturation, and entry into the thermo-
dynamics of the denaturation process. Several reviews that
describe these methods and the subsequent analysis of the
data have appeared (135–139). Labeling of G-quadruplex
forming oligonucleotides with either fluorescent base ana-
logs or with suitable acceptor–donor FRET pairs allows
monitoring the denaturation process by fluorescence spec-
troscopy, with greatly improved sensitivity (139) (and see
Quadruplex topologies and structures section above).
Because of the availability of these excellent reviews, we
will not review these methods in detail again here, but
rather will limit our discussion to some problems and pit-
falls that are perhaps not commonly recognized and which
were not emphasized before.

Monitoring any of these spectroscopic signals as a func-
tion of temperature provides a denaturation transition
curve (‘melting curve’), which contains thermodynamic
information. Figure 6 shows examples of such transition
curves transformed in a variety of ways. Figure 6A shows
raw absorbance data collected at 295 nm, a wavelength
particularly sensitive to disruption of G-quadruplexes
(138). Figure 6B shows the same data after transformation
and normalization to show the fraction denatured (a) as a
function of temperature. The first derivative of the transi-
tion curve in panel B is shown in Figure 6C. This is a
common approach to directly estimating the Tm of a tran-
sition, and also for enhancing the detection of multiple
intermediates that differ in their Tm-values. Specific ana-
lytical equations are available for extracting thermody-
namic parameters from each of these curves are
available, as is described in detail in (135,136). Application
of these equations yield a thermodynamic profile for the
denaturation process that includes the free-energy change
(�G), the enthalpy change (�H) and the entropy change

(�S). In principle, but rarely in practice, the change in
heat capacity [�Cp, cf. Equation (3)] might also be
obtained from thermal denaturation curves. There are,
however, numerous potential pitfalls in reliably obtaining
these thermodynamic parameters.
The first pitfall is the difficulty in establishing reliable

pre- and post-transition baselines. Any transformation of
the primary data or any attempt to directly analyze the
primary data by curve fitting must include choices con-
cerning these baselines. As is seen in Figure 5A, these
baselines often slope to a significant degree. Such slopes
may arise from intrinsic physical phenomenon, such as the
intrinsic temperature dependence of fluorescence or from
absorbance changes resulting from solvent expansion.
More insidiously, though, such slopes could arise from
additional reactions that complicate the study of the dena-
turation transition. As one example, pretransition melting
reactions are common (140). These may involve thermally
driven processes like helix–helix transition or single-strand
base unstacking that precede the actual helix melting tran-
sition. Such transitions may have small enthalpy values,
leading to broad, featureless melting transitions. Attempts
to ‘correct’ sloping baselines that arise from such

Figure 6. Thermal unfolding curves for the human intramolecular
quadruplex. Transition curves for the denaturation of the Na+ form
of the human telomere quadruplex sequence 50AGGG(TTAGGG)3 in
phosphate buffer (pH 7.0) containing 200mM NaCl. (A) Absorbance at
295 nm versus temperature. The lines were calculated to fit the pre- and
post-transition baselines. (B) Fraction of unfolded molecules (a) versus
temperature after correction of the data in panel (A) for the sloping
baselines and normalization. The straight line indicates the slope at the
transition midpoint. (C) First derivative of the data in panel (B).
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complications would lead to an oversimplification of the
true reaction mechanism, and to a loss of information.
Even in the absence of such complications, baselines pre-
sent practical problems. There are disturbing reports that
document that the lengths of the pre- and post-transition
baselines selected and used in data analysis directly affect
the values of the thermodynamic parameters extracted
from the data (141–144). Investigators of G-quadruplex
denaturation should be fully aware of these difficulties,
and should describe in detail their procedures for estab-
lishing baselines for analysis.
A second pitfall is the common assumption that dena-

turation reactions are simple two-state processes, and
simply pass from a folded ‘native’ state to an unfolded
denatured state without any intermediates. The two-state
assumption must be justified by some experimental test. A
classical test, first utilized for protein denaturation studies,
is to obtain denaturation curves by two (or more) different
physical methods (144). If transition curves obtained by
the multiple methods are exactly superimposable, that is
consistent with a two-state mechanism. More recent tests
utilizing multiple wavelength data have appeared. A dual-
wavelength parametric test for a two-state denaturation
transition monitored by spectroscopy was described
(145). In this test, data obtained at two different wave-
lengths are plotted against one another. For a two-state
transition, such a plot should be strictly linear. Deviations
from strict linear behavior signal that the denaturation
process is not two-state, and likely has intermediate
states that are significantly populated. Singular value
decomposition (SVD) provides an additional test of the
two-state assumption (146,147). With modern diode array

spectrophotometers, it is easy to collect entire spectra as a
function of temperature, instead of single wavelength
data. A set of spectra as a function of temperature defines
a 3D surface that is easily converted to a matrix. SVD of
the matrix rigorously enumerates the number significant
spectral species required to account for the spectral
changes. For a two-state transition, there should be only
two significant spectral species, corresponding to the
folded and unfolded forms. Any number of species greater
than two indicates a violation of the two-state assumption,
and signals the presence of intermediates. SVD (or a simi-
lar multivariate analysis method) has been used to char-
acterize the denaturation of G-quadruplex or other four-
stranded structures (148,149). Figure 7 shows examples of
whole-spectra UV and CD melting data, and the two-
wavelength test of the two-state assumption for the ther-
mal denaturation of the human telomere quadruplex in
Na+ solution. For both UV and CD datasets, there are
clear deviations from strict linearity, a sure indication that
the denaturation reaction is not a simple two-state pro-
cess, and that intermediate states are populated to a sig-
nificant degree and must be included in any reaction
mechanism. SVD analysis cannot be illustrated in a
simple way, but the details of such an analysis are illu-
strated in refs (59,146,149).

As alluded to above, another pitfall is the neglect of
heat capacity changes (�Cp) that may accompany qua-
druplex denaturation. Heat capacity changes are corre-
lated with exposure of hydrophobic surface areas
(150,151) as well as increasing fluctuations among micro-
states associated with the less compact forms (117), so it
would be surprising indeed if the unfolding of quadruplex

Figure 7. Whole-spectra melting data and the test of the two-state assumption. Thermal denaturation of the human telomere quadruplex sequence
50AGGG(TTAGGG)3 in a solution containing 0.185M NaCl is shown as monitored by UV absorbance (A) or CD (B). The corresponding two-
wavelength parametric plots to test the two-state assumption (144) are shown in (C and D). The nonlearity of the the data in panels C and D indicate
that the denaturation of the quadruplex is not a simple two-state process, and the intermediate states must be included in the reaction mechanism.
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structures, with the concomitant exposures of the bases,
was not accompanied by a nonzero �Cp value.
Unfortunately, it is enormously difficult to fit reliably
transition curves to obtain derivative values of the pri-
mary thermodynamic parameters (143). Small heat capa-
city changes could manifest themselves as contributors to
sloping baselines, and might easily be ‘corrected out’ at the
expense of systematic errors in enthalpy values. Even if
data such as shown in Figure 6 are further transformed
to construct a van’t Hoff plot of ln K versus T�1, problems
remain. Nonzero �Cp values should lead to curvature
in the van’t Hoff plot. However, Monte Carlo simula-
tions of van’t plots showed that for ‘small’
(<|200| calmol�1 deg�1) �Cp values, which is of order
observed for NA unfolding (see below), no curvature
could in fact be observed within the typical error of experi-
mental data, but that slopes were systematically biased
away from true enthalpy values (152). Much larger �Cp

values, however, would be expected to become manifest
especially by calorimetric methods.

There is little that can be done to overcome these pitfalls
in the analysis of spectroscopic transitions curves, but
these difficulties must be acknowledged. Calorimetry
offers another tool that may overcome at least some of
the problems.

Calorimetric melting (differential scanning
calorimetry). Differential scanning calorimetry (DSC)
(19,20), in which differential heat capacity is measured
as a function of temperature, offers a method for measur-
ing the thermodynamics of G-quadruplex denaturation as
directly as possible. The advantage of calorimetry is that
total denaturation enthalpy values can be measured with-
out recourse to any curve fitting or assumed models.
Model-free calorimetric enthalpy values can thus be
obtained directly from the primary data. In addition,
calorimetric thermograms can also be fit to particular
thermodynamic model. Comparison of the model-free
calorimetric enthalpies with such calculated model depen-
dent enthalpies provides additional insight into the dena-
turation process, and in particular provides quantitative
information about the cooperativity of the melting or the
presence of intermediate states. Haq et al. (153) have

provided a practical guide for the use of DSC for the
study of the stability of multistranded DNA structures.
DSC studies are also plagued by baseline uncertainties.

Processing of DSC data involves two types of baseline
corrections. The first is subtraction of independently mea-
sured buffer baselines to correct for instrumental variances
over the temperature range study. This correction is
straightforward and poses no difficulties. The second base-
line correction involves choices similar to those discussed
above, although in this case it is heat effects that contri-
bute to baseline slopes and nonlinearities. Even though
calorimetry represents the gold standard for denaturation
studies, it is not entirely without it own uncertainties, and
investigators should describe and justify fully the choices
that were made in baseline corrections.

Some representative results

Table 2 shows some representative results for denatura-
tion studies of the human telomere quadruplex structure
obtained by van’t Hoff analysis of spectroscopic data.
Data were selected for similar cation concentrations. The
results are not comforting. Enthalpy estimates for the
denaturation of the Na+ form of the quadruplex range
from 38.0 to 72.7 kcalmol�1, nearly a 2-fold difference.
For the K+ form, enthalpy values range from 49.0 to
77.5 kcalmol�1. Even worse, the free-energy change at
310K varies from the marginally stable (0.9 kcalmol�1)
to the very stable (7.3 kcalmol�1), which is attributable
most likely in the errors in the enthalpy, as Tm values
are expected to be rather accurate. These differences are
unacceptably large, and the origins of the differences are
by no means clear. The sequences used in these studies
differed slightly, but it is difficult to believe that nucleotide
end effects could exert such an enormous influence. These
data point to the need for additional studies to reduce the
uncertainty in thermodynamic parameters.
A detailed spectroscopic and calorimetric study of the

stability of the K+ form of the human telomere qua-
druplex sequence (TTAGGG)4 was recently reported
(157). SVD was used to analyze temperature dependent
circular dichroic spectra and to show that quadruplex
denaturation was not a simple two-state process. At least
three species, corresponding to the folded, unfolded and

Table 2. Energetics of human telomere quadruplex unfolding

Sequence Cation Tm8C �H kcal
mol�1

�S cal
mol-K�1

�G(310K)

kcal mol�1
Reference

1. 50-(TTAGGG)4 70mM Na+ 49 38.0 119 1.4 (154)
70mM K+ 63 49.0 147 3.8

2. 50-AGGG(TTAGGG)3 100mM Na+ 56 54.0 163 3.1 (138)
100mM K+ 63 57.0 169 4.4

50-TTAAGGG(TTAGGG)3 100mM Na+ 44 38.5 121 0.9
100mM K+ 55 63 193 3.5

3. 50-GGG(TTAGGG)3 100mM Na+ 63.7 72.7 192 5.8 (155)
100mM K+ 69.3 77.5 202 7.3

4. 50-AGGG(TTAGGG)3
a 100mM Na+ 42.8 51.4 153 0.9 (156)

