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Abstract Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture.
Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC)
transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with
the cells able to adopt a physiological contractile phenotype or an alternate ‘synthetic’ phenotype in response to
injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of
phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes.
Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calci-
fication may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors
and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role
of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calci-
fication, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel
findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochon-
drial dysfunction, and a uraemic milieu as major determinants of vascular calcification.
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This article is part of the Spotlight Issue on Novel concepts for the role of smooth muscle cells in vascular disease.

1. Introduction

1.1 Vascular calcification
Vascular calcification, the deposition of hydroxyapatite mineral in the
arterial wall, is linked to an increased risk of heart disease, stroke, athero-
sclerotic plaque rupture.1 Calcification occurs in both the intimal and
medial layers of the arteries. Intimal calcification is linked to arterial
obstruction and atherosclerotic plaque rupture. In contrast medial calci-
fication is linked to vessel stiffness, systolic hypertension, and increased
pulse wave velocity leading to increased diastolic dysfunction and heart
failure.2 Whilst originally thought to be a passive process3 calcification of
both the intimal and medial layers is an active and tightly regulated proc-
ess, principally driven by the vascular smooth muscle cells (VSMCs).

Intimal and medial calcification are increased in patients with Type 1
(T1D) and Type 2 diabetes (T2D)/metabolic syndrome (MetS), chronic
kidney disease (CKD), and postmenopausal women affected by
osteoporosis.

Coronary arterial calcification (CAC) is an independent predictor for
all-cause mortality independent of diabetic status.4 More than 70%
of men and 50% of women with T1D are affected with coronary artery
disease with a risk factor to develop CAC by their mid-forties.5

Cardiovascular and CAC risk in T1D are principally driven by hypergly-
caemia; in contrast, the cause in T2D/MetS is multifactorial, featuring
several factors largely absent in T1D such as obesity, hyperlipidaemia,
and hypertension. There is, therefore, a need to study and develop dif-
ferent models to uncover specific mechanisms and therapeutic targets.
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T2D/MetS, characterized by obesity, hyperglycaemia, hyperlipidaemia,

and insulin resistance, remains a significant independent cardiovascular
and arterial calcification risk factor even after adjusting for age, smoking,
body mass index, and hypertension.6 Plaques within the coronary
arteries of this patient group have larger necrotic cores and significantly
greater inflammation than non-diabetic plaques.6 Additionally patients
with T2D have more extensive lesion calcification in the coronary, caro-
tid, and other arterial beds.6

In addition to accelerated CAC, patients with diabetes (T1D and
T2D) develop extensive medial calcification of the peripheral arteries of
the feet and legs. The mechanisms driving this localized calcification
response are poorly understood and likely include novel factors in addi-
tion to hyperglycaemia, such as neuropathy.7

In the CKD population, active inducers of calcification include hypercal-
caemia, inflammatory cytokines, oxidative stress, uraemic toxins, and
elevated inorganic phosphate (Pi) or hyperphosphataemia.8,9 Importantly,
clinical studies have shown that hyperphosphataemia is closely associated
with advanced vascular calcification in CKD.10,11 Non-dialysis patients with
CKD have an increased incidence of CAC compared with controls but
less than that observed in patients with end stage renal disease and on dial-
ysis. Several investigators found a graded relationship between severity
of CKD and CAC score independent of conventional risk factors for athe-
rosclerosis.12,13 Further, diabetic patients with coexistent CKD had a
higher prevalence, greater extent, and more rapid progression of CAC.14

Numerous epidemiological studies have provided evidence of a link
between osteoporosis and cardiovascular disease. The risk of coronary
artery disease, stroke, and vascular calcification is higher in patients with a
history of osteoporotic fracture or low bone mineral density than in non-
osteoporotic patients.15,16 Vascular calcification involves cytokines and
growth factors that also play a role in bone turnover, including pro-inflam-
matory cytokines [IL-6 and tumour necrosis factor-a (TNFa)], osteopro-
tegerin, sclerostin, matrix gamma-carboxyglutamic acid-rich (GLA)
protein (MGP), and fibroblast growth factor (FGF)-23. Thus, aberrant lev-
els of osteoprotegerin, sclerostin, or FGF-23 may explain and predict the
occurrence of both osteoporotic fractures and cardiovascular events.15,17

1.2 Smooth muscle cells
A key cell type involved in vascular calcification is the smooth muscle
(SM) cell. Smooth muscle cells are non-striated, non-voluntary, contrac-
tile cells,18 found in a variety of tissue types including the blood vessels,
the trachea, the iris, the urinary bladder, and the digestive tract. Smooth
muscle is essential for the optimal function of blood vessels, primarily
maintaining blood pressure through contraction and relaxation in oppo-
sition to the heart.19 VSMCs also play a vital role in maintaining and
remodelling the extracellular matrix (ECM) of blood vessels.20

In normal adult tissue, SM myocytes have a contractile phenotype: they
proliferate slowly, are functionally contractile, respond to signals such as
acetylcholine and norepinephrine and express a range of contractile pro-
teins, including SM a-actin (SMaA), SM-22a, SM myosin heavy chains SM-1
and SM-2, calponin, and smoothelin. However, unlike other myocytes, SM
cells are not terminally differentiated and display phenotypic plasticity.21

Smooth muscle cells can alter their phenotype in response to local cues,
such as injury, and are capable of down-regulating contractile proteins,
increasing proliferation, and remodelling the ECM to facilitate migration.
Historically, this phenotypic transition from a contractile to what is termed
a ‘synthetic’ state was viewed as a binary process with cells returning to the
contractile state after repair had been completed. However, more recently
it has become clear that SM cells are able to maintain a spectrum of

phenotypes and can display features of osteoblasts, chondrocytes, adipo-
cytes, and macrophage foam cells (Figure 1).

