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ABSTRACT

Antibody-based PD-1/PD-L1 blockade therapies have
taken center stage in immunotherapies for cancer, with
multiple clinical successes. PD-1 signaling plays pivotal
roles in tumor-driven T-cell dysfunction. In contrast to
prior approaches to generate or boost tumor-specific
T-cell responses, antibody-based PD-1/PD-L1 blockade
targets tumor-induced T-cell defects and restores pre-
existing T-cell function to modulate antitumor immunity.
In this review, the fundamental knowledge on the
expression regulations and inhibitory functions of PD-1
and the present understanding of antibody-based PD-1/
PD-L1 blockade therapies are briefly summarized. We
then focus on the recent breakthrough work concerning
the structural basis of the PD-1/PD-Ls interaction and
how therapeutic antibodies, pembrolizumab targeting
PD-1 and avelumab targeting PD-L1, compete with the
binding of PD-1/PD-L1 to interrupt the PD-1/PD-L1
interaction. We believe that this structural information

will benefit the design and improvement of therapeutic
antibodies targeting PD-1 signaling.

KEYWORDS PD-1/PD-L1 interaction, checkpoint
blockade, molecular basis, therapeutic antibody

INTRODUCTION

The host immune system is critical for defending against
microbial pathogens and “non-self” malignant cells to main-
tain health. T-cell immune responses play pivotal roles in
adoptive immune responses by directly killing target cells or
indirect modulation via cytokines (Palucka and Coussens,
2016). Naïve T-cell activation involves both T-cell receptor
(TCR)/peptide major histocompatibility complex (pMHC)
interactions and co-stimulatory ligand-receptor interactions,
the two-signal model proposed by Lafferty and Cunningham
(Bretscher and Cohn, 1970; Lafferty and Cunningham, 1975;
Cunningham and Lafferty, 1977; Gao and Jakobsen, 2000;
Gao et al., 2002). Additionally, activated T cells also require
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co-stimulatory and co-inhibitory molecules to modulate TCR-
mediated T-cell responses and self tolerance (Gao and
Jakobsen, 2000; Gao et al., 2002). The most important co-
stimulatory and co-inhibitory molecules involve B7-CD28
superfamily- and TNF-TNF receptor superfamily-related
ligands and receptors. Programmed cell death 1 (PD-1) is a
member of the CD28 superfamily and was first discovered as
a gene upregulated in a T cell hybridoma undergoing cell
death (Ishida et al., 1992). The negative regulatory function
of PD-1 in T-cell activation was revealed in Pdcd1−/− mice
that are genetically predisposed to systematic autoimmunity
(Nishimura et al., 1999). PD-1 ligand 1 (PD-L1) and PD-1
ligand 2 (PD-L2) were identified to be the ligands (PD-Ls) of
PD-1 in 2000 and 2001, respectively (Freeman et al., 2000;
Latchman et al., 2001a, b; Tseng et al., 2001). Subsequently,
exhausted T-cell function reversion was achieved through
the blockade of the PD-1/PD-L1 interaction with antibodies
that restored the exhausted CD8+ T-cell reactivity and
regained their antitumor activity (Curiel et al., 2003; Hirano
et al., 2005). Moreover, PD-1/PD-L1 signaling is important in
the maintenance of T-cell exhaustion during chronic viral
infection, and antibody blockade of the PD-1/PD-L1 inter-
action restores function in exhausted CD8+ T cells (Barber
et al., 2006a). Other well-known co-inhibitory and co-stimu-
latory molecules include CTLA-4, LAG-3, CD226-TIGIT-
CD96, TIM, and the TNF-TNF receptor (e.g.,4-1BB, OX-40,
and GITR) families, etc. (Schildberg et al., 2016). Because
T-cell activation or exhaustion depends strongly on the co-
stimulatory and co-inhibitory signaling pathways, co-stimu-
latory and co-inhibitory molecules are also called “immune
checkpoint” molecules (Tan and Gao, 2015; Callahan et al.,
2016).