100mM K+ 61.8 66.2 186.5 4.9

�H, �S and �G are for the unfolding direction.
aFluorescently labeled on 50 and 30 ends.
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one intermediate, were required in the reaction mecha-
nism. DSC thermograms clearly showed two transitions.
The total calorimetric enthalpy for the overall denatura-
tion process was dependent on KCl concentration, and
varied from 32.1 kcalmol�1 at 100mM to 36.3 kcalmol�1

at 400mM. Heat capacity changes, � Cp, were not evident
in the DSC data, but may have been difficult to detect
because of the complexity of the reaction and the difficul-
ties in selecting reliable baselines. This study clearly indi-
cates, at the least, that quadruplex denaturation is more
complicated than was assumed in the studies shown in
Table 2, and that intermediate states are significantly
populated along the denaturation pathway.
Isothermal titration calorimetry (ITC) is most com-

monly used for binding studies, but a recent novel appli-
cation used the method to study the enthalpy of
G-quadruplex folding (158). In this application, unstruc-
tured oligonucleotides were mixed with excess monovalent
cation solutions in the calorimeter to monitor the total
enthalpy of folding (which includes any contribution
from specific ion binding, see below). By repeating the
experiment at several temperatures, heat capacity changes
could be estimated. The remarkable result was that appar-
ent � Cp values, approaching 1 kcalmol�1 (159) and
larger were observed. Such a large heat capacity differ-
ence, comparable to that observed in small proteins
(151,160), would give rise to a large step in the DSC pro-
file, which is not observed, and also imply cold denatu-
ration at modest temperatures. For example, for a
quadruplex that melts with a Tm value of 333K and
an enthalpy change at the temperature of 50 kcalmol�1

(cf. Table 2), then over the normal accessible tempera-
ture range from 273K to 373K, the enthalpy would
change 10 kcalmol�1 for � Cp=0.1 kcalmol�1K�1 and
100 kcalmol�1 for �Cp=1kcalmol�1K�1, with a change
in sign at 283K. For the latter case, the temperature of
maximum stability would be 286.5K when �G would be
3.4 kcalmol�1 less stable than if �Cp were zero.
In contrast, for short oligonucleotides, �Cp is of the

order 80 cal.mol�1K (131,161–163) and higher for multi-
strand structures (117). A large �Cp may be associated
with residual structure in the unfolded ensemble (and see
below).

Multiple conformations. Numerous structures can form
in vitro (63) depending on the conditions, and may coexist.
If multiple conformations are possible, then they will
form. The question is one of populations. Many of the
NMR analyses of quadruplexes have shown the existence
of significant populations of alternative species
(18,28,29,50), and they have been detected or assumed to
be present by other spectroscopic or thermodynamic
approaches (30,62,134,164–166).
As described above, multiple states can be detected

at equilibrium even where there is substantial cooperativ-
ity, where the states become substantially populated, or
a wide range of probes is used. If multiple conformations
exist on a folding/unfolding pathway, they can be detected
if they have significant populations and their properties
become distinguishable. For example, the UV-melting at
a fixed wavelength may appear multiphasic (167) in which

case a fitting procedure according to an unfolding model is
straightforward (see below). If two alternative folds exist
via a common precursor, or there is a mixture of indepen-
dently folded states only kinetics are needed to resolve the
ambiguity (see below) [N1,D+N2,D 6¼N2,I,D,
etc.]. Within the context of a spectroscopic melting
study, these two models differ as follows:

N1,D+N2,D (two folded conformations in equili-
brium with the unfolded state)

�S ¼
ð��1K2 þ��2K1Þ

ðK1K2 þ K1 þ K2Þ
7

Allowing interconversion between N1 and N2 has no effect
because there are only two degrees of freedom in this
scheme. The populations of the species are given by:

n1
nt
¼

K2

D
,
n2
nt
¼

K1

D
and

d

nt
¼

1

D

where, D=K1K2+K1+K2 and thus n1/n2=K2/K1,
�S is the change in signal during an unfolding transi-

tion, �s is the specific signal difference (e.g. absorption
coefficient difference between state I and the end state) and
K1, K2 are the unfolding equilibrium constants This model
specifically indicates that with coexistent states N1 and N2

that melt with different Tm-values, will show that the
population of the more stable structure will first increase
(as the less stable structure melts) before eventually declin-
ing to zero.

N,
K2

I,
K1

D ðsequential folding intermediateÞ

�S ¼ ��iK2 þ
��N

ðK1K2 þ K2 þ 1Þ
8

These models differ in that the initial (native) points have
in principle distinguishable properties. Model 1 starts with
a mixture of states that independently evolve toward the
common end state, whereas model 2 implies that the two
states present at low T (i.e. N and I, populations deter-
mined by K2 at sufficiently low temperature for example)
evolves through the intermediate state I. This is why
although the same number of states is involved in the
two mechanisms, the unfolding behavior may be different
depending on the specific values of the equilibrium con-
stants, their enthalpy differences and the values of �s.
Figure 8 shows a simple simulated comparison of an opti-
cal unfolding experiment in which there is an unfolded
ensemble at high temperature, and a folded ensemble at
low temperature. The two models differ in the folded
ensemble. The first model posits two alternative confor-
mations that do not interconvert directly on any realistic
experimental timescale (they interconvert exclusively
through the unfolded state). The second model posits a
sequential pathway with a fully native fold proceeding to
the unfolded ensemble via an obligatory intermediate. The
relative populations of N1 and N2 are determined by the
ratio K2/K1. In this simulation, these have been made
equal at low temperature. At low T, the distributions of
I and N are determined by the equilibrium constant
between them. Depending on the assumptions, the
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denaturation curve may appear either monophasic or
biphasic. The simulated curves were fitted to the equation
for a single transition, i.e. three parameters, assuming
that the heat capacity difference between states is zero.
All curves in this instance are well represented by a
single transition, but the recovered enthalpies did not
match the input values. For biphasic curves, of course

one would fit a two-state transition of some kind for
which the parameters would be better defined, assuming
the correct model were chosen (sic).
Model 1 corresponds to the situation described by

Olsen et al. (134). In fact, these considerations suggest
approaches to producing states enriched in one or
other structure. Not only is the rate of cooling important

A

C

B

D

Figure 8. Thermal profiles for two folding pathways. The populations of states in two possible pathways as described in the text was calculated. Model (i)
Two species connected by unfolded state: N1,D+N2,D. The reference temperature, Tref=273K. The equilibrium constant K0 for unfolding at
273K=1E� 5. The unfolding enthalpies were �H1 (N1)=40 kcalmol�1, �H2(N2)=60 kcalmol�1. For these parameters, Tm1=324K Tm2=305K.
(A) Populations as a function of temperature. Red square: stateD; open black circles: stateN2; filled blue circles: stateN1. (B) Changes in absorbance as a
function of temperature for eN1= eN2 (filled red squares), eN1=1.2, eN2=1 (open blue squares) and eN1=1, eN2=1.2 (open black circles). Best fit to a
single transition with eN1= eN2: �H=40kcalmol�1; K0=9.7 E�6 at 273K; Tm=324K. Model (ii) sequential unfolding N,K1

I,K2
U

K1=K2=1E�5 at 273K, � H1=30 kcalmol�1, � H2=20 kcalmol�1. For these parameters, Tm1=305K, Tm2=324K. (C) Populations of N (red
squares), I (black circles) andU (blue squares). The populations ofN and I are equal at 305K, andN is dominant at low temperature. (D) Thermal melting
profile using the populations in C, and difference absorption coefficients of (a) �eN=�eI=1 (blue squares) (b) �eN=1.2 �eI=1 (black circles);
(c) �eN=1 �eI=1.2 (blue squares). The fits for conditions a and b to a single folding transition are shown as thin continuous lines, and the
recovered parameter values were: (A) K(273)=8.7 E�6, �H=40.5� 0.07 kcalmol�1, �e=1.0, R2=0.99997. (B) K(273)=1.68 E�4;
�H=31.6� 0.3 kcalmol�1, �e=1.19, R2=0.99895. Parameter estimates are thus unreliable if the wrong model is used, even where the data appear
as a simple transition.
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(62), but also the final temperatures may determine
the distribution of structures present. This is
determined largely by the enthalpy difference between
the native folds.
Treating the observations as a single transition

(a common assumption) yields unreliable thermodynamic
parameters, as well as giving a false view of the unfolding
process. In principle, multiple wavelength observations
(i.e. if the spectra of all states differ) can define the mini-
mal number of states (a single wavelength is an inadequate
test), especially when combined with a formal analytical
technique that deals with the large datasets ensuing from a
spectral decomposition of an unfolding experiment.
Programs using SVD for example are well suited to this
kind of analysis (64) and see above.
Given these considerations, it is germane to question the

meaning of some of the reported thermodynamic analyses.

Kinetics of formation and dissociation of quadruplexes

There are two major reasons for determining the kinetics
of formation and dissociation of quadruplexes. The first
is that it is the only unambiguous means to obtain infor-
mation about the mechanism of a complex reaction path-
way. As described above, under equilibrium conditions,
it is not possible to discriminate among different pathways
that connect initial and final states, and only detect
intermediates if they become sufficiently populated
with respect to the analytical techniques available. The
second major reason for measuring kinetics is to discover
the general timescale of events, how they are modulated
by conditions and additional factors such as small mole-
cule ligands or possible binding proteins, to discover
whether they are in fact commensurate with relevant bio-
logical time scales.

Kinetics methods. The kinetics of G-quadruplex folding
can be broadly divided into three types depending on
the number of individual polynucleotide molecules contri-
buting the quadruplex: unimolecular, bimolecular or tet-
ramolecular. The kinetics of these processes has been
comprehensively reviewed recently (168). Generally, for-
mation of bimolecular and tetramolecular quadruplexes is
sufficiently slow at micromolar oligonucleotide concentra-
tion and physiological temperature that the progress of
the reaction can readily be followed by conventional
techniques.

Slow mixing. Han et al. (169) found by electrophoretic
assays that formation of a bimolecular quadruplex for
an oligonucleotide with tandem repeats of the human tel-
omere sequence follows a second-order kinetics with
k=0.003M�1 s�1 at room temperature (i.e. 3� 10�9 s�1

at 1 mM or a half life of over 7 years), while Wyatt et al.
(170) demonstrated by gel filtration that the sequence
d[TTGGGGTT] forms a parallel stranded tetrameric
structure in a fourth-order process (k=1.6�
104M�3 s�1). To emphasize the slow progress and high
molecularity of this reaction, these authors pointed out
that at 100 mM strand concentration and room tempera-
ture, the amount of tetraplex formed over a 2-day period
was undetectable, while at 200mM oligonucleotide, the

half-time for tetramer formation was about 700min at
228C in 100mM K+ solutions. Their studies indicated
that the rate-limiting step in tetrameric quadruplex forma-
tion is a slow association of a pair of dimers that exist in
relatively rapid equilibrium with single-stranded mono-
mers. Additional studies indicated that the dissociation
rate constant for the tetramer is �8� 10�6 s�1 (t1/2=59
days) at 378C.