The change from the contractile to an osteo/chondrogenic phenotype
is characterized by the development of calcifying vesicles, down-regula-
tion of mineralization inhibitory molecules, and elaboration of a calcifica-
tion prone matrix.22 This phenotype is accompanied by loss of SMC
markers (SM22a and SM a-actin) and gain of osteochondrogenic
markers [Runx2, SP7, osteopontin, osteocalcin, and alkaline phosphatase
(ALP), Sox9, Type II, and X collagen (Col II and Col X)].

Much of the work to classify VSMC phenotypes has been carried out
in vitro, stimulating the cells to drive differentiation along different lineages.
VSMC cultured with aggregated low-density lipoprotein (agLDL) have
down-regulated elastogenic capacity and increased macrophage foam cell
markers, such as LGALS3/Mac2, CD11b, F4/80, and CD68.23,24 Similarly,
VSMCs grown in apidogenic differentiation media develop adipocyte
markers, such as adipsin, adipocyte fatty acid-binding protein, C/EBPalpha,
peroxisome proliferator-activated receptor gamma (PPAR-c), and leptin.25

Whilst VSMC plasticity is widely accepted the spectrum of phenotypes
the cells are able to form and their relative importance in vascular calcifi-
cation remains controversial. It is currently believed that VSMC pheno-
type switching during calcification varies depending on the location of
calcification, for example inflammatory phenotypes developing during inti-
mal rather than medial calcification (summarized in Figure 2). In vivo
attempts to resolve this using lineage tracing experiments can be con-
founded by the changes in expression of cellular markers, such as the loss
of SMaA and SM-22a,26,27 necessitating the use of advanced genetic fate
mapping techniques. This challenge is further compounded by the ability
of other cell types, such as multipotential vascular stem cells, adipose cells,
fibroblasts, and macrophages to differentiate and gain VSMC marker
expression.28 Recent studies showed that 40% of foam cells within
advanced human coronary artery lesions express both the SMC marker
ACTA2 and the macrophage marker CD68, although it is unclear if these
represent VSMC-derived cells that have activated macrophage markers,
are macrophages that have activated SMC markers, or neither.29

Importantly, many of these phenotypes are pathological and play roles
in driving vascular disease processes. Therefore, understanding the envi-
ronmental factors, transcriptional programmes, and signalling pathways
that drive phenotypic change are key for future therapeutic strategies.
The most intensively studied phenotypic transition of SMCs is osteo/
chondrogenic conversion, which plays a major role in orchestrating vas-
cular calcification of both the intima and media. This forms a paradigm
for the role of SMC plasticity in disease and is the focus of this review.

1.3 Osteogenesis
Osteo/chondrogenesis is controlled by a number of defined transcrip-
tional programmes regulated by physiological and mechanical cues.
Osteogenic and chrondocytic differentiation from mesenchymal precur-
sors is initially marked by the expression of both the transcription factors
Sox9 and Runx2. The relative expression of Runx2 and Sox9 subse-
quently determines osteogenic or chondrogenic lineage, with Runx2 driv-
ing the osteogenic phenotype, whilst Sox9 binds to Runx2 and represses
its actions.30 In the osteogenic phenotype, the Runx2 transcription factor
in turn binds to downstream genes regulating bone development includ-
ing ALP, Type 1 collagen, osteopontin, MMP9, and SP7.31

The transcription factor SP7, also known as osterix (OSX), and Wnt
signalling further control development and drive an osteogenic rather
than chrondrocytic phenotype. Loss of SP7 results in ectopic cartilage
formation, highlighting its role in determining the osteo/chrondrocytic
cell lineage. Wnt canonically activates b-catenin, which in turn enters the
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nucleus and binds to the DNA. b-Catenin is required for the progression
from the Runx2þ stage to the Runx2þSP7þ stage and from Runx2þ

SP7þ cells to mature osteoblasts.
Other drivers of the osteogenic phenotype include activating tran-

scription Factor 4 (ATF4), which is expressed in more mature osteo-
cytes and the bone morphogenic proteins (BMPs). The BMPs are
members of the transforming growth factor (TGF)-b family of proteins
and BMP-2 has been shown to activate Runx2 in a number of cell types,
as well a play a crucial role in bone repair.32

1.4 What drives calcification at different
anatomical sites?
Although the VSMC phenotypic change associated with calcification is likely
to be the same in both medial and intimal calcification what is clear is that
there may be pronounced differences in the factors driving calcification at
either site. For example, patients with renal failure develop accelerated
medial calcification, which does not necessarily correlate with elevated
atherosclerotic load. In other disease processes, such as diabetes, calcifica-
tion of both the media and intima may be accelerated, however, the vascu-
lar beds affected may be completely independent. The characteristics
associated with both intimal and medial calcification are summarized in
Table 1. In the next sections, we will discuss the factors driving both intimal

and medial calcification separately before comparing and contrasting these
processes in an attempt to unravel core factors necessary for calcification.