The breakthrough of antibody-based checkpoint blockade
in cancer treatment in the last few years has given rise to a
promising future for cancer immunotherapies (Callahan
et al., 2016). Checkpoint blockade takes advantage of a
monoclonal antibody (MAb) that blocks co-inhibitory signal-
ing pathways to restore T-cell function (Barber et al., 2006b;
John et al., 2013). Multiple PD-1/PD-L1 blockade antibodies
have been approved for clinical use or have entered into
clinical trials, such as pembrolizumab, nivolumab, and ate-
zolizumab, and have shown great efficacies to treat multiple
advanced-stage tumors (Powles et al., 2014; Chapman
et al., 2015; Postow et al., 2015; Robert et al., 2015b).
Previously, the molecular basis of PD-1/PD-L1 blockade and
tumor immunotherapy has been thoroughly reviewed (Chen
and Han, 2015; Li et al., 2016; Zou et al., 2016), we briefly
overviewed the current understanding of the molecular
mechanisms of the PD-1/PD-L1 interaction and focused on
the recently defined structural basis of the therapeutic anti-
body-based PD-1/PD-L1 blockade in the present review.

EXPRESSION AND INHIBITORY FUNCTIONS OF PD-
1/PD-LS

Tissue tropism of PD-1 and PD-L1/L2 expression
and regulation

As a co-inhibitory molecule of the B7/CD28 family, PD-1
negatively regulates T-cell responses to both internal and
external antigens upon binding to its ligands PD-L1 or PD-L2
(Callahan et al., 2016). Inducible expression of PD-1 is
observed in T and B lymphocytes, dendritic cells (DCs),
natural killer cells, monocytes, and macrophages during
immune activation and chronic inflammation (Nishimura
et al., 1996; Petrovas et al., 2006; Chang et al., 2008; Liu
et al., 2009). On Tcells, PD-1 can be induced following TCR-
mediated activation and/or cytokine stimulation (Agata et al.,
1996; Kinter et al., 2008). The elevated PD-1 levels pro-
gressively render antigen-specific T cells susceptible to
exhaustion or anergy during chronic infections or tumor
development (Blank et al., 2006; Blackburn et al., 2009).
Aside from immune cells, PD-1 expression has also been
detected in tumor cells. Indeed, melanoma cell-intrinsic PD-1
promotes tumorigenesis by modulating downstream mTOR
signaling (Kleffel et al., 2015).

The two PD-1 ligands also show distinct expression pat-
terns. PD-L1 is widely expressed in a variety of hematopoi-
etic and non-hematopoietic cells, while PD-L2 expression is
restricted to antigen-presenting cells, macrophages, T helper
2 cells, and non-hematopoietic cells in the lung (Dong et al.,
2002; Yamazaki et al., 2002; Ohigashi et al., 2005;
Hamanishi et al., 2007; Nomi et al., 2007; Lesterhuis et al.,
2011). Elevated PD-L1 expression on multiple tumor cells is
also an important mechanism of tumor-induced immune
escape (Iwai et al., 2002; Kataoka et al., 2016).