Analysis of thermal hysteresis. If the rate of heating or
cooling is faster than the rates of interconversion between
the folded and unfolded states, then the folding or unfold-
ing lags behind, leading to noncoincident heating and
cooling curves. This has been observed even in intramo-
lecular quadruplex melting, especially at low salt concen-
trations, and makes thermodynamic analysis very difficult
(62,75,171). The kinetics of association and dissociation of
multimeric quadruplexes have been extensively studied by
Mergny’s laboratory using this approach. This group uti-
lized detailed analysis of the thermal hysteresis in none-
quilibrium melting profiles (results are summarized in
reference (168)). This approach is capable in principle of
giving both the association and dissociation rate constants
as well as the apparent activation energies of both steps.
As summarized in Mergny’s review article (168), tetramo-
lecular quadruplex association reactions generally exhibit
negative apparent activation energies. Negative apparent
activation energies or nonlinear Arrhenius plots are com-
monly observed in protein and NA folding and can result
from any of several effects including (i) a temperature-
induced change in the rate-limiting step(s); (ii) a change
the heat capacity of the activated complex; or (iii) a tem-
perature-induced change the ground state of the reaction
(172,173). The kinetics of association were found to
be generally faster in K+ compared to Na+ by 20- to
50-fold. Since the dissociation kinetics were largely unaf-
fected by ion concentration, the authors surmised that the
well-known stabilizing effect of K+ compared to Na+

(and see subsequent section) was due to an increase in
the association rate constant.

The kinetics of intramolecular folding and unfolding of
G-quadruplexes is of interest because these studies can
suggest possible folding pathways that involve rearrange-
ments in secondary and tertiary structure that are neces-
sarily obscured by the slow kinetics of multimolecular
association processes. The kinetics and mechanism of
intramolecular folding processes including formation of
simple structures such as hairpins as well as folding
of more complex topologies such as ribozymes, Holliday
junctions and riboswitches (174).

Intramolecular oligonucleotide folding has been inves-
tigated by a number of spectroscopic techniques that track
different aspects of the dynamics of the folding–unfolding
transitions. Among these are multi-wavelength UV spec-
troscopy, changes in fluorescence emission of appropri-
ately labeled oligonucleotides, FRET (see above) studies,
and solid phase methods such as surface plasmon reso-
nance (SPR).

The method of single-molecule FRET has recently
been utilized by two groups to assess the kinetics
of G-quadruplex folding and unfolding (and see
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Quadruplex topologies and structures section). As applied
to G-quadruplexes, this method relies on the use of a ‘tiny
telomere’ construct (59) in which a single-stranded telo-
meric sequence of interest is linked to a DNA duplex at
the 30 end. Typically, the 50 end of the telomeric sequence
is tagged with a fluorescence donor (such as Cy5) and an
acceptor (such as tetramethylrhodamine) is attached to the
duplex at a location such that the efficiency of Förster
energy transfer from donor acceptor changes by a measur-
able amount when the quadruplex structure forms. In the
systems studied so far, transfer efficiencies ranging from
5% to 70% have been observed during folding/unfolding
processes. FRET can either be monitored in solution
(yielding the average properties of the ensemble under a
set of defined conditions) or with a confocal microscope
and suitable optics. With the latter system, quite low (e.g.
picomolar) oligonucleotide concentrations are used which
allows observation of single molecules. One counts the
number of molecules within a particular small range of
transfer efficiencies and constructs a histogram of the dis-
tribution of molecules with different transfer efficiencies.
This serves as a convenient indicator of the distribution of
conformational states (30).

Ying et al. (175) studied the human telomere sequence
with an additional 50-G, by single molecule spectroscopy.
In summary, they found two stable folded conformations
in both Na+ and K+ solutions. At low Na+ (10mM),
they observed a species characterized by higher FRET
efficiency (0.85) and another with a lower efficiency
(0.35). Addition of K+ (10mM) increased the fraction
of the species with the higher transfer efficiency. Analysis
of the temperature dependence of interconversion of the
two populations allowed estimation of the thermodynamic
parameters for each species in the presence of the two
cations. In 100mM NaCl, �H=�7.3 kcalmol�1 and
�S=�25 e.u., whereas in 100mM KCl, the thermody-
namic parameters were found to be 3.6 kcalmol�1 and
10 e.u. The kinetics of unfolding was assessed by trapping
the unfolded species with the complementary oligonucleo-
tide. At pH 7.4 in 10mM Tris–HCl, 100mM NaCl,
the two species disappeared at approximately the same
rate (�=�740 s at 208C and �180 s at 378C). Based
on the analysis of the distance dependence of the FRET
efficiencies in conjunction with model building, the
authors suggested that one conformation is the parallel
structure and the other is the antiparallel structure.
This again points to the prevalence of multiple conforma-
tions originating from the same sequence, which are
condition and history dependent (and see above).

In a more recent study, single-molecule FRET (176) was
used to explore the dynamics of K+-driven folding of
individual oligonucleotide molecules modeling the
human telomeric sequence. A 50-acceptor labeled oligonu-
cleotide mimicking the human telomeric sequence (50-Cy5-
(GGGTTA)3GGG) was linked to a 29-nt stem containing
a 30-biotin for immobilization the oligonucleotide to a
streptavidin-conjugated surface. A complementary 29-nt
oligonucleotide that contained a tetramethylrhodamine-
modified dT donor fluorophore was annealed to the
G-rich oligonucleotide. Analysis of the population fre-
quency versus FRET histograms in 2mM K+ revealed

the presence of high efficiency (�0.8), medium efficiency
(�0.6) and low efficiency (�0.3) FRET states. Evidence
was presented that the twofolded states consisted of two
‘sub-species’ characterized by relatively short and long
lifetimes. The two limiting folded states were suggested
to be the parallel and antiparallel conformations. The
time dependency of changes in FRET efficiency in single
molecule experiments revealed that a fraction of the mole-
cules rapidly switched between states, while others
remained in the same FRET state for longer periods.
The decay times of the long- and short-lived states was
found to be �190 s and 20 s, respectively, at room tem-
perature. Conventional bulk spectrofluorometric experi-
ments showed that when 80 nM DNA was mixed with
2mM K+, FRET development was biphasic with time
constants � of 9 and 250 s at room temperature. The
long-lived, folded states in K+ were assigned to the par-
allel and antiparallel conformations. The structures of the
short-lived states are not known, but the authors sug-
gested that they are more compact that the unfolded
states may consist of structures with less than the full
complement of bound cations. These states were suggested
to consist of obligatory folding intermediates.
FRET detection was also used to determine the unfolding

kinetics of the human telomere, by trapping with a labeled
peptide nucleic acid (PNA) (i.e. rendering the reaction irre-
versible). The excess PNA was shown to be zero order, so
the observed transient could be attributed to the first-order
unfolding of the quadruplex, followed by very much faster
hybridization to the PNA. Although the kinetics were
biphasic, the data were analyzed in terms of a weighed
mean lifetimes approach, giving an apparent opening rate
constant of 0.006 s�1 (t1/2=115 s) at 378C in 100mMNa+,
and about 100-fold slower in 100mM K+ (177).

Surface plasmon resonance. Unimolecular folding of telo-
meric sequences has also been studied by SPR. In this
technique, the unfolded oligonucleotide is typically immo-
bilized on a solid surface (the sensor chip). A solution of a
complementary oligonucleotide in the presence of a fold-
inducing cation is pumped across the chip at a known flow
rate. The complementary oligonucleotide traps any
unfolded immobilized G-rich oligonucleotide as a
duplex. The rate of folding can be deduced in theory
from the time dependence of signal changes occurring
during the hybridization stage. Once the complex is
formed, the chip is washed with buffer alone to give the
rate of unfolding as the cation dissociates. Zhao et al.
(178) utilized SPR to study folding of a (TTAGGG)4
model of the human telomere. Rate constants deter-
mined at 258C for folding in K+, Na+ and Li+ derived
by this method were 1.2� 10�2 s�1, 7.0� 10�3 s�, and
8.6� 10�6 s�1, respectively. The corresponding rate con-
stants for unfolding were 1.3� 10�3 s�1, 4.6� 10�3 s�1

and 1.9� 10�2 s�1. Values �G8folding for each system
were estimated from the apparent equilibrium constants
calculated from the ratios of the folding and unfolding
rate constants. This is predicated on the assumption that
the reaction is two-state, and that therefore Kd= koff/kon.
In general, as observed at equilibrium and by more refined
studies in which folding is seen to be multiexponential
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(see below), this ratio of apparent rate constant may agree
with the true equilibrium constant only fortuitously. In
fact, the kinetically estimated equilibrium constant
did not agree with values independently determined by
equilibrium methods, by one to two orders of magnitude.
Additional complications with the SPR approach
(179,180) result from nonhomogeneous reaction condi-
tions (e.g. flow effect), matrix binding effects, as well
as the complex multiparameter fitting procedures required
to extract values of the rate constants of interest. The
problems and solutions to these technical difficulties
have been recently reviewed (181). Thus, it may not be
too surprising that the results obtained do not agree
with the results obtained by more direct methods.

Temperature jump. Relaxation methods developed by
M. Eigen and coworkers (124) are based on the return
to equilibrium of a system after a small perturbation by
a rapid change in a parameter such as pressure or tem-
perature. If the perturbation is sufficiently small, the
response is linear in concentration. Specifically, for
a single-step unimolecular reaction the relaxation rate
constant is simply the sum of the forward and reverse
reaction rate constants. The approach is applicable
in the neighborhood of the Tm and provides a direct
measure of the folding and unfolding rate at a given tem-
perature. This approach was used in conjunction with
hysteresis analysis to measure association and dissociation
kinetics of the Oxytricha intramolecular quadruplex (74).
It was shown that the unfolding rate constant was extre-
mely small, and that the association was characterized by
negative apparent activation energy. This latter requires a
complex multistep process, such as the well-known zipper-
ing mechanism common in DNA duplex folding (182).

Stopped flow kinetics. Stopped flow has a long history
in enzyme kinetics (124), but has not been used for NA
folding kinetics. Recently, Gray and Chaires (164) used
the characteristic changes in UV absorption that accom-
pany G-quartet stacking to monitor folding equilibria
induced by mixing oligonucleotide models of the human
telomere d[AGGG(TTAGGG)3] (ODN1), d[TTGGG(TT
AGGG)3A] (ODN2) and d[TTGGG(TTAGGG)3] with
KCl or NaCl. The titrations showed that folding is coop-
erative with respect to [cation] with Hill coefficients of
1.5–2.2 for K+ and 2.4–2.9 for Na+, in keeping with a
binding stoichiometry of 2K+ and 3 Na+ for these oligo-
nucleotides. Cation half saturation concentrations for
folding were 0.5–1mM for K+ and 4–13mM for Na+

depending on the oligonucleotide. SVD of the wavelength
dependence of the binding isotherms indicated that fold-
ing generally proceeds for ODN1 and ODN2 through at
least one intermediate according to the Scheme 1:

U,
K1

In,
K2

F

where U, F and In represent unfolded, folded and one or
more cation-stabilized intermediates, respectively.
The kinetics of folding was investigated using

multi-wavelength stopped flow spectrophotometry (164).
K+-driven folding of the three above oligonucleotides as

measured over the wavelength range 275–320 nm could be
fit to a single exponential process with a relaxation time �
of �10ms for ODN2 in 50mM KCl at 258C. Similar fold-
ing kinetics was observed for the other two oligonucleo-
tides in K+ solutions. In contrast, Na+-induced folding of
the three sequences required three consecutive exponen-
tials to describe the complete time course of folding (for
ODN1 in 100mM NaCl at 258C, �1=60ms, �2= 800ms
and �3=12 s). The rate constant for K+ folding was sig-
moidal with respect to [K+], while the rate constant asso-
ciated with the rapid phase of Na+-induced folding was
hyperbolic with respect to this cation. The folding rates
also tended to decrease with increasing temperature. The
saturation kinetic behavior and the apparent negative
activation energies are consistent with multistep folding
pathway outlined above in which a rapidly formed inter-
mediate I in rapid equilibrium with U undergoes a rate-
limiting conformational change leading to formation of
either F (for K+) or additional intermediates In (for
Na+). The sigmoidal dependence of the folding rate con-
stant on [K+] suggests that at least two cations are
required to stabilize I, while the hyperbolic dependence
in Na+ suggests that a single cation is necessary for for-
mation of the first intermediate. The subsequent inter-
mediates may also be stabilized by additional bound
Na+ ions.