2. Arterial medial calcification

Arterial medial calcification (AMC) can occur in a range of conditions,
including genetic disorders, aging, CKD, diabetes mellitus, dyslipidaemia,
systemic lupus erythematous and hypervitaminosis D. Unlike athero-
sclerotic calcification, it may occur in the absence of lipid accumulation
and inflammatory cell infiltration. Moreover, the diseases associated with
medial calcification are diverse and often independent of atherosclerosis
suggesting different processes drive VSMC change:

2.1 Loss of inhibitors
VSMCs can dynamically express a range of proteins that both inhibit and
drive calcification, altering their transcriptional program as required,
inducing Runx2, BMP2, and other osteogenic markers. These pro-
osteogenic markers are balanced by inhibitors of calcification including
MGP, osteopontin, BMP-7, and fetuin A.33 Decreased fetuin A and MGP
levels are both found in CKD patients and low levels of inhibitors in
patients are associated with increased risk of death.34

Adipocytic
Adipsin
C/EBPα
PPARγ
Leptin

Senescent
p16

Inflammation
p21

Osteochondrogenic
Calcification

Calcifying vesicles
RUNX2

ALP
OPN

Foam cell
Atherosclerosis

Macrophage-like
LGALS3/Mac2

F4/80
CD11b

CD68

Contractile
Physiological:

SMMHC
SMαA

SM-22α

Synthetic
Repair:

Proliferate
Collagen synthesisD, M & I

DNA damage

Tissue damage

Calcium/phosphate

agLDL

Msx2

Col II and X
Sox9

Figure 1 Diagram of possible VSMC phentoypes and their cellular/disease/organotypic origin. Diagrammatic representation of the spectrum of VSMC
phenotypes identified during calcification (bold), their cellular markers and phenotypic drivers in red. Dexamethasone (D), Methylisobutylxanthine (M), and
insulin (I).
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MGP is produced in both VSMCs and chondrocytes and serves as an

inhibitor of BMP-2.35 It is proposed that the loss of MGP results in unop-
posed BMP-2 expression, enabling BMP-2 to drive changes in VSMC
phenotype and subsequent calcification.36 Patients with Keutal syn-
drome, a rare autosomal recessive disorder caused by a loss of MGP
function suffer from a variety of ailments, including abnormal cartilage
and vascular calcification.37 Similarly murine models with mgp-knockout
die after 6 weeks with massive arterial calcification.35 Decreased levels of
MGP are found in diabetic patients38 and have been proposed to lead to
unopposed BMP-2 driving AMC.

Fetuin A is derived from the liver and sequesters calcium and phos-
phate preventing calcification. Whilst not expressed by VSMCs, fetuin A
is readily absorbed and concentrated in internal vesicles where it acts to
inhibit the ability of vesicles to nucleate calcium phosphate precipita-
tion.39 Fetuin A is decreased in patients suffering with vascular calcifica-
tion and is an independent risk for patients undergoing dialysis.40

2.2 Cellular senescence
There is strong evidence linking medial calcification with aging41 and
VSMC senescence, when cells no longer undergo mitosis but instead

produce cytokines, growth factors, and proteases, termed the senes-
cence associated secretory phenotype. VSMC senescence in vitro enhan-
ces calcification and osteogenic markers including ALP, collagen 1, and
Runx2 expression.42 Furthermore in an aging model of mice senescence
was linked to the emergence of medial calcification and Runx2 express-
ing osteoblast-like VSMCs.42

Hutchinson–Gilford progeria syndrome, a genetic disorder that leads
to extreme aging, has also been linked to vascular calcification. Progeria
is caused by a mutation in the LMNA gene, encoding the nuclear proteins
Lamin-A/C,43 which results in the accumulation of a truncated form of
pre-lamin A termed progerin. Pre-lamin A accumulates with age, VSMC
senescence, and calcified arteries, including from children with CKD.
Pre-lamin A accumulation disrupts the structural and functional integrity
of the nuclear lamina and renders VSMCs more susceptible to mechani-
cal stress.44

Due to the impact of aging and senescence, there has been much
interest in the development of effective senolytic compounds, which will
kill senescent cells in the body. Trials of senolytic compounds, such as
Dasatinib and Quercetin, in mice led to reduced senescence cell markers
in the medial layer of the vasculature, however, their effects on calcifica-
tion have yet to be tested.45

Figure 2 VSMC differentiation in intimal and medial calcification. (A) Within the medial layer the VSMC cells respond to osteogenic stimuli, e.g. prolonged
uraemia, and differentiate into osteoblast-like cells. These subsequently produce macrocalcification deposits within the medial layer of the blood vessel caus-
ing stiffening of the vessel wall. (B) Atherosclerosis is characterized by lipid deposition between the intimal and medial layers of the blood vessel, which sub-
sequently leads to macrophage infiltration, as well as the differentiation of VSMCs into foam cells. Inflammation, apoptosis, and oxidative stress subsequently
lead to VSMC differentiation into osteoblast-like cells which, in turn, leads to microcalcification deposits within the intimal wall, weakening the structure of
the wall and increasing the risk of plaque rupture.

Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness 593

Deleted Text: <italic>mgp</italic> 
Deleted Text:  (SASP)
Deleted Text: alkaline phosphatase
Deleted Text:  
Deleted Text: -
Deleted Text:  


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

2.3 Oxidative stress
Oxidative stress, such as reactive oxygen species (ROS), has been linked
to vascular calcification. ROS accumulates in the vascular system with
age46 and due to pathologies such as CKD.47 ROS accumulation is asso-
ciated with increased RUNX2 expression,48 which in turn may drive the
osteocytic VSMC phenotype.

It has been suggested that diets high in antioxidant inducing com-
pounds, such as resveratrol, can have a protective effect on vascular cal-
cification.49 Initial research has indicated that antioxidants, such as N-
acetylcysteine and tempol, can reduce VSMC calcification in vitro and in
animal models50 but, as yet, no studies have been conducted to investi-
gate the efficacy of antioxidants to prevent calcification in humans.

2.4 Mitochondrial dysfunction
The principle source of oxidative stress is free radical release from the
mitochondria during oxidative phosphorylation, which can be increased
by age, mitochondrial stress including aberrant calcium (Ca2þ) influx.
Myocytes require high glucolytic energy production for contraction,
which is provided by the mitochondria and aerobic respiration. Changes
in VSMC phenotype are linked to changes in mitochondrial metabolism,
for example VSMC hyperproliferation, in pulmonary arterial hyperten-
sion is linked to raised mitochondrial metabolism.51

As well as energy production, the mitochondria plays an important
role in mediating cell apoptosis, through the action of the caspase pro-
teins. There is an increase of VSMC apoptosis, which was associated
with osteogenic changes in the vessels of patients undergoing dialysis.52

Metformin, a common treatment for diabetes, is associated with
reduced calcification and reduced osteogenic marker expression, such
as ALP activity, Runx2 and BMP-2, in VSMCs in vivo.53 The mechanisms of

metformin action are not fully understood but are linked to changes in
glucose metabolism and insulin sensitivity, potentially acting through acti-
vating the adenosine monophosphate (AMP)-activated protein kinase
(AMPK) pathway54 or the mitochondrial respiratory chain.55

The AMPK pathway acts as a central regulator of cellular energy
homeostasis regulating cellular adenosine triphosphate (ATP) levels.
AMPK is activated when bound by free adenosine diphosphate (ADP)
and AMP, caused by cell energy depletion.55 AMPK puts cells into a low
metabolic state, inhibiting protein synthesis. However, the role of the
AMPK pathway in VSMC differentiation and calcification remains contro-
versial and is linked to both driving and inhibiting calcification. Activation
of the AMPK pathway can lead to VSMCs entering senescence56 and
therefore drive calcification. Conversely activation of AMPK by resvera-
trol leads to change to the in vitro phenotype from synthetic to contrac-
tile.57 Similarly, AMPK activation has been shown to inhibit proliferation
and migration.58

2.5 Mechanical stress
The haemodynamic conditions within the vasculature mean that VSMCs
are under constant mechanical stress. These mechanical forces, such as
transmural pressure, pulsatile pressure, and shear stress, have been
linked to premature cellular aging, including through oxidative stress.59

The cell’s cytoskeleton plays a key role in mediating mechanotransduc-
tion within the cell.60 Disruption of mechanosignalling pathways in
VSMCs, including the integrin–extracellular interface, actins, and cadher-
ins, promotes dedifferentiation towards the synthetic phenotype. In
turn, this dedifferentiation leads to a breakdown of the intimal and
medial layers of the arteries, characterized as thoracic aortic aneurysm
and dissection,60 which is itself associated with medial calcification.61

Yamanouchi et al.62 modified an existing mouse aneurism model with the
addition of calcium phosphate, which led to vascular calcification associ-
ated with accelerated aneurism formation. This acceleration of calcifica-
tion was even greater in apolipoprotein E deficient [ApoE(-/-)] mice; a
common model of atherogenesis.63 There is evidence that BMP-2
induced osteogesis in mesenchymal stem cells (MSCs) is controlled by
cell shape and cytoskeletal tension, via the Rho/Rho-associated protein
kinase signalling pathway64 and this area requires further investigation in
the context of medial calcification.