PD-1 signaling and PD-1-induced T-cell exhaustion

T-cell exhaustion is defined as dysfunction of T cells during
chronic virus infection or cancer (Curiel et al., 2003; Barber
et al., 2006b). Progressive loss of T-cell function occurs in a
hierarchical manner, where Tcells lose the distinct properties
of IL-2 production and the ability to proliferate at the first step
and then fail to produce TNF-α and IFN-γ at later stages
(Wherry et al., 2003). The PD-1 pathway serves as a critical
regulator of T-cell exhaustion state (Freeman et al., 2000).
The cytoplasmic domain of PD-1 contains an immunore-
ceptor tyrosine-based inhibition motif (ITIM) and an
immunoreceptor tyrosine-based switch motif (ITSM). Both of
these motifs contribute to PD-1-mediated T-cell inhibition
(Chatterjee et al., 2013). Binding of the PD-L1 or PD-L2 to
PD-1 induces phosphorylation on ITIM (Y223) and ITSM
(Y248) tyrosine residues, thus leading to recruitment of Src
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homology region 2 domain-containing protein tyrosine
phosphatases (SHP-1 and SHP-2) and subsequent down
regulation of TCR signaling through dephosphorylation of
signaling intermediates such as CD3ζ, ZAP70, and PKCθ in
T cells (Okazaki et al., 2001; Chemnitz et al., 2004; Shep-
pard et al., 2004). However, it is unclear how the cytoplasmic
motif recruits intracellular factors and how the cytoplasmic
domain interacts with these factors.

PD-1 and PD-L1 upregulation in the tumor
microenvironment and tumor-induced
immunosuppression

Studies show that co-inhibitory molecules such as PD-1 and
PD-L1 induce immune suppression in the tumor microenvi-
ronment (Iwai et al., 2002; Blank et al., 2006; Blackburn
et al., 2009; Kataoka et al., 2016). To date, expression of PD-
L1 is detected in multiple solid tumors, including melanoma,
lung, breast, and ovarian cancers, as well as in myeloma, T
cell lymphoma, etc. (Brown et al., 2003; Wherry et al., 2003;
Ghebeh et al., 2006; Hamanishi et al., 2007; Liu et al., 2007;
Hino et al., 2010). Moreover, PD-L1 expression can be
detected in myeloid DCs, which is induced by factors in the
tumor microenvironment (Curiel et al., 2003). The PD-L1
expression levels on tumor cells tend to be associated with
tumor progression and are predictive of unfavorable prog-
nosis and better response to PD-1 blockade treatment, to a
certain extent, in ovarian, kidney, pancreatic, and gastric
cancers (Thompson et al., 2005; Wu et al., 2006; Hamanishi
et al., 2007; Nomi et al., 2007; Garon et al., 2015; Gandini
et al., 2016). PD-1 expressed by T lymphocytes, particularly
tumor-infiltrating lymphocytes (TILs), can lead to dysfunction
of tumor-specific T cells to eliminate tumors (Tumeh et al.,
2014). Elevated expression of PD-1 on CD4+ T cells in
Hodgkin lymphoma negatively affects CD4+ T cells and is
suspected to facilitate immune evasion of the tumor cells
(Chemnitz et al., 2007). Elevated expression of PD-1 is also
observed in CD4+ T cells rather than CD8+ T cells in adult
T-cell leukemia/lymphoma (Shimauchi et al., 2007).

ANTIBODY-BASED PD-1/PD-L1 IMMUNE
CHECKPOINT BLOCKADE FOR TUMOR THERAPY

The mechanism of PD-1/PD-L1 interaction interference
for reactivating immune activity

Forced expression of PD-1 and PD-L1 by T cells and tumor
cells underlies the rationale that blockade of the PD-1
pathway would restore tumor-specific T-cell function to
eliminate tumor cells (Curiel et al., 2003). Targeting the PD-1
pathway may induce T-cell immune responses via the fol-
lowings: 1) Activation of T cells. The PD-1/PD-L1 interaction
would block the TCR-driven “stop signal” that limits T-cell
mobility and thereby interrupts T cell-DC contacts and T-cell
activation, proliferation, and cytokine production (Benvenuti
et al., 2004). Antibodies that block PD-1/PD-L1 interaction