The following describes a possible mechanism that
incorporates elementary steps from previous studies of
oligonucleotide folding with the known structures of the
final state and that is consistent with the kinetic data. For
a polynucleotide initially in the absence of cations, the first
step may consist of rapid neutralization of backbone
charge by added cation, resulting in collapse of extended
polynucleotide to give an ensemble of compact hairpin
structures. These hairpins may collapse further to form
double hairpins with Na+ or K+-stabilized stacked quar-
tets and an all-parallel strand topology (the chair struc-
ture). In K+, the chair may undergo a single-strand
reversal to form the thermodynamically stable state con-
sisting of one antiparallel strand and one lateral loop in
the rate-limiting step. In forming the topologically more
complex Na+-stabilized fold, two relatively slower cation-
dependent steps involving chain reversals and diagonal
loop formation would be required to form the final
stable topology.

In summary, the studies outlined earlier show that
formation tetramolecular quadruplex structures proceeds
via dimerization of a ‘rapidly’ formed duplex structure.
Since the rate of complex formation depends on the
fourth power of the monomer concentration, the
actual time required for tetramerization is strongly
dependent on the initial concentration of monomers
and the nature of the cation (183) and can vary from a
few minutes to days. On the other hand, formation of
bimolecular quadruplexes is a second-order process
and is relatively slower than unimolecular quadruplex
formation.

The formation of ‘simple’ monomolecular quadruplexes
as driven by either K+ or Na+ is kinetically complex.
Different spectroscopic methods that probe different struc-
tural features may give different folding kinetics. Some of
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these differences may result from the specific sequences or
conditions [e.g. heterogeneous (liquid–solid phase) reac-
tion conditions]. However, with the exception of the
SPR data summarized above, the kinetic studies suggest
that cation-driven quadruplex folding is a multistep pro-
cess with detectable amounts of obligatory intermediates.
These intermediates may reflect the presence of partially
folded structures and/or structures with less than a full
complement of bound cations. The intermediates are
rate-limiting because relatively high-activation energies
are required to produce conformational changes necessary
for formation of complex topologies that may require one
or more strand reversals and positioning of loops.
However, in conclusion, it is worth repeating the classical
caveat of kinetics: kinetics alone cannot prove a mecha-
nism, but unlike equilibrium studies, it can disprove a
mechanism.

WHAT ARE THE LIKELY FORCES THAT
STABILIZE Q-QUADRUPLEX STRUCTURES?

The general principles of macromolecule stability are well
known (160,184), and for NA duplexes and to a lesser
extent triplexes have been described in some detail
(112,113,117,167,185–191). Although the same principles
must apply to quadruplexes, the issue of the balance of
forces for quadruplexes has not received much attention.
Short quadruplexes at least are significantly different from
duplex and triplexes because of the nature of the H-bond-
ing interactions, the stacking of G-quartets, and the invol-
vement of specific ionic interactions (direct inner spheres
coordination) as well as any nonspecific electrostatic
effects of ionic interactions.

The description of the stability of any structure is best
couched in terms of the free-energy contributions, as
described earlier for duplex and triplex NAs.

�Gtot ¼�GðconfÞ þ�GðCÞ þ�GðpolÞ þ�GðwÞ

þ�GðrþtÞ þ�GðLJÞ þ�GðHBÞ

þ�GðbondsÞ þ�GðelÞ 9

Here each component is defined as follows: conf reflects
the conformational differences for the strands and folded
state, C is the Coulombic force (mainly enthalpic), pol is
the polyelectrolyte effect (chiefly entropic), w is the hydra-
tion (entropic) term, rt is the rotational–translational free-
dom (entropic), LJ is the Lennard-Jones or van der Waals
term, HB the hydrogen bonding (enthalpic) term. The
bonds term arises from bond length and angle (enthalpic)
factors, and el refers to electronic interactions (including
polarization and the exchange terms involved in, for
example, the hypochromic effect in the bases). Each con-
tribution to �Gtot can in principle be decomposed into
separate enthalpic and entropic parts. In terms of com-
putation, the standard parsing of the free energy
of stabilization of a structure is couched in simple terms
that can be loosely separated into the potential energy
and the entropic contributions. For a highly cooperative
two-state folding transition (and see below for recent

studies concerning the cooperativity and number of inter-
mediates), the potential energy terms can be described as a
molecular mechanics potential such as Equation (10).
Generally, it is assumed that all individual components
are independent and harmonic (51–53). Until recently,
the polarizability of various groups was ignored
(amber.scripps.edu).

U ¼�kiðb� b0Þ
2
þ�kið� � �0Þ

2
þ�kifð�Þ

þ�
a

r12ij
�

b

r6ij

" #
þ

�qiqj
"rij
þ�HB 10

Here, the terms are due to bond stretching, bending, tor-
sion (�), a van der Waals function that is commonly
described by the 6–12 function, the Coulombic terms
and possibly explicit hydrogen bond terms.
The Coulombic term includes both formal charges and

partial atomic charges, as well as some function to
describe the effective dielectric constant e. The latter
depends on the details of the model being used (full
atom discrete model with explicit solvent versus contin-
uum model etc. (192). Furthermore, the summation as
r�1 converges rather slowly, though modern programs
have largely overcome the computational problem using
the Ewald method (193–195). The issue of the partial
charges is also complicated and they have to be carefully
calculated from a relatively high-level theory, and thus for
isolated nucleotides. However, the nucleotides are aro-
matic systems, and as such are quite polarizeable. As the
rings stack to form the folded structure, the interactions
between the p electrons changes the electronic distribution
and thus the charges. If one assumes local (i.e. atomic)
polarizabilities, this is fairly straightforward to treat, if
computationally expensive. A fully anisotropic polariz-
ability (a tensor quantity) would be considerably more
involved to implement. Current versions of mechanics
programs treat polarizability in a fairly simple manner
(196–198).
The treatment of hydrogen bonds can be explicit or

implicit, depending on the implementation. As the
H-bond in biological system is largely electrostatic and
van der Waal’s, these terms (properly calibrated) can be
sufficient to account for the H-bond energy. However, H
bonds in principle have a covalent character to them,
and this can be detected by for example NMR methods
(84–86,199). Density functional theory (DFT) calculations
have shown how the scalar contribution depends on
distance and orientation of the donor and acceptor
atoms (85).
These force fields do not account for optical effects that

arise from the pi stacking, including the hypochromicity
and CD. The same mechanics force field can be used
both for calculated a potential energy (or in principle
the difference between two states, see below).
As the important determinant of stability is actually the

free-energy difference between the state of interest and all
other possible (realizable) states, the entropic components
also need to be understood. The configurational entropies
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of the folded and unfolded states for example can be cal-
culated from (long) dynamics calculations or Monte-Carlo
sampling. However, the largest differences in entropy are
likely to arise from the solvation and electrostatic terms,
as the numbers of associated water and counterions may
be very different between the compact and extended states.
As the nature of a nonfolded G-rich DNA strand is
unknown, and experimentally very difficult to evaluate
(ensemble of conformations, variable degrees of base–
base stacking that depend on temperature and salt), such
calculations are presently daunting. For this reason, mod-
eling stability generally looks at the neighborhood of the
local energy minimum of the folded state to evaluate its
resistance to substantial perturbation. This is not thermo-
dynamic stability, but may be relevant to kinetic stability.
However, calculations of free energies associated with the
folding landscape have been attempted (51,56).

H-bonds. Each quadruplex is associated with the forma-
tion of two H bonds per G, or eight per quartet. The
acceptors and donors in the strand state are probably
hydrogen bonding to water, so the net change in the
number of H-bonds is zero, and thus the enthalpy
change from intramolecular H-bond formation is rela-
tively small (101). However, there may be a favorable
entropy change due to the release of water into the bulk
solvent. As pointed out many years ago (200), not satisfy-
ing an H-bond in a folded structure such as by deletion of
a donor or acceptor as is done with inosine or deazadG
substitution (118,119) or a ‘misfold’ imposes a significant
loss of potential energy, perhaps 3 kcalmol�1 (124) see
above]. As pointed out above, there may be a small net
energy gain in the folded state from the covalent character
of the NH::N H-bonds formed (85), as well as from
change in the dipole interaction energy in a region of
lower dielectric permittivity compared with full exposure
to water. Generally, however, the contribution of H-bond-
ing to the free energy of stabilization is thought to be small
(117,201,202).

Generalized van der Waals. The potential energy from
van der Waals interaction in a well-optimized structure
is large and negative, because of the very large number
the small favorable interaction energies between pairs of
atoms. As each atom is essentially close packed, then any
expanded structure in vacuo will result in a large net unfa-
vorable energy. However, in a solvent the unfolding of a
NA or protein is compensated by an essentially equal
number of similar van der Waals interactions with the
solvent molecules, such that the net stabilization energy
is rather small (124).

‘Stacking’ �–� interactions. As the p–p stacking interac-
tions between quartets are likely to be large, increasing the
number of quartets increases the net favorable energy.
This is likely to be roughly linear per stack added,
though the actual net favorable energy can be offset by

unfavorable strain from loop lengths, which is itself struc-
ture dependent (62,75,171,203).

The stacking interactions are similar to those found in
other NA structures, and likely account for a substantial
part of the net stabilization free energy. The most desta-
bilizing component in NAs at neutral pH is the very unfa-
vorable electrostatic interactions between the oxygen
atoms in the phosphodiester bonds, which bear a formal
charge of –1. This is exacerbated when a NA strand folds,
and this unfavorable energy needs to be offset by all other
favorable interactions, or by neutralization by counter-
ions. In quadruplexes, the specific site binding of approxi-
mately one monovalent ion per quartet is one part of a
favorable stabilization.

Ion binding and solvation

Nonspecific ion binding and hydration. In quadruplexes,
there are two kinds of ion binding. The first is the non-
specific interaction with the electrostatic field of the nega-
tively charged phosphodiesters, including both ion
condensation and Debye–Hückel counterion atmosphere.
Such ions interact as outer sphere complexes (i.e. the spe-
cies retain their hydration coordination). The second is
specific binding of ions such as K+ and Na+ that coordi-
nate to the GO6 atoms of the G-quartets (Figure 1), form-
ing inner sphere complexes with release of water of
hydration (see below).