2.6 Uraemia
At physiological levels of calcium is a key signalling mediator in VSMC,
regulating contraction, structure, and function.65 However, excess cal-
cium, in levels corresponding to hypercalcaemic patients with CKD, can
drive VSMC calcification including in vivo.66 VSMCs treated in vitro with
uraemic serum undergo calcification; up-regulating osteopontin and los-
ing their contractile markers.67

Extracellular calcium treated VSMCs show altered homoeostatic
intracellular calcium and depletion of calcification inhibitors, such as
MGP, leading to increased calcium loading and deposition within micro-
vesicles.68 The exact mechanism through which high calcium drives phe-
notypic changes are unknown but have been linked to oxidative stress,
DNA damage, and through direct signalling through the calcium uptake
channels. The calcium receptor (CaR) is expressed in a range of tissue
including VSMCs and in contractile VSMCs the CaR helps regulate vascu-
lar tone, proliferation and survival.22 In calcified tissue, CaR expression is
down-regulated69 and ablation of CaR is correlated with increased calci-
fication.22 At present, the mechanism through which the CaR influences
VSMC calcification is unknown.

......................................................................................................

Table 1 Summary of the characteristics of medial and
intimal calcification

Characteristic Medial Intimal

Clinical

complications

Arterial stiffness Plaque rupture

Increased pulse pressure Myocardial infarction

Increased pulse wave

velocity

Stroke

Surgical complications

Increased all-cause

mortality

Associated

pathologies

Age Atherosclerosis

Diabetes Hyperlipidaemia

Renal failure Metabolic syndrome

Aortic aneurism

VSMC

phenotypes

Osteocytic Osteocytic

Chondrocytic Chondrocytic

Foam cell

Known drivers Oxidative stress Oxidative stress

Apoptosis Apoptosis

Mitochondrial

dysfunction

Mitochondrial

dysfunction

Mechanical stress Mechanical stress

Loss of inhibitors Inflammation

Uraemia

Senescence
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Elevated phosphate levels are also a common occurrence in CKD,

and in vitro phosphate levels comparable to those in patients leads to
dose-dependent calcification accompanied by a switch from contractile
to osteochondrogenic phenotype.70 Calcium and phosphate added
together act synergistically on VSMC in vitro to promote calcification,
potentially though different mechanisms.22

Cells in the presence of phosphate also show in increase in ALP activ-
ity, mimicking differentiating osteoblasts, and hypertrophic chondro-
cytes. The increase in ALP activity in turn inactivates osteogenic
inhibitors, such as dephosphorylating osteopontin and degrading
pyrophosphate.71

Phosphate transport into cells is mediated by sodium-dependent
phosphate (NaPi) co-transporters, of which the Type III NaPi co-
transporters, PiT-1, and PiT-2, have been identified as the major trans-
porters in VSMCs.70 Knockdown of PiT-1 in VSMCs inhibits phosphate-
driven calcification and induction of osteogenic markers, such as Runx2.

In contrast, PiT-2 may have a protective role in vascular calcification.
In idiopathic basal ganglia calcification, a rare neurodegenerative disease,
loss of function mutations in PiT-2, have been identified as causal.72

Vascular calcification in these patients is most likely due to loss of protec-
tive effects of PiT-2 against arteriolar SMC calcification, as well as
increased cerebrospinal fluid (CSF) phosphate levels resulting from PiT-
2 deficiency in CSF generating brain epithelial.73

Vitamin D is also involved in calcium uptake and bone mineralization.
Whilst normally beneficial excess vitamin D is linked to vascular calcifica-
tion and in mouse models, the administration of high dose vitamin D
leads to medial calcification, which is dependent on VSMC Runx2
expression.74 Similarly high doses of vitamin D in patients with CKD cor-
relate with the severity of calcification.75 The principle mechanism of
vitamin D-driven calcification appears to be the sequestering fetuin-A,
although activation of FGF-23 and klotho enzyme, which are normally
produced by osteoblasts, have also been implicated.76

Both high phosphate levels and vitamin D have been linked to prema-
ture cellular aging, especially in CKD. FGF-23- or Klotho-knockout mice
have hypercalcaemia, hyperphosphataemia, and elevated levels of vita-
min D and develop progeric symptoms have a shorter lifespan and
exhibit vascular calcification and osteoporosis.71 Thus uraemia results in
reduced inhibitors of calcification, increased oxidative stress, and cellular
senescence in patients with CKD, making uraemia a potent driver of inti-
mal calcification.

2.7 Cell death and damage
The damage and death of VSMCs plays a significant role in vascular calcifi-
cation. In vitro uraemia models of calcification are associated with signifi-
cant increases in VSMC apoptosis. It has been shown that inhibition of
apoptosis, for example by caspase inhibitors, significantly reduces both
calcifying vesicle release and calcification.77 Apoptosis occurs prior to
calcification in vitro and apoptotic bodies are thought to contain high con-
centrations of calcium, which is ultimately deposited on the ECM causing
calcification.