would result in alteration of T-cell motility and promotion of T
cell-DC contacts. 2) Diminishment of T-cell exhaustion.
Persistent PD-1 expression could result in T-cell exhaustion,
which is reversible by blocking the PD-1 pathway. Upregu-
lation of PD-1 on CD8+ T cells in the tumor microenviroment
is suggested to reflect exhaustion or anergy of T cells
accompanied by the reduction of cytokine production (Ah-
madzadeh et al., 2009). 3) Inhibition of Treg cells. There is a
recent report that PD-1 play critical roles in modulating the
activation threshold and maintaining the balance between
regulatory and effector T cells (Zhang et al., 2016). Further,
infiltration of PD-1-positive Treg cells into tumors can hinder
the proliferation and function of effector CD8+ T cells (Wang
et al., 2004; Francisco et al., 2009). In summary, blockade of
the PD-1 pathway can effectively induce anti-tumor immune
responses by restoration of T-cell function and inhibiting
intratumoral Treg cells within the tumor microenvironment.

It is noting that PD-L1 also interacts with CD80 to inhibit T
cells, while PD-L2 binds to repulsive guidance molecule b
(RGMb) to mediate respiratory tolerance (Butte et al., 2007;
Xiao et al., 2014). Antibodies targeting PD-1 would block PD-
1/PD-L1 or PD-1/PD-L2 interactions, leaving PD-L1/CD80
and PD-L2/RGMb signaling unaffected. On the other hand,
though PD-1/PD-L1 signal would be blocked by PD-L1 tar-
geted MAbs, the PD-1/PD-L2 interaction would not be
abrogated during administration of anti-PD-L1 antibodies.
Additionally, other inhibitory molecules also play important
roles with similar or distinct inhibitory pathways compared to
the PD-1 pathway. Combination therapies with different
checkpoint blockade agents might improve tumor regression
efficiency, and multiple combination therapies involving dif-
ferent checkpoint blockade agents are now in clinical trials
(Mahoney et al., 2015).

Clinical findings of PD-1/PD-L1 immune checkpoint
blockade therapy

The US Food and Drug Administration (FDA) has approved
two PD-1-targeted MAbs, nivolumab from Bristol-Myers
Squibb (Opdivo, also known as BMS-936558, MDX-1106,
and ONO-4538) and pembrolizumab from Merck (Keytruda,
also known as lambrolizumab and MK-3475), for advanced
melanoma, non-small cell lung cancer (NSCLC), and kidney
cancer. In 2016, the US FDA gave accelerated approval to
atezolizumab from Genentech (Tecentriq, also known as
MPDL-3280A) for the treatment of patients with locally
advanced or metastatic urothelial carcinoma. Further, vari-
ous MAbs targeting the PD-1 pathway are being developed
and evaluated in numorous clinical trials involving thousands
of patients (Table 1). Most of the PD-1-targeted therapeutic
antibodies are IgG4 human or humanized MAbs that block
the PD-1/PD-L1 or PD-1/PD-L2 interaction to restore tumor-
specific T cell reactivity without mediating antibody-depen-
dent cell-mediated cytotoxicity (ADCC). PD-L1-targeted
therapeutic antibodies possess PD-1/PD-L1 blockade
activity with or without ADCC activity.
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Nivolumab displays promising tumor suppressive activity
in metastatic melanoma, NSCLC, and metastatic renal cell
carcinomas (Brahmer et al., 2010; Topalian et al., 2012). The
use of nivolumab has achieved an overall objective
response rate (ORR) of 30-40% in multiple clinical trials in
patients with melanoma (Topalian et al., 2014; Robert et al.,
2015a). Pembrolizumab demonstrates similar efficacy in
advanced melanoma. Data from phase III clinical trials on
advanced melanoma indicates that patients receiving pem-
brolizumab show better survival benefits compared to ipili-
mumab, a MAb targeting CTLA-4 (Robert et al., 2015b).
Pembrolizumab is also promising for the treatment of
advanced NSCLC (with an ORR of 19%), advanced bladder
cancer (with an ORR above 20%), head and neck cancer
(with an ORR above 20%), classical Hodgkin’s lymphoma,
and triple-negative breast cancer (Garon et al., 2015; Tanguy
Y. Seiwert, 2015; Yung-Jue Bang, 2015; Peter H. O’Donnell,
2015).