The standard way of estimating number of ions
released or absorbed on folding is to use thermochemistry.
The melting temperature will depend on the concentra-
tion of salt if the charge density differences between the
states:
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N is the number of formal charges, and �= e2/ekTb is the
so-called Bjerrum length and r is the axial spacing of the
formal charges. For NA unfolding, the formal charge
arises for the phosphodiesters, i.e. 1 negative charge per
nucleotide (except the terminal one). The formal charge
leads to a high intrinsic electrostatic free energy, which
is unfavorable. Increasing the ionic strength leads to
Debye–Hückel shielding and thus lowering of the poten-
tial. If the charge density exceeds a critical value, which
depends on geometry as well as the number of charges,
then ions will condense and neutralize the charge. The
critical parameter for nonspherical objects is the so-called
Bjerrum length. Thus, a random coil oligonucleotide has
about 44% of the charge neutralized by condensed ions,
whereas a B-DNA duplex has around 76% of the charge
neutralized, as the charge density is higher (113). For a
B-DNA coil transition, [(1/�s� 1/�d]� 0.27 at 310K.
Thus for a B-DNA polymer, about 0.27 ions are
released per phosphate on melting. In other words, a 21-
mer duplex will release 10.8 ions/mol on unfolding.
The ion condensation is somewhat higher for the squatter
A-structure (�82%), so the ion dependence of unfolding is
clearly conformation dependent. The condensation model
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has been verified by experiment and extensive Poisson–
Boltzmann calculations. The latter have shown that
short oligonucleotides deviate somewhat owing to
so-called end effects (the ends of a duplex have a lower
charge density than those in the interior) suggesting that
these theoretical values would overestimate the experimen-
tal values for short oligonucleotides (204,205). More
recently, Manning (114,115) has shown that even a sphe-
rical charge distribution will condense ions, depending on
the actual charge density, and also on the ionic strength,
albeit less than a cylinder. The condensation idea is impor-
tant, because it influences the Debye–Huckel screening,
which depends on the net charge, Thus, if 76% of the
charges are neutralized in the duplex, whereas only 44%
are in the strand state, then the net charge on the strands is
higher than in the duplex, and therefore increasing ionic
strength will favor the strand. This is the origin of the N/2
term in Equation (11). Conversely, if a folded, intramole-
cular fold such as a quadruplex were to condense less
ions than the unfolded state, then the salt-dependent
stability would be the reverse of the duplex-strand
transition, i.e. ion condensation would favor the strand
state, and increasing ionic strength would favor the
folded state.

Unfortunately, there seem to be no Poisson–Boltzmann
calculations carried out on small, well-defined quadru-
plexes, for which one might imagine that the specific of
topology and thus charge density would be important.
Experimental measurements of stability as a function of
[K+] have been published. Olsen et al. (134) showed the
dependence of Tm on [K+] [cf. Equation (12)] to estimate
the number of potassium ion taken up on folding of dif-
ferent intramolecular quadruplexes, and obtained values
of �nK in the range 0.4–1.9mol�1 quadruplex formed. The
meaning of this is unclear, other than there is a net uptake
of K+ on folding. The uptake per mole of formal negative
charge varied from 0.03 to 0.07. However, not all of the
phosphates are involved in the G-quartet stacks (i.e. the
loops are perhaps more like single strands), and whose
ion-condensing properties are unclear. If the uptake of
ions is normalized, rather arbitrarily, to the number of
nonloop phosphates, the uptake is much larger, i.e.
0.05–0.16mol�1 phosphate. These are still low numbers
when one takes into account also that these structures
are binding 2–3 ions specifically, i.e. close to 0.1 ion/
phosphate.

In contrast, the data for FRET-tagged TG4TTAG3T
TAG3TTAG3 of (75) showed a much stronger depen-
dence on the potassium in concentration, which using
the estimated van’t Hoff enthalpy implies 3.3� 0.3K+

taken up per mole quadruplex formed, or about 0.17
ions per phosphate. Again, the binding of two to three
specific ions in the G-quartets would itself account for
0.1–0.15K+ per phosphate. Similarly, the same sequence
titrated with Na+ showed lower stability than with K+,
but the slope of 1/Tm versus ln[Na] with the tabulated
van’t Hoff enthalpies again implied �3 ions/mol qua-
druplex. Although the discrepancies among the various
sequences and methodologies are substantial, the
number of ions taken up per quadruplex formed is
comparable to the expected number of specific ions

bound, suggesting that the ionic strength effects may
be quite small compared with the more familiar duplex
folding. Given the uncertainties regarding ion condensa-
tion, it is unclear whether these numbers are merely
fortuitous.
Nucleotides exposed to solvent (unfolded states) are

hydrated. However, approximately four water molecules
per nucleotide is released on unfolding of DNA duplexes
(206,207). The number of water molecules released or
taken, �nw up can be estimated from melting studies
using a formalism essentially equivalent to that of nonspe-
cific ion binding thus:

�nw ¼
R
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where, w is the activity of water. It is possible to determine
the amount of water released or taken up during a transi-
tion by using osmolytes to affect the water activity, pro-
vided they can be shown to be true osmolytes and do not
interact directly with either state of the solute of interest
(206,208).
Such studies have been carried out for duplex and tri-

plex DNA (206). It is also possible to combine electro-
statics and hydration simultaneously by varying the
concentration of salt, which alters water activity. In
DNA duplex unfolding, the stabilizing effect of increasing
ionic strength is opposed by the decrease in water activity
(as the duplex is more hydrated than the strands), e.g.
(207):
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The first term on the right-hand side of Equation (13) is
the nonideality effect of salt on the DNA, the second term
represents the decrease in water interaction due to repla-
cement by salt, the third is the nonideality term from salt–
water interactions and the final term is the electrostatic
salt–salt nonideality effect. The nonideality and cross
terms in Equation (14) become especially important at
higher salt concentrations, such as approaching the 1M
standard state (207) often used in NAs thermodynamics
(where the polyelectrolyte contribution is zero) (127,185).
Hydration and electrostatics have been studied by

Marky’s group (134), who showed that small foldback
structures (2 and 3 quartets) are associated with �13
waters per mole quartet released on folding. This is oppo-
site to DNA duplex folding, which is associated with an
uptake of water (206,207). Small molecule osmolytes thus
stabilize the quadruplexes. Further, other cosolvents such
as primary alcohols that not only decrease the water activ-
ity, but also the bulk dielectric constant, were shown to
increase quadruplex stability (209), which is opposite to
the well-known effect of alcohols on DNA duplex solubil-
ity and thermodynamic stability. This behavior was inter-
preted in terms of favorable electrostatics for folding

Specific ion binding. In a formal sense, the ion binding is
described by a simple thermodynamic square as shown in
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Scheme 2:

where, G is the folded quadruplex, U is the unfolded
DNA, L is a ligand and n, m are the ligand binding stoi-
chiometries. For such a scheme, K1K2=K3K4.
The apparent dissociation constant for unfolding

would be

Kapp ¼ �u=�g ¼ K1 ð1þ l m=K4Þ½
�
ð1þ l n=K2Þ� 14

L is a ligand such as K+ and n, m are the stoichiometries
of the ligand binding l is the concentration of L. Here if
m, n are greater than 1, it is assumed that the cooperativity
of binding is very high (cf. Hill model).
The temperature dependence of folding, as in UV melt-

ing for example, would be (117):
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This becomes a linear function of l when K4 is large com-
pared with l , and K2 is small compared with l . The slope
approaches n, the number of ions bound in the folded
state. At low values of l compared with K2, the slope of
1/Tm versus ln(l ) will decrease, and this gives an indication
the apparent affinity for the ion.
In an optical titration, the observed signal depends on

the specific absorption coefficient. In the limit that m=0
(no bound ions in the unfolded state), and for simplicity
the absorption coefficient of G=GL and U=UL, then
the absorbance profile as a function of l will be:

�A=nt ¼ �"ðl nþK2Þ=½l
nþK2þK3K4� 16

where, nt is the total DNA concentration, �A is the dif-
ference in absorbance between the folded and unfolded
states and �e the corresponding difference absorbance
coefficients. The assumption that metal binding does not
in itself affect the absorption coefficients of the nucleotides
is for illustrative purposes only and represents the simplest
case. Equation (16) is a Hill equation and will show posi-
tive binding cooperativity of L at a fixed temperature.
Note that as K3K4=K1K2, the effective Hill constant
K can be written also as K2(1 +K1). In most cases,
the values of K1 would be large, so the apparent dissocia-
tion constant for e.g. K+ would be K1K2, as expected for
an exclusive binding mechanism. Under such conditions,

the Hill coefficient n is an indicator of the number of ions
bound during folding (164).

The apparent binding of K+ or Na+ to some (human
telomere) sequences is highly cooperative and occurs with
an apparent affinity in the range 0.5–2mM for K+ and 5–
15mM Na+ (75,119,164). These affinities are apparent as
they are accompanied by folding, as in Scheme 2. If all of
the stabilization were from K+ coordination, then the
overall binding energy would be of the order 4 kcalmol�1,
which is comparable to the observed free energy for short
quadruplexes (cf. Tables 2 and 4). Indeed, in the absence
of K+ or Na+, and only macrocation counterions present,
the fraction of the folded state is (presumed) small. As the
specific ion binding to the unfolded state is also likely to
be small, the stabilization due to specific ion binding
should be substantial (i.e. the ratio of K2 to K4

in scheme 1), which overcomes the unfavorable electro-
static interactions due to folding. For a three-quartet
stack structure 2–3 specific ions are bound (164), which
has only a small influence on the net charge of the oligo-
nucleotide (�10% reduction for a 22-mer). The binding of
K+ to the thrombin aptamer has been estimated at 5 mM
by mass spectrometry (210). This corresponds to
7.3 kcalmol�1 of binding energy at 298K, which would
suggest that the unfolded ensemble and a metal-free
folded states are nearly balanced.