Following cell death, either by apoptosis or necrosis, not only is cal-
cium released for the cell but also other cell contents including cellular
DNA. Recently cell free DNA has been shown to precipitate calcium
and phosphate and may initiate arterial calcification.78 This process may
be of particular relevance to patients with end stage renal failure (ESRF),
as not only does their condition lead to cell damage but also haemodialy-
sis causes apoptosis both through direct contact with the membranes,
or through activation of the complement cascade.79 Cell free DNA lev-
els have been shown to be increased in patients suffering from ESRF, and

this is further increased by dialysis, potentially increasing their risk of
calcification.79

Cell damage may also result in the release of elastin fragments from
the cell. Patients suffering from Marfan syndrome, a genetic disorder of
the connective tissue, have extensive elastin fragmentation within their
aortas. This damage to the arterial medial layer is a causal factor for
microcalcification in Marfan patients, with the elastin fragments increas-
ing ALP activity and reducing GLA expression.80

2.8 Future directions for AMC research
Whilst our knowledge of the role and drivers of VSMCs in medial calcifi-
cation has significantly increased in recent years, nevertheless several key
questions remain unanswered. Further research is required to better
understand the drivers of the osteogenic phenotypic shift, and most
importantly the timing of when this occurs. Currently, it is often assumed
that phenotypic changes, such as RUNX2 expression, precede calcifica-
tion but this has yet to be conclusively demonstrated and may, in fact, be
a cellular response to the osteogenic environment in which a VSMC finds
itself. The other key question for current research is what is the nidus of
calcification? Several suggestions, not mutually exclusive, for the nidus
have been suggested apoptotic bodies, membrane-bound matrix vesicles
(MVs), or hydroxyapatite nucleation on/within the collagen or elastin of
the vessel wall.

3. Arterial intimal calcification

In contrast to AMC, patients with arterial intimal calcification (AIC) often
have high serum pro-inflammatory cytokines, display hyperlipidaemia
and/or metabolic syndrome, while calcium phosphate homeostasis is
well-maintained. AIC is strongly correlated with atherosclerotic plaque
burden,81 predicting adverse arterial events, such as plaque instability
and risk of myocardial infarction,82,83 as well as risk of stroke.84

Superficial microcalcification within the fibrous caps of the atheroscler-
otic plaques are thought to promote local stress and chances of plaque
rupture.85

Despite the recognized deleterious effects of AIC, there are currently
no drug therapies available to prevent or treat this process, including sta-
tins, the mainstay of atherosclerosis treatment.86 Thus, recent studies
have focused on identifying mechanisms and therapeutic targets that
mediate AIC. These studies have identified cells of the VSMC lineage,
osteochondrogenic differentiation, inflammation, oxidative stress, and
apoptosis as potential mechanisms of atherosclerotic AIC as described
later.

3.1 VSMCs in human atherosclerotic AIC
The historical view of VSMCs in atherosclerosis is that their migration to
and proliferation within the intima contributes to initial atherosclerotic pla-
que formation, and at advanced stages, they form fibrous caps to stabilize
vulnerable plaques.87 Accumulating evidence points to a substantial pheno-
typic plasticity of VSMC in response to injurious stimuli in the local micro-
environment, linking the change of VSMCs to an osteochondrogenic
phenotype with the development AIC. Detailed histological analyses of
human coronary atherosclerotic AIC size and location have implicated
VSMCs as major cellular orchestrators of AIC. Microcalcifications, typical-
ly <15mm particles, were frequently observed in the fibrous cap, while
macrocalcifications were found in the deep intima adjacent to internal elas-
tic lamella and tunica media, all SMC-rich regions85,88 Similarly, molecules
that initiate and regulate osteoblastic and chondrocytic differentiation
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(Runx2, BMP2, Msx2, osterix, and Sox9) are associated with atheroscler-
otic AIC.89,90 Cells with osteoblastic and/or chondrocytic properties com-
monly co-localize with calcium–phosphate deposits within atherosclerotic
lesions.88,90,91

3.2 Genetic fate mapping of VSMCs
in atherosclerotic AIC
The most direct evidence supporting osteochondrogenic differentiation
of VSMC in AIC is from genetic lineage tracing studies in mouse models
of atherosclerosis.92,93 These studies revealed that the majority of the
osteochondrogenic precursor-like cells (�75–88%) and almost all of the
chondrocyte-like cells (�98%) observed in atherosclerotic lesions were
derived from VSMCs,92 implicating these cells as important mediators of
AIC. The locations of the VSMC-derived cells in atherosclerotic lesions
of these animals were almost identical to the locations of AIC occurring
in human atherosclerotic lesions,85,88 mostly located in the fibrous cap of
atheromas and areas of cartilaginous metaplasia and calcification. Like in
human atherosclerotic AIC, these cells lost SMC marker protein expres-
sion, including SMMHC, SM22a, and smooth muscle actin (SMA), with
the rare exception of some cells on the lumen side of the fibrous cap.
Finally, at early time points, VSMC-derived cells were frequently
observed to cluster in the deep intimal and inner medial layers, adjacent
to elastic lamina breaks suggesting they were likely derived from vascular
medial SMCs. These lineage studies are consistent with the electron
microscopy study showing cells with hybrid SMC and chondrocyte prop-
erties, termed ‘myochondrocytes’, in human atherosclerotic lesions.90