PD-L1-targeting MAbs are also efficacious in multiple
tumors. For instance, atezolizumab (Genentech/Roche)
displays promising effects, with an ORR of 43% in PD-L1+

patients and an ORR of 11% in PD-L1- patients for the
treatment of metastatic urothelial bladder cancer (Powles
et al., 2014). In another clinical trial involving NSCLC, mel-
anoma, renal cell carcinoma, etc., a response to ate-
zolizumab has more frequently been observed in patients
expressing high levels of PD-L1 in tumors, especially when
PD-L1 is expressed in TILs (Herbst et al., 2014). Avelumab
and durvalumab are also in multiple Phase III clinical trials
involving NSCLC, gastric cancer, urothelial cancer, ovarian
cancer, etc. (Table 1).

However, cases of ineffective PD-1 treatment have also
emerged in the observation of clinical trials (Herbst et al.,
2014; Tumeh et al., 2014; Rizvi et al., 2015). Considering the
complex strategies developed by tumors to evade immune
surveillance, pathological types of tumors, mutations of
oncogenes and tumor suppressor genes, the stage of dis-
ease, and the number of TILs are all essential factors in
determining the suitability of immunotherapy. Additionally,
the intensity of PD-L1 expression by tumor cells is implicated
to be a potential predictor of the efficacy of PD-1 pathway
blockade (Topalian et al., 2012).

STRUCTURAL BASIS OF THE PD-1/PD-L1/L2
RECEPTOR-LIGANDS INTERACTION

PD-1 is a type I membrane protein as a member of Ig
superfamily with a single extracellular immunoglobulin vari-
able (IgV) domain and is structurally and functionally a
monomer (Zhang et al., 2004). On the other hand, its ligands
PD-L1 and PD-L2 contain two extracellular Ig domains: the
N-terminal IgV domain and C-terminal immunoglobulin con-
stant (IgC) domain (Lazar-Molnar et al., 2008; Lin et al.,
2008). The PD-1 extracellular domain adopts an anti-parallel
β-sandwich IgV-type monomeric topology, including frontTa
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sheets (A’ CC’C’’FG) and back sheets (ABED) with a disul-
fide bridge between Cys54 and Cys123 (Fig.1A–C). Com-
pared to other CD28 family molecules (CTLA-4, CD28,
ICOS, etc.), PD-1 lacks a Cys in the stalk region, which
prevents PD-1 homodimerization (Schwartz et al., 2001).
Both monomeric and homodimeric human PD-L1 (hPD-L1)
structures were reported by our group and the others, though

additional functional evidence is still needed to support these
findings (Chen et al., 2010; Zak et al., 2015).

The protein level sequence identity between murine and
human PD-1 (mPD-1 and hPD-1) is 64%, while the identity
between murine and human PD-L1 (mPD-L1 and hPD-L1) is
77% (Fig. 1D and 1E) (Lin et al., 2008). Cross-species
binding has been demonstrated (i.e., mPD-1 can bind to
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Figure 1. Overall structure of the mPD-1/hPD-L1, mPD-1/mPD-L2, and hPD-1/hPD-L1 complexes. Cartoon structures of mPD-1/

hPD-L1, mPD-1/mPD-L2, and hPD-1/hPD-L1 complexes. The strands that contribute to interaction are labeled as indicated. A. pink,

mPD-1; cyan, hPD-L1. B. pink, mPD-1; sky blue, mPD-L2. C. red, hPD-1; cyan, hPD-L1. D. Sequence alignment of the extracellular