The hexa hydrated K+ ion present in solution coordi-
nates to the O6 of at least four bases, and generally is
nearly octahedral in quadruplexes (cf. Figures 2 and 3).
As oxygen ligands are replaced by oxygen ligands, one can
envision that the enthalpy change of pure ion binding is
relatively small. For comparison, the enthalpy of binding
of potassium to crown ethers has been measured at
around 3–4 kcalmol�1 (211,212). The value of �G(310)
for potassium binding to 18-6 crown ethers in aqueous
solution was measured at around 2.5 kcalmol�1 ion
(211,213), and as expected a somewhat more favorable
3.1 kcalmol�1 in organic solvents (212,214). This includes
the energy of desolvation and conformational rearrange-
ment of the crown ether on complexation, but is a rough
model for the binding of a single K+ to a preformed
quadruplex. Given the observed net �G(310) of forma-
tion of three-stack quadruplexes is in the range
5–10 kcalmol�1, it is plausible that the energy of potas-
sium binding and reorganization (K2 in scheme 1)
accounts for a substantial fraction the net favorable free
energy. This further implies that under appropriate cir-
cumstances, the population of the unfolded state in the
absence of cation could be significant. This in general
accord with the kinetics of formation of the human telo-
mere quadruplex initiated by sodium or potassium (164) in
which cation binding is highly cooperative, both under
equilibrium conditions and in the early phase of the
approach to equilibrium. This showed rapid ion binding
followed by a slower, quasi irreversible first-order (reorga-
nization) process, implying a net binding energy in this
stage of �5 kcalmol�1. Nevertheless, this analysis is
highly simplified, and really reflects our current lack of
understanding of the energetics of quadruplex formation
and stability.
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Free energy of ion exchange. Hud and coworkers (31)
have recently summarized the literature on ion binding
to G-quadruplexes. The difference in stability between
sodium and potassium forms is well documented,
though there is a tendency for these ions stabilized differ-
ent structures, in which the coordination stereochemistry
of the ions also differ (cf. Figure 2) (119). Experimentally,
the difference in free energy between potassium and
sodium binding is of the order 1.5–2.5 kcalmol�1

(75,164,215–217). It has been argued that the major deter-
minant of this difference is the difference in dehydration
energy of Na+ versus K+ (217). In the bound state, the
covalent contribution to the quartet H-bond strengths
correlated with cation and N2–H2 . . .N7H-bond lengths
in K+, Na+ and NH4

+ structures (86). Furthermore,
direct observation of Na+ by NMR showed quite differ-
ent mobility depending on position in the structure, and
short residence times at any position (218). The residence
time of the central ion was determined to be 250ms using
15NH4

+ and NMR spectroscopy (216) and mixed cation
studies showed that different sites are unequal (219–221).
This is in agreement with calculations that indicate essen-
tially free mobility of small ions (e.g. Na+), but much
slower exchange for large ions such as K+ (222).

Starting with a quadruplex structure in K+, then for-
mally the exchange can be written as a series of steps thus:

1. Q0K,Q+K+

2. K++6H2O,K+(aq)
3. Na+ (a),Na++6H2O
4. Q+Na+

,Q�Na+

where Q is quadruplex, Q�Na is the quadruplex–Na com-
plex in a different state to that in the K+ complex. Step 1
corresponds to the significant barrier to removal of a coor-
dinated ion, including any contingent conformational
rearrangement of Q0 to Q. This is followed by the favor-
able free energy of solvation of the K+ in step 2. Steps
1+2 are analogous to the dissociation of an ion from a
crown ether discussed above, which costs �2.5 kcalmol�1

ion, and can be designated �G(K)=�G1+�G2. Steps 3
and 4 are the reverse of the potassium release, and result
in a final structure in which Q� may be different from Q0.
In the context of the crown ether, model, this will be
associated with a free energy change �G(Na+)=
�G3+�G4. Therefore, the net cation exchange free
energy is ��G=�G(K+)��G(Na+), i.e. �2 kcalmol�1

for a three stack quadruplex. Clearly, this includes not
only the difference in hydration energy (�G2��G3),
but also the corresponding energy differences associated
with coordination energy and conformational reorganiza-
tion corresponding to Q0 and Q0(�G1��G4). An actual
parsing of the component energies has yet to be achieved.

Number of quartets and length of loops. In Quadruplex
topologies and structures section, we alluded to the restric-
tions imposed by loop length on possible topologies and
by implication the contribution to the overall stability of
different quadruplex structures. Although we have argued
so far that bases stacking and specific ion binding may
be the dominant stabilizing interactions, the length and

sequence of these loops is important. For example, for
intramolecular structures that contain single nucleotide
loops, substitution of an A for a T decreased the Tm by
88C (203) (up to around 1 kcalmol�1 of subsistent).
Similarly, replacing nucleotide with nonnucleotide linkers
had substantial effects on both stability and folding
kinetics (171). Loop length clearly influences the energetics
of quadruplexes, because changing the length from 1nt to
2 or 3 is associated with a change on overall fold (165). In
general, one would expect the stability to increase with the
number of stacks. Rachwal et al. (62) showed that for
increasing n in the context (GnT)4 �G(310) increased lin-
early for n=4–7 (@�G(310)/@n=2kcalmol�1 in 5mM
potassium), whereas the molecule with n=3 was more
stable then either n=4 or n=5. Similarly, in the series
(GnT2)4, the free-energy change was also linear in n, apart
from one anomaly, with a slope of 1.65 kcalmol�1.
Interestingly, the apparent number of potassium ions
taken up on folding barely increased with n (from 2.5 to
3.5 for n=3 to 7), but showed a larger variation in
response to Na+, but again nonlinearly with respect to
n. This was interpreted that only a fraction of the possible
quartets were formed, which is consistent with the weak
dependence of �G and �H on n. The presence of the T2
loops was suggested to allow for different topologies (anti-
parallel rather than parallel) (62). Nonspecific ion depen-
dencies might also account for some of the anomalous
estimates of the number of ions bound, as may the anneal-
ing history of the nucleotides (e.g. the rate of cooling and
final temperature, cf. Figure 8). In any event, this all
points to the complexity of dealing with quadruplex struc-
tures, and the need for simple but rigorous methods to
establish what structures are present and the mole frac-
tions under the experimental conditions when multiple
conformations are present.

Nature of the unfolded state. Because thermodynamics
refers to changes in state functions, all thermodynamic
considerations must include nature of the unfolded state.
Even very high quality energy calculations on a particular
structure imply little about net thermodynamic stability.
The rather dense purine sequences of G-tracts suggest

that the single stranded state at normal temperature and
salt conditions is unlikely to be remotely like an extended
strand or a random coil; significant base stacking of near-
est neighbors is to be expected. Telomeric DNA can be
prevented from forming quadruplex structures by ensur-
ing that there are no high Z cations present. Thus, Li+

generally does not stabilize quadruplex structures readily,
in part because its small size does not allow for simulta-
neous optimal bonding to the quartet oxygens (63),
though this depends on the sequence and linkers (171).
A macrocation such as the tetramethylammonium
(TMA) ion will also prevent quadruplex formation
better than Li, because the ion is simply too large to fit
into the cavity of the quartet. Human telomere DNA dis-
solved in a solution containing only TMA as the counter-
ion does not form a quadruplex. However, its CD
spectrum has a classical conservative exciton coupling
shape, indicative of significant base stacking, but not con-
sistent with G-quadruplex folded structures (R.D. Gray
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and J.B. Chaires, unpublished data). Thus, the strand
state is by no means a random coil. This has obvious
implications for folding/unfolding thermodynamics. In
principle, FRET could be used to assess the distribution
of end-to-end distances in the unfolded state (78). The
large decrease in quenching observed on unfolding short
quadruplexes (119) indicates that with a suitable choice of
donor–acceptor pairs and by manipulating the salt con-
centration to shift the unfolding transition, the variation
of the distance distribution over a range of unfolding con-
ditions (salt + T) could be obtained. Such FRET experi-
ments in TMA might provide useful information about
the distribution of size and shape in the unfolded form,
and thus the degree of stacking in the strand state.

DISCUSSION

Given the preceding brief overview, we now discuss the
factors that determine formation of known structures, and
what can actually form, in terms of kinetic versus thermo-
dynamic control, and how these might be modulated by
cellular environments.
The cellular environment is of the order 70% water, i.e.

the water activity is at most 0.7, neglecting effects on the
activity coefficient [cf. Equation (13)]. NA folding is asso-
ciated with altered hydration. The effect of water activity
can be estimated using osmolytes to influence the water
activity, and the data can be analyzed in terms of prefer-
ential hydration as described by Timasheff (223–226) and
by Parsegian (227,228). The variation in the free energy of
folding is approximately given by ��G=�RT�lna/a0,
where a is the water activity and a0 is the water activity in
the standard state (55.5M) and � is the change in the
number of associated water molecules. For quadruplex
folding from a single strand, � can be a large number,
though for some quadruplexes it is relatively small. Given
the range reported for � of 3–20 water molecules released
per mole quadruplex formed (depending on structure),
this implies a stabilization ��G due to dehydration
from 55.5M water to the cellular milieu of a low value
of 0.7 kcalmol�1 to a high value of 4.9 kcal. (134). The
dehydration would stabilize quadruplexes compared with
duplexes, which are more hydrated than the single strand
and thus the quadruplex state.
The other aspect of the low water activity in cells is that

much of this results from the presence of proteins and
other macromolecules, which collectively account for
>75% of the intracellular biomass. This macromolecular
matrix in itself (disregarding for the moment any specific
or nonspecific direct interactions) can influence folding
energy and kinetics as described by Minton (229), based
on considerations of the coefficients of the virial expansion
of state. Both theoretically and experimentally, it is shown
that the presence of noninteracting matter will favor the
more compact state, i.e. if there is a change in volume in a
reaction, then the equilibrium constant and rate constant
will be affected by the concentration of added polymer.
For protein concentrations as high as 20%, this can lead
to large changes in equilibrium constant, with ��G values
of the order several kcal/mol for protein folding and

aggregation (230–232). Note that this would synergize
the effects of water activity on hydration. Sugimoto
(233,234) have used crowding conditions in vitro to deter-
mine the influence on conformation and stability. They
found that the crowding conditions caused a change in
the structure of the quadruplex, owing to different
excluded volumes (cf. Figures 3 and 4), and also that
duplexes formed between G-rich and complementary
C-rich strands were destabilized, at least as far as enthalpy
changes were concerned. Interestingly, as the crowding
also decreases the water activity, it was argued that crowd-
ing conditions stabilized the parallel G-quadruplex struc-
ture because it releases water on formation (233).
Separating the contributions from crowding, solvation
and electrostatics is complex, as they are not linearly inde-
pendent parameters [cf. Equation (13)]. A degree of
separation may be achieved by using a range of small
molecule osmolytes to probe water activity effects, and
large, truly physically excluded noninteracting polymers
for crowding effects in comparison with the small mole-
cules (206,208).

In vivo this is much more complex, because the proteins
present in the nucleus are clearly not neutral particles, but
rather a collection of architectural, structure and sequence
selective molecules.

Intragene quadruplex formation

The folding of a single-strand G-rich overhang such as the
one that exists in telomeres is a very different proposition
from the formation of a G-quadruplex in an internal posi-
tion, such as identified in numerous promoters (60,235).
This area of research has been recently reviewed (236). In
the former case, the folding is free to occur from an
unconstrained end, and does so on a potentially stabilizing
nucleus of double-stranded B-like DNA (59). In con-
trast, from the point of view of energetics, the internal
G-quadruplexes require the separation of the DNA
strands to form a loop (very unfavorable) followed by
the G-rich strand forming a quartet while being tethered
at both ends, leaving the complementary strand as a
loop, or as an i-motif as shown in Figure 9. Based on
estimates of the energies of formation of these structures
(134,237,238), it is possible to calculate the cost of forma-
tion of such a structure, as follows.

For the illustrative purposes, we consider the formation
of the NHEIII Myc structure, and the 22GG described by
Olsen et al. (134). The energy of unwinding the DNA
(loop creation) can be calculated for the actual G-rich
sequences using the nearest neighbor model for closed
DNA (238), and for AT rich sequences and a random
50% GC sequence.