3.3 Role of VSMC osteochondrogenic
differentiation in atherosclerotic AIC
The critical role for VSMC phenotypic plasticity and osteochondrogenic
differentiation in atherosclerotic AIC development is supported by a
number of other studies. For example, deficiency of osteogenic regulators
Msx1 and Msx2 in VSMCs of atherosclerotic LDLr�/� mice inhibited
osteogenic differentiation, resulting in reduced aortic calcification. Forced
expression of osteogenic initiators, BMP294 or S100A12,95 in VSMCs-acti-
vated osteoblastic differentiation and accelerated atherosclerotic AIC in
ApoE�/� mice. Furthermore, removal of inhibitory PPARc96 or LRP689

from VSMCs augmented Wnt signalling, leading to increased VSMC
osteoblastic and chondrocytic differentiation and AIC in atherosclerotic
LDLr�/� mice. Finally, VSMC-specific depletion of Runx2 in atheroscler-
otic LDLr�/� mice resulted not only in dramatic inhibition of osteoblastic
differentiation but also substantial reduction in chondrocyte maturation,
leading to a 50% decrease of AIC in these animals.

Of interest, blocking VSMC osteochondrogenic differentiation affected
lesion calcification but not systematic lipid metabolism, receptor activator
of nuclear factor kappa-B ligand (RANKL) expression, monocyte/macro-
phage recruitment, or atherosclerotic lesion size.74 These findings identi-
fied for the first time a genetic separation between the calcific sclerotic
process and the lipid-driven, atherogenic process, suggesting that different
mechanisms regulate formation and progression of calcification and athe-
roma, respectively.85,88 Given these findings, it is tempting to speculate
that the lack of effect of statins on AIC is due to major differences in aeti-
ology between AIC and atherogenesis.

3.4 VSMC-derived macrophages and micro-
calcification of AIC
VSMCs differentiate not only into osteoblasts and chondrocytes during
AIC but also into lipid-loaded, foam cell-like macrophages contributing

directly to the advanced atherosclerotic plaque progression.29,97,98

In a confocal microscopy study of human coronary artery sections from
hearts explanted at the time of transplantation, VSMCs were found to
directly participate in the process of atheroma formation through macro-
phage foam cell formation, accounting for �18–40% CD68-positive cells
observed in human advanced atherosclerotic lesions.29 These cells were
spindle-shaped, positive for SM lineage marker protein SMA, and did not
express myeloid cell markers, such as CD45. Further evidence was
shown by a bioinformatics analysis that showed �35% of macrophage-
like cells in human coronary atherosclerotic lesions were derived from
VSMCs.97,99 Consistently, in a mouse model of atherosclerosis, cells of
VSMC lineage were genetically labelled by an inducible VSMC-specific cre
recombinase (myh11-CreERT2) and the eYFP Cre reporter transgenes.
Approximately 30% of the total cells within the advanced atherosclerotic
lesions were thus found to derive from VSMCs. Over 80% of the VSMC-
derived cells lost the SM lineage marker proteins; some of them
expressed macrophage marker protein Mac2 and MSC marker protein
Sca1, contributing to �36% and of these populations.97 Interestingly,
deletion of KLF4, a transcriptional repressor critical for VSMC differentia-
tion resulted in a marked reduction in the number of VSMC-derived mac-
rophage-like cells, atherosclerotic lesion size, and an increase in fibrous
cap thickness of the atheroma.97 Contribution of VSMC-derived macro-
phages to osteochondrogenesis and AIC of atherosclerotic lesions was
not determined in these studies, however, fibrous cap localization of
macrophage-derived MVs and microcalcification85,100 raise this possibility
and warrant of further exploration.

3.5 Inflammation and atherosclerotic AIC
Inflammation has long been recognized as a hallmark of atherosclerosis
and was recently found to be associated with osteogenesis and AIC in
human and animal cardiovasculature using spectrally distinct near-infrared
fluorescent nanoparticle probes.85,101 Simultaneous administration of the
fluorescent probes that target either macrophages or calcium–phosphate
minerals to atherosclerotic mice, macrophages were found to coincide
with osteogenic activity in the plaques, likely to produce extracellular
MVs that serve as nucleating foci to initiate microcalcification.100

Although mechanisms and contributions of these extracellular vesicles to
AIC remain to be clarified, superficial MVs in fibrous cap of atheroma cre-
ate inhomogeneity of the plaque, which may contribute to the local pla-
que structural stress and vulnerability of the plaque.