IgV domains of hPD-1 and mPD-1. Green triangle labels show the amino acids that interact with both hPD-L1 and mPD-L1 from the

complex structures of mPD-1/hPD-L1 and hPD-1/hPD-L1 (PDB: 3BIK, 4ZQK). The red triangle label indicates the amino acids that

contribute to the interaction within hPD-1 but not mPD-1. Black asterisks indicate the amino acids within mPD-1 that interact with

mPD-L2. E. Sequence alignment of the extracellular IgV domains of hPD-L1 and mPD-L1. Green triangle labels show the amino

acids that interact with both hPD-L1 and mPD-L1 from the complex structures of mPD-1/hPD-L1 and hPD-1/hPD-L1 (PDB: 3BIK,

4ZQK). The green number in both D and E indicates the two Cys residues that form an intra-domain disulfide bridge.
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hPD-L1, and hPD-1 can bind to mPD-L1), and the cross-
species binding affinities show no significant differences
compared to the intra-species interactions (Freeman et al.,
2000; Latchman et al., 2001a, b; Zhang et al., 2004; Nomi
et al., 2007; Cheng et al., 2013). The amino acids of PD-1
and PD-L1 contributing to the PD-1/PD-L1 interaction are
highly conserved between mice and humans, which explains
the cross-species binding properties of these paired mole-
cules (Fig. 1D and 1E). However, hPD-1 lacks a well ordered
C’’ strand like that found in the IgV fold of mPD-1, which is
instead replaced with a flexible loop connecting the C’ and D
strands. The flexibility of the C’D loop is supported by the
NMR structure and complex structure of pembrolizumab/
hPD-1 (discussed below) (Cheng et al., 2013; Na et al.,
2016). Additionally, the interaction details of the interface are
also quite different between the orthologs (Lin et al., 2008;
Zak et al., 2015). Thus, despite the high similarity of the
overall structures of human and murine PD-1/PD-L1 and the
high conservation of the amino acids involved in the PD-1/
PD-L1 interaction between the orthologs, the development
and evaluation of hPD-1- or hPD-L1-targeting agents in
mouse models deserves more consideration.

Three PD-1/PD-L1/L2 complex structures have so far
been determined: mPD-1/hPD-L1, mPD-1/mPD-L2, and
hPD-1/hPD-L1 (Lazar-Molnar et al., 2008; Lin et al., 2008;
Zak et al., 2015). The interaction of PD-1 and PD-L1 involves
both of the front β-sheet faces of their IgV domains (Fig. 1A).
The interaction involves the FGCC’C’’ strands, CC’ loop, and
FG loop of PD-1 and the AFGCC’ strands of PD-L1 (Fig. 1A
and 1C). In comparing the structure of apo-hPD-1 to hPD-1
from hPD-1/hPD-L1 complex structures, significant complex
formation-associated conformational changes within hPD-1
are observed involving CC’ loop rearrangement to form
hydrogen bonds with hPD-L1 (Zak et al., 2015). In contrast,
only minor adjustments of side chains involved in the inter-
action surface are observed, without significant changes of
the backbone, within hPD-L1.

The interaction of mPD-1 with mPD-L2 reveals a similar
binding mode to that with PD-L1, which also involves both of
the IgV domains with the front β sheet faces interacting with
each other (Fig. 1B) (Lazar-Molnar et al., 2008). Most (17/18)
of the mPD-1 amino acids that interact with PD-L2 are also
involved in the PD-L1 interaction, indicating a similar binding
mode of PD-L1 and PD-L2 to PD-1 (Fig. 1D). Thus, agents
targeting PD-1 would abrogate the binding of both PD-L1
and PD-L2 to PD-1. However, the detailed interactions of the
mPD-1/mPD-L2 interaction significantly differ from that of
mPD-1/hPD-L1 (Lazar-Molnar et al., 2008; Lin et al., 2008),
suggesting distinct structural basis for the development of
PD-L1- and PD-L2-targeting agents.