The Tm depends on the fraction GC and the ionic
strength as (238):

Tm ¼ 193:67� ð3:09� fGCÞ½34:47� 6:52logðMÞ� 17

The values of Tm for three different GC contents and three
ionic strength values are given in Table 3. The GC con-
tents were chosen to represent the average GC content in
human genomic DNA, an AT-rich region and a GC-rich
region such as containing a region of high G-quadruplex
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forming potential (12). The ionic strength covers the range
used experimentally and the average intracellular mono-
valent ion content. The �H values are taken from ref.
(238) using the equation for random sequence

For an intramolecular fold, the Tm is the temperature at
which �G=0 and �H=Tm�S. Thus, the value of �G
can be calculated at any other temperature,T, according to:

�GðTÞ ¼ �H � T
1

T
�

1

Tm

� �
18

Note that the duplexes are stabilized by salt less than
the quadruplexes. @Tm/@log(M)= (3.09� f)6.52 for the
duplexes [Equation (17)]=17 at f=0.5, and 13–23 for
the two quadruplexes (134). In contrast, the salt

dependence of Ristano and Fox (75) was @Tm/
@log(K)=28.4. This no doubt reflects the stabilization
of the quadruplex by specific ion binding as well as any
ion condensation/Debye screening effects. Thus, in the
absence of any stabilization of the quadruplex, its forma-
tion does not overcome the very unfavorable strand
separation energy, by an amount >30 kcalmol�1 for
200mM salt and a GC fraction of 0.8. Even for an AT-
rich sequence, the quadruplex formation is around
20 kcalmol�1 short in free energy. The van’t Hoff enthalpy
estimates from ref. (75) are significantly higher than from
ref. (134) and were surprisingly temperature sensitive even
at K+ concentrations well above the mid-point affinities
for the ion (low mM). Table 4 also illustrates the point
that �G(310) values do not necessarily rank the same way
as the Tm values. Although Tm is generally determined
with high precision (often to better than �0.5K, but see
Thermodynamic methods section) the �H values are
frequently imprecise or inaccurate (cf. Table 2).
Extrapolation to a common reference temperature can
also lead to error. For example, �G(310) for 22GG
varied 0.9 kcalmol�1 for a range of �H of 9 kcalmol�1,
whereas NHEIII and G3TTA have similar Tm values but

Figure 9. Formal model for formation of an internal G-quadruplex or
other intramolecular structure. Duplex DNA with a G-quadruplex
potential sequence (top) unwinds and histones redistribute, leading
to base-pair dissociation and formation of an open loop (middle).
The G-rich strand forms a unimolecular G-quadruplex structure in
the presence of a single-stranded complementary C-rich strand. This
potentially could form an intramolecular i-motif as shown (third
from top). The quadruplex and/or the C-rich strand may be stabilized
by proteins (as shown at bottom) or other ligands. The binding energy
required to overcome the unwinding is discussed in the text.

Table 3. Calculated thermodynamics of unfolding of a B-DNA duplex

in closed DNA

fGC [Na]/M Tm/K "H/
kcalmol�1 bp

"G(293)
kcalmol�1

"G(310)
kcalmol�1

0.2 0.075 345.9 8.0 29.3 19.9
0.5 0.075 358.4 8.5 37.3 27.6
0.8 0.075 371 9.1 45.7 35.7
0.2 0.11 349 8 30.8 21.4
0.5 0.11 361.2 8.5 38.6 29
0.8 0.11 373.4 9.1 46.9 36.9
0.2 0.2 353.9 8 33 23.8
0.5 0.2 365.6 8.5 40.6 31.1
0.8 0.2 377.3 9.1 48.6 38.8

Loop size=24 nt, i.e. for a 22-mer+1 base at either end.

Table 4. Observed thermodynamics of unfolding G-quadruplexes at

110mM K+

Species Tm/K "H/
kcalmol�1

"G(293)/
kcalmol�1

"G(310)/
kcalmol�1

NHEIIIa 357 41 7.6 5.4
22GGa 339 34–45b 4.7 2.9–3.8
G3TTAc 355 66 11.5 8.4
G3ATc 321 27.5 2.4 0.94 (3.2)
G3T2c 345 40 6 4.1 (6.9)
Myc-1c 357.5 45 8.1 6.0 (9)

aData from Olsen et al. (134) for 0.075M.
NHEIII: d(TG4AG3TG4AG3TG4A2G2); 22GG, d(AG3T2AG3T2A
G3T2AG3); G3TTA, Q-d(TG3T2AG3T2AG3T2AG3)-F (Q, F quencher
and fluorophore, respectively); G3AT; F-d(G3A3G3T3G3T3G3)-Q;
G3T2, F-d(G3T2G3T2G3T2G3)-Q; Myc-1, F-d(G4AG4TG4AG4)-Q.
bvan’t Hoff and calorimetric enthalpies—transition not pure two state.
cData from ref. (75) at 100mM K+ (G3TTA) and 5mM (G3AT,
G3T2, Myc1). Values in parentheses calculated for 0.1M K+ using
the strongest salt dependence of Tm from ref. (134). No correction
for heat capacity differences has been made.

Nucleic Acids Research, 2008, Vol. 36, No. 17 5505



very different calculated stabilities at 310K, owing to the
substantial difference in �H.

i-Motif formation. To some extent, this energy cost might
be offset if the complementary strand were to form a
stable structure, such as the i-motif (239–242). However,
this structure is at best marginally stable at physiological
pH and temperature though the actual state of proton-
ation of the cytosines in the nucleus is far from clear.
The reason for this is that the i-motif involves H-bonding
between cytosines, on which one of the pair must be
protonated on N3. To be stable at physiological pH this
requires raising the pK of one of the paired cytosines from
�4.5 to >7, which costs at least 3.5 kcalmol�1 C:CH+

formed at 310K. Thus, these structures are stable only
at low pH (243). Based on the data presented for the iso-
lated cRET C-rich sequence (65), the intramolecular
i-motif structure has an insignificant population above
pH 7 and at 310K (<1%). This does not include the
unwinding stress and junction with neighboring duplex,
although it is possible to build models, as yet unrefined,
that simultaneously incorporate a G-quadruplex and an
intramolecular i-motif on the complementary strand
(65,244) (Figure 9). Experimentally, the duplex wins over
the quadruplex (243,245,246), as expected on thermody-
namic grounds (see above).
An alternative is that a quadruplex becomes stabilized

by a protein or other ligand, or that the single-stranded
complement is similarly stabilized by a binding partner,
such as a DNA.RNA hybrid as in Escherichia coli (8),
which is typically a rather short hybrid duplex that is
important in transcription initiation, or a ss binding
protein. The binding energy would have to be of the
order 20–30 kcalmol�1 for this to be effective. A binding
free energy of even 20 kcalmol�1 is equivalent to a disso-
ciation constant of 10�14M. Another alternative is that
supercoiling stress generated by transcription might
supply this energy (even transiently), though one might
expect the less AT-rich regions to form a bubble in pre-
ference to a GC-rich sequence, unless again there are addi-
tional proteins that could stabilize on the other strand.
It is clear that such a structure will not spontaneously

form without some help. It has been suggested that super-
coiling such as during transcription can propagate the
necessary stress back toward the promoter to cause
unwinding of sequences (247), and thus permit the forma-
tion of the G-quadruplexes (236). It is unclear why
AT-rich sequences would not melt in preference to the
GC-rich sequences, given the very large difference in sta-
bility. Furthermore the applied torsional stress would
surely change as the transcription proceeds, so that at
some point the G-quadruplex would revert to the duplex
state. However, as the kinetics of reversion are typically
very slow, this might not be possible unless other proteins
were to accelerate the kinetics. Nevertheless, the implica-
tion was also that the system operates far from equilib-
rium, implying that an understanding of the kinetics is
extremely important. Indeed, it has been proposed that
specific DNA-binding proteins bind to the single strand
region in the torsionally stressed Myc promoter (235).

Risitano showed that in fact the ds moiety of the human
telomeres is preferentially double stranded at physiologi-
cal pH, but an increase the number of G-stacks favored
the quadruplex over the duplex such as for the c-myc
G-rich sequence, even in the presence of a large excess
of the complementary C-rich strand (75). An issue here
is that there is a competition between a free duplex and
strand + quadruplex, i.e.

AB, Aþ B : K1

A, Q : K2

The distribution of species is simply give by the ratios of the
dissociation constants, viz K1=a.b/ab and K2 q/a,
where Q is the quadruplex structure folded from the
G-rich strand A and B is the complementary C-rich strand.

The � G(310) values for the quadruplex formation of all
species based on the Tm and the published �H was in the
range 6–7 kcalmol�1 (Tables 2 and 4). For oligomers of
19–20 bp long, the nearest neighbor parameters of
SantaLucia (127,248,249) can be used to estimate the
�G of the duplex at equimolar strand concentrations of
0.25 mM. For the G-rich sequence, the �G310 are in excess
of 20 kcalmol�1, which far exceed the measured stability
of the quadruplexes. The excess C-rich strand (5- to
50-fold) is thus in very large excess of the values of
K1K2, and this should easily outcompete the quadruplex
for all sequences studied, in agreement with (243,245,246).
For an internal loop, the penalty will be higher than for a
free duplex (238).

Do quadruplex structures actually exist in vivo? Major
arguments in favor of G-quadruplex formation in vivo
include the ready ability of the G-rich sequences widely
found in genomic DNA, as single strands spontaneously
form a stable quadruplex structures in solution.
Furthermore, the prevalence of such G-potential
sequences that far exceeds chance is argued to be pre-
served for a functional purpose. The latter argument has
considerable weight but not specifically for the formation
of any particular structure. As discussed earlier, thermo-
dynamic arguments favor the telomere as the most likely
place to find G-quadruplexes in vivo. The 30 single-
stranded overhang could simply form a dead-end quadru-
plex that cannot be used by telomerase. Such a structure
would however protect the end of the chromosome from
unwanted dimerization (which would interfere with repli-
cation and with subsequent accurate chromosome segre-
gation during mitosis, i.e. leading to aneuploidy) as well as
avoiding endo and exo nuclease activity.