Studies also determined a paracrine function of inflammatory cells, espe-
cially monocyte/macrophages, in regulation of VSMC phenotypic change
and AIC.102,103 Monocyte/macrophages, lymphocytes, and dendritic cells
infiltrate into atherosclerotic lesions during the early stages of atherogene-
sis. These cells produce pro-inflammatory cytokines and regulatory mole-
cules that induce VSMC apoptosis or transdifferentiation into
osteochondrogenic phenotypes, both of which contribute to mineral dep-
osition in the plaques. For example, TNFa, released primarily by mono-
cyte/macrophages, was found to be a key cytokines activating osteogenic
program of VSMCs via Msx2-Wnt signalling.104 Likewise, receptor activa-
tor of NF-jB ligand (RankL) was found to increase the release of procalcific
cytokines IL-6 by macrophages, promoting osteochondrogenic differentia-
tion of VSMCs and AIC.102 Finally, macrophage secretion of IL-1b is corre-
lated to VSMC osteochondrogenic differentiation and AIC progression.103

3.6 Oxidative stress
The relationship between oxidative stress and human atherosclerotic
AIC has been well-documented.105,106 In symptomatic patients,
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.
coronary artery segments and stenotic aortic valves collected from
explanted hearts, superoxide, and expression of the Nox family mem-
bers were found to be enriched in atherosclerotic lesions, preferentially
surrounding the calcifying foci, with Nox2 co-localized with the lesion
macrophages and Nox4 co-localized with SMA-positive VSMCs,107–109

suggesting the involvement of both inflammatory macrophages and
VSMCs.

The mechanisms of oxidative stress in atherosclerotic AIC are cur-
rently underexplored. It is well-known that during the early stages of
atherosclerosis lipids and lipoproteins accumulate in the sub-endothelial
space of arterial wall, undergoing oxidation by ROS produced during the
metabolic activities of surrounding cells.87 The resulting oxidative prod-
ucts may activate the NF-jB-RankL pathways provoking the production
of procalcific cytokines, such as TNFa, IL-6, and IL-1b,102–104 or induce
mitochondrial DNA damage87 and apoptosis of surrounding cells, such
as VSMCs,87 both of which contribute to the development of AIC.
Indeed, exposure of VSMCs to oxLDL or hydrogen peroxide were
found to induce osteoblastic differentiation of these cells48,110,111, likely
mediated through the osteochondrogenic transcription factor Runx2 via
AKT signalling.48 Finally, in a mouse model of atherosclerosis, global
knockout of Nox2 nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase markedly reduced aortic superoxide production and
plaque size,112 highlighting of the importance of ROS in atherogenesis.

3.7 SM apoptosis
VSMC apoptosis can be detected in human atherosclerotic lesions, pos-
sibly induced by lesion macrophages via death ligand and receptor inter-
action and oxidative stress.87 Apoptosis promotes matrix calcification,
primarily through the release of the calcifying membrane-bound MVs,
such as apoptotic bodies,113 acting as nucleation sites of calcification in
blood vessels.68,113 Vesicles isolated from normal arteries are less effi-
cient in accumulating calcium compared with those isolated from calci-
fied human atherosclerotic vessels.114 Differences between the
apoptotic bodies and MVs are underexplored, however, the biogenesis
of these vesicles was found to be important in calcification, and the
calcium-dependent loss of inhibitors, such as MGP,115 and the expres-
sion and redistribution of phosphatidylserine and annexin A6 complexes
were critical for the vesicles to nucleate hydroxyapatite on the vesicle
membrane.68

How calcifying MV production is regulated remains to be explored.
One pathway receiving attention is autophagy, an adaptive stress
response of cells to remove unnecessary or dysfunctional cellular com-
ponents thereby maintaining intracellular homeostasis. Dai et al.116

recently determined autophagy as protective mechanisms against vascu-
lar calcification, possibly through the inhibition of apoptosis and MV
release. Oxidative stress, provoked by high phosphate in this study, was
determined as a critical mediator driving the adaptive autophagic
response of VSMC stress by procalcific, high phosphate conditions.
Inhibition of autophagy, either through a targeted inhibitor or siRNA
approach, enhanced phosphate-mediated MV release, thereby exacer-
bating VSMC calcification.116

3.8 Future directions for AIC research
Risk factors for atherosclerotic AIC include aging, diabetes, metabolic
syndrome, hyperlipidaemia, inflammation, and oxidative stress. Strong
evidence supports a critical role for VSMC in the aetiology of AIC.
Common mechanisms by which VSMC may contribute to AIC include
phenotypic conversion/transdifferentiation to osteochondrogenic and

macrophagic lineages capable of releasing calcifiable extracellular vesicles
and apoptotic bodies, producing calcification prone-collagen and elastin
matrices, and regulating the production of procalcific molecules and cal-
cification inhibitors. Further studies to determine how specific risk fac-
tors modulate these mechanisms to promote AIC is greatly needed and
could pave the way to future therapies.

4. Conclusions

It has become increasing clear in recent years that arterial calcification is
not a passive process but involves active reprogramming of VSMCs by
local environmental cues into a dynamic range of phenotypes. These
local cues are different within atherosclerotic calcification, where the pri-
mary drivers are inflammation, oxidative stress, and apoptosis and medial
calcification, which is associated with aging, senescence, uraemia, and
high serum calcium and phosphate levels.

Whilst the drivers of phenotypic change are largely distinct, the phe-
notypic changes share common features, such as increased Runx2
expression and extracellular vesicle calcification, leading to speculation
as to whether these distinct environmental cues act on a single or dis-
tinct intracellular signalling cascades to drive cellular reprogramming and
phenotype switching.

Nevertheless increased understanding of VSMC phenotype switching
offers the best chance of identifying novel therapeutic targets to help
prevent the currently untreatable arterial calcification.
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