The reported complex structures reveal the molecular
basis of the PD-1/PD-L1/L2 interactions. However, how
hPD-1 interacts with hPD-L2 remains undetermined. More-
over, PD-L1 also binds to CD80, which is a ligand of CTLA-4
and CD28, and PD-L2 also has an additional receptor,
RGMb. Complex structures of these paired molecules would

benefit our understanding of the PD-1/PD-L1/L2 interactions
and the development of PD-1/PD-L1/L2 targeting agents in
the future.

Based on the complex structure of mPD-1/hPD-L1, Maute
et al. have taken advantage of directed evolution of the
amino acids in hPD-1 which contributes to the binding with
PD-L1 by yeast-surface display to engineer the PD-1 ecto-
domain as a high-affinity (110 pmol/L) competitive antagonist
of PD-L1 (Maute et al., 2015). There are also some peptides,
peptidomimetics and small drug-like molecules in preclinical
or clinical investigations (Zhan et al., 2016). The recent
report on the first nonpeptidic chemical inhibitors that target
the PD-1/PD-L1 interaction suggesting that there are “hot
spots” on PD-L1 for PD-L1 antagonist drug design (Zak
et al., 2016). The structural basis of PD-1 or PD-Ls com-
plexed with these small molecules are also important for
drug discovery in the field.

STRUCTURAL BASIS OF THERAPEUTIC ANTIBODY
INTERVENTION

Crystal structures of the anti-PD-1 pembrolizumab Fab
fragment complexed with hPD-1 and the anti-PD-L1 avelu-
mab single chain Fv fragment (scFv) complexed with hPD-
L1 have been determined by Na et al. (2016) and our group,
revealing the molecular basis of therapeutic antibody-based
immune checkpoint therapy for tumors (Liu et al., 2016; Na
et al., 2016). The interaction of pembrolizumab with hPD-1 is
mainly located on two regions: the flexible C’D loop and the
C, C’ strands. Unlike the C’’ strand observed in mPD-1, the
corresponding region in hPD-1 contains a disordered C’D
loop in solution (Fig. 2A left) (Cheng et al., 2013). Though the
C’D loop is not involved in the interaction with hPD-L1, it
contributes major contacts with pembrolizumab through
polar, charged, and hydrophobic contacts. Both the heavy
chain (VH) and light chain (VL) of pembrolizumab are
involved in contacting the C’D loop of hPD-1 (Fig. 2A right).
The other regions that pembrolizumab interacts with are
located on the C and C’ strands of hPD-1, which contribute
critical contacts with hPD-L1 (Fig. 2A right). Thus, the
blockade of the hPD-1/hPD-L1 interaction by pem-
brolizumab occurs predominantly by binding to the C’D loop
and overlaps binding to the C and C’ strands to compete with
the binding of hPD-L1.

Structural analysis of the interaction of avelumab with
hPD-1 reveals that avelumab utilizes both VH and VL to bind
to the IgV domain of PD-L1 on its side (Liu et al., 2016). The
VH of avelumab dominates the binding to hPD-L1 by all three
complementarity determining regions (CDR) loops, while VL

contributes partial contacts by the CDR1 and CDR3 loops,
leaving VL CDR2 without any binding to hPD-L1 (Fig. 2B
left). The binding epitope region of avelumab on hPD-L1
predominantly consists of the C, C’, F, and G strands and the
CC’ loop of hPD-L1. The blockade binding of avelumab is
mainly occupied by the VH chain, with minor contribution
from VL chain (Fig. 2B right). The detailed analysis of the
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buried surface on hPD-L1 reveals that the overlapping area
of avelumab and hPD-1 is mainly located on the F and G
strands, which are predominantly occupied by the HCDR2
loop of avelumab (Fig. 2B right). Therefore, the mechanism
of avelumab blockade involves the protruding HCDR2 loop
dominating the hPD1 binding region and competing for the
binding of hPD-1 to hPD-L1.