It is experimentally very difficult to demonstrate the
presence on any specific DNA structure in vivo (and
even harder to prove its absence!). Maizels (12) and
Bryan (14) have recently summarized the evidence for
the existence of quadruplex telomeric G4 DNA in vivo
[see Kipling, pp. 65–68 (7) for a summary of older data].
An overview of the differences in complexity of telomere
replication among various organisms is given by Gilson
and Geli (250). The best evidence exists for ciliates such as
Oxytricha and Stylonychia (which have a very different
kind of chromatin than mammals and a very large
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number of telomeres). The fundamental paper by
Schaffitzel et al. (251) described the generation of qua-
druplex-specific single chain antibodies. Two were
selected, one having high affinity (Kd=0.13 nM) for par-
allel four-stranded DNA, and a second one having
2–3 nM affinity for both parallel and antiparallel G-quad-
ruplexes. These two antibodies showed no significant affi-
nity for any other kinds of DNA or RNA, or other
polyanions (although no proteins were tested). Only the
latter showed a positive result in the indirect immunos-
taining technique on isolated nuclei from Stylonychia
lemnae, and then only in the vegetative state (i.e. not
during replication). This was interpreted as the existence
of the quadruplex in the vegetative state only, presumably
as a means of protecting the short 30 overhang from dimer-
ization or excision by nuclease. Indeed, the multiple chro-
mosomes from the vegetative state tend to aggregate end-
to-end in this organism, via the intermolecular G-quadru-
plex, and this may explain why the in vivo chemical mod-
ification experiments failed to detect quadruplex in these
organisms (125,126). In a recent subsequent paper, it was
argued that the quadruplex dimers are stabilized by the
TBPa2b2 complex, even though TBPa itself stabilizes the
single stranded state, and anchors the chromosome to a
nuclear scaffold (252). TBPb is recruited by TBPa bound
to ss telomere ends, promoting a profound conforma-
tional change in the DNA, to form a specific antiparallel
G-quadruplex dimer. For subsequent replication, this
complex must be resolved. As the authors emphasized,
the unfolding kinetics are intrinsically very slow, in vitro
the t1/2 may be years (169), so something must promote
this dissociation of the proteins and DNA dimer. It is
worth noting that the (observed) rate constant for the
approach to equilibrium (as opposed to the unidirectional
rate constants) and thus the half-life for formation and
dissociation of a structure are the same. Consider the
simple intramolecular folding mechanism:

Uþ nM,
K1

UMn,
k2

k�2
Q 19

The binding of ions that initiates folding is assumed to be
fast (see above for ion binding rates), whereas the subse-
quent isomerizations are slow, but k2	k�2 [the overall
dissociation constant is K1K2/(1+K2) <10

�3M]. If one
were to start the reaction with adding ion to unfolded
nucleotide, the formation of Q will proceed exponentially
toward equilibrium, according to:

qðtÞ ¼
k2utot ½1� expðkobstÞ�

½k2 þ k�2 K1þmnÞ=mn�ð
20

where kobs= k2m
n/(mn+K1)+ k�2 and thus the half life

of formation is ln2/kobs.
In contrast, the spontaneous unfolding from Q will

occur with the same rate constant kobs provided that
there is nothing to mop up the resulting strand or ions.
Only the initial rates differ in the two directions. Anything
that binds Q will slow down the rate of approach to equi-
librium, and similarly anything that sequester U will do so
too, as the rates depend on the concentration of U and Q.

It was further proposed (252) that telomerase itself acts
as the resolvase, after being recruited by phosphorylation
of TBPb. A major conclusion, ultimately based on known
in vitro properties of G-rich oligonucleotides, is that if
quadruplexes are formed, they need to be resolved (by
proteins), and cells appear to devote considerable effort
to prevention of G-quadruplex formation, because they
are too stable for replication or transcription. Homologs
of the TBP proteins have been identified in vertebrates,
namely POT1 and TPP1(253,254), though their mecha-
nism of action remains unclear (255). Of the 21 proteins
listed as being able to bind to quadruplex DNAs in vitro,
only one quadruplex was a fold-back structure (14). Many
other proteins can be shown in vitro to have affinity for
such structures, but their functional significance is unclear.
Recently, it has been argued that only the extreme end of
vertebrate telomeres form quadruplexes (256), and a pro-
tein proposed to be needed for human telomere unfolding
has been characterized (257). Much of the evidence for
quadruplex formation in mammalian DNA in vivo is gen-
erally circumstantial and to date no high selectivity anti-
bodies for human quadruplex structures are available.
Quadruplex binding ligands typically have rather modest
affinity and selectivity even for the small numbers of struc-
tures tested, and do not always bind in the manner
expected or designed (258,259) (260,261). For example,
the tetraporphyrin TmPyP4 shows a selectivity of only
20-fold (�G310 < 2 kcalmol�1) over B-DNA yet was
used to demonstrate the presence of a quadruplex struc-
ture (236). New developments in quadruplex-binding
ligands show substantially higher affinity and selectivity
for the human telomere sequence (262), and these might
be useful for such experiments, with the caveat that the
ratio of nonquadruplex DNA to potential quadruplex
DNA is very large, and that selectivity also needs to be
assessed against protein binding and a wide variety of
alternative DNA structures.

T-loops. The biology of telomeres was summarized in a
recent review regarding their need for maintenance, and
what happens when the length is not maintained (263). An
alternative model for avoiding the problems association
with a free 30 single strand is for it to loop back and
become buried in the proximal part of the telomeres, per-
haps by strand invasion. This is called the t-loop mecha-
nism (264–271). The original description of the t-loop
(272) indicated that long telomeres (many kilobases
long) can loop back on themselves and the 30 single
strand overhang of a hundred or so bases invade the
duplex strand and compete for the same sequence with
the complement. Although the length of the telomeres is
much greater than the persistence length of DNA at phy-
siological salt concentrations, opening of an internal loop
within the duplex and forming in essence an intermolecu-
lar duplex is, as explained above, energetically unfavor-
able. In fact, it was observed that in the absence of a
stabilizing factor, the efficiency of t-loop formation was
very low; only substantial formation of a loop structure
was observed in the presence of the telomere specific pro-
tein TRF2 (272). Indeed, the loop model does not for-
mally require strand invasion, only that there is some
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interaction stabilized by for example protein. Indeed, it
has recently been argued that just the single strand-over-
hangs form a t-loop stabilized by what amounts to a
dimeric G-quadruplex (269). However, this is not in agree-
ment with original models based on large loops that imply
circularization of the lengthy double-stranded portion of
the telomere. Although the binding energy for a loop of
this size would be small if the DNA were naked, the entro-
pic cost could be quite substantial, as the probability of
finding a small number of configurations in which the end
is close to a specific part of the telomere is small compared
with all the other possible configurations (273). However,
the telomeres are normally bound up in histones (274,275),
even if the linker histone distribution differs somewhat
from ‘average’ DNA, and are regulated by acetylation
and deacetylation (274,276). We note that the chromatin
rearrangement implies connection of the physical problem
to metabolism via ATP hydrolysis and acetylation events.
This also begs the question as to the remarkable length
variation of telomeres, even in mammals. The critical
length for humans seems to be 6–8 kb, though actually
maintained at 8–12 kb with a long ss 30 overhang
(>100 nt), whereas ciliates have very short 30-ss overhang
(266).

PROSPECTS AND CONCLUSIONS

It is clear from the foregoing that despite the extensive
efforts expended to date, we still have a very limited
view of what determines the folding and relative stability
of different quadruplex structures, and how fast they
form. Even worse, for the most part the relationship to
in vivo formation is even murkier. The latter is a conse-
quence of at least two factors. First is that in vitro experi-
ments concentrate on simple, relatively well-defined
systems under conditions that typically do not approxi-
mate those found in vivo, as described in part in
Discussion section. Furthermore, it turns out that even
the short intramolecular complexes are surprisingly com-
plex, and detailed analysis is hampered by the presence of
multiple conformations and slow folding kinetics.
Nevertheless, the basic principles of the energetics of
G-quadruplex formation do need to be considered in
any biological model, as well as the question as to where
the energy comes from. Thus, the thermodynamics and
kinetics of small oligonucleotides have value in that it is
possible to examine them in great detail under a wide
variety of well-controlled conditions. This allows one to
sample the possible range of behaviors within a realistic
range energies and timescales, which ultimately must be
relevant to the biological conditions. It appears that naked
G-potential DNA alone has physical properties that are
not commensurate with some of the proposed biological
functions and thus requires protein binding to provide the
energy to manipulate these properties. It is further notable
that some of the proposed functions of such DNA, such as
found in promoters, may need to be coupled to unwinding
events, and operate far from equilibrium. Under these
conditions an understanding of kinetics is essential.

We have argued that the specific ion binding and
general electrostatics are a critical component for the
energetics, and folding rates of G-quadruplexes, that dis-
tinguish them from most other DNA or RNA folds.
However, there are disturbing variations in basic thermo-
dynamic properties that need to be addressed to establish
whether these variations arise from experimental artifacts
or there are real differences that are sensitive to conditions
and small variation in sequence.

To accomplish this goal, we believe that an agreed upon
and reliable set of rapid and inexpensive techniques is
needed to determine the topology of any quadruplex,
and assess its purity. This is likely to come from a combi-
nation high-resolution spectroscopic and hydrodynamic
techniques, such as NMR and AUC. First, methods are
needed for rapid assessment of the topological structure(s)
that is (are) present (277) and whether the state is unique
and thus can be manipulated by variation of conditions
until it is. This is a prerequisite for subsequent structural
and functional analysis, purely as an analytical quality
control. Second, it would make it possible to prepare a
standardized set of oligomers of known structures to
determine whether even simpler methods that exist can
make useful distinctions among possible structures (data-
base approach).

To this end, we propose that a consortium be estab-
lished to address major unresolved questions, or at least
enlighten the present authors who confess having more
questions than answers. Some of these are listed below.

1. Systematic studies of the thermodynamics (�H, �S
and �Cp) for defined sequences under different con-
ditions, analogous to the extensive work published
for DNA and RNA duplexes, in order to establish
useful relationships between sequence and stability
under various conditions of temperature and salt
concentration.

2. Develop reliable methods of rapid determination of
topology of new sequences. This might ultimately be
achieved using simple and cheap methods such as
(electro)hydrodynamics + CD + 1D NMR for
example, once a database of the properties of
authenticated structures has been established under
the appropriate conditions. This entails generating a
set of authenticated standards that can be repro-
duced according to specific procedures. The use of
nonnucleotide linkers (171) in comparison with
nucleotides to establish contributions from loops
to CD.

3. Investigate in greater detail the nature of the
unfolded ensemble of states, perhaps using methods
outlined in the text. This is essential to understand
thermodynamic stability.

4. Quality control: what methods should be used to
establish that a new sample is in a particular state
(cf. #2)?

5. Determine the role of electrostatics in stabilization
and kinetics of G-quadruplex structures. This will
require additional methods such as capillary electro-
phoresis and careful salt-dependent analysis of the
thermodynamics to establish the difference between
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nonspecific and specific ion binding, as well as the
interplay with hydration. Detailed calculations of the
ionic contributions are also required to interpret
such data. The electrostatics relate closely to issues
of electrophoretic mobility.

6. A systematic computation of CD for varied twist
and wedge angles and induced CD of loop bases
(and see #2).

7. Develop structure-specific antibodies that can be
used both for quality control, and also for probing
the possible presence of structures in higher eukar-
yotes under different cellular conditions.

8. Apply novel methodologies to assess kinetic stabili-
zation such as single molecule force measurements as
described for RNA (278,279)

9. Develop a realistic but experimentally tractable DNA
system for telomeres and promoter G-quadruplex
forming sequences that include nucleosome assem-
blies, and are compatible with optical and hydrody-
namic approaches for example. This is an area where
a dialogue between the physical biochemists and
biologists would be especially valuable to ensure
that the problem is defined appropriately in a biolog-
ical context.

Finally, there is a substantial literature on targeting
G-quadruplexes for possible anticancer drug development
(18,60), which is beyond the scope of this review.
However, the physical principles apply equally to this
area. Furthermore, the presence of G-quadruplexes in
normal or other cells is not a requirement, only that
they can form under certain (possibly pathological) con-
ditions, and as such will be stabilized by the specific ligand
and thereby interfere with cell replication and/or survival.
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