The binding affinities (Kd) of pembrolizumab to hPD-1 and
avelumab to hPD-L1 are 27.0 pmol/L and 42.1 pmol/L,
respectively (Na et al., 2016). On the other hand, the binding
affinity between hPD-1 and hPD-L1 is 0.77–8.2 μmol/L
(Collins et al., 2002; Butte et al., 2007; Cheng et al., 2013),

which is much weaker than that of the antibodies. The strong
binding of pembrolizumab to hPD-1 and avelumab to hPD-
L1 would enable the binding priority of the therapeutic anti-
bodies with checkpoint molecules and subsequent blockade
of the hPD-1/hPD-L1 interaction.

There are yet more therapeutic antibodies targeting PD-1/
PD-L1/L2 in clinical use or clinical trials (e.g., nivolumab,
atezolizumab, and durvalumab). Whether these antibodies
utilize the same blockade mode as pembrolizumab or ave-
lumab remains undetermined. Moreover, whether there are
hot-spots on PD-1 or PD-L1 to be targeted by different
therapeutic antibodies requires further investigation. All of

Avelumab

hPD-1

hPD-L1

hPD-L1

hPD-1

VL

VH

VH

VL

A

B

Pembrolizumab

Figure 2. Structural basis of therapeutic antibody-based PD-1/PD-L1 blockade. (A) Superimposition of the hPD-1/

pembrolizumab-Fab complex structure with the hPD-1/hPD-L1 complex structure. Left, hPD-L1 and pembrolizumab are shown as

cartoon (hPD-L1 in cyan, pembrolizumab VH in limon, and VL in orange) while hPD-1 was shown in surface mode. Right, binding

surface of hPD-1 for hPD-L1 or pembrolizumab. The binding residues for hPD-L1 on hPD-1 are colored in cyan, whereas residues

contacted by the pembrolizumab VH or VL are colored in limon or orange, respectively, and the residues that contacts with both VH

and VL are colored in hotpink. The overlapping residues used by both hPD-L1 and pembrolizumab are colored in purple.

(B) Superimposition of the hPD-L1/avelumab-scFv complex structure with the hPD-1/hPD-L1 complex structure. Left, hPD-1 and

avelumab are shown as cartoon (hPD-1 in red, avelumab-scFv VH in yellow, and VL in blue) while hPD-L1 was shown in surface

mode. Right, binding surface of hPD-L1 for hPD-1 or avelumab. The binding residues for hPD-1 on hPD-L1 are colored in red,

whereas residues contacted by the avelumab VH or VL are colored in yellow or blue, respectively, and the overlapping residues used

by both the receptor hPD-1 and avelumab are colored in green.
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these findings would benefit the development of therapeutic
agents targeting the PD-1 pathway to disrupt the PD-1/PD-
L1 interaction.

CONCLUSION AND PERSPECTIVES

The success of checkpoint blockade therapy has brought
immunotherapy from the corner to center stage in fighting
against human cancers, especially for solid tumors. In con-
trast to other strategies that prime or boost cancer-specific
immune responses, immune checkpoint blockade therapy
targets tumor-induced immune defects and revives existing
tumor-specific T cells to kill tumor cells. The PD-1/PD-L1
pathway has been taking the priority that single use of PD-1
or PD-L1 blockade antibodies can eliminate tumors in at
least a portion of patients. Though clinical success with anti-
PD therapy has been achieved, the molecular basis of the
PD-1/PD-L1/L2 interaction and PD-L1/L2 interaction with
other receptors needs to be further investigated. The
recently reported therapeutic antibody complex structures
with PD-1 or PD-L1 make it clear how the therapeutic anti-
bodies work, providing a new approach to modify these
antibodies for the better effects. However, more antibody/
PD-1 (or PD-L1, PD-L2) interaction details are still needed to
define the antibody targeting hot-spots and to better design
PD-1/PD-L1/L2 antagonists for tumor treatment. Such efforts
will pave a way to improve the efficacy of antibody targeting
the PD-1 pathway and prolong survival in advanced cancer
patients.
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