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Abstract: This paper proposes a method for monitoring driver safety levels using a data 
fusion approach based on several discrete data types: eye features, bio-signal variation,  
in-vehicle temperature, and vehicle speed. The driver safety monitoring system was 
developed in practice in the form of an application for an Android-based smartphone 
device, where measuring safety-related data requires no extra monetary expenditure or 
equipment. Moreover, the system provides high resolution and flexibility. The safety 
monitoring process involves the fusion of attributes gathered from different sensors, 
including video, electrocardiography, photoplethysmography, temperature, and a three-axis 
accelerometer, that are assigned as input variables to an inference analysis framework.  
A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and  
is updated continuously in real-time. The sensory data are transmitted via Bluetooth 
communication to the smartphone device. A fake incoming call warning service alerts the 
driver if his or her safety level is suspiciously compromised. Realistic testing of the system 
demonstrates the practical benefits of multiple features and their fusion in providing a more 
authentic and effective driver safety monitoring. 

Keywords: driver safety; eye features; bio-signal variation; Android-based smartphone; 
Fuzzy Bayesian; photoplethysmography; electrocardiography; temperature sensor;  
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1. Introduction 

Drowsiness is a multidimensional feature that researchers over the past decade have found difficult 
to define. Indeed, it is one of the leading contributing factors in traffic accidents worldwide. Solving 
the problem became critical when the design of earlier accident prevention systems was found 
ineffective for alerting the driver [1]. Therefore, a real-time fatigue detection system is essential in 
order to eliminate or reduce the risk of a driver having an accident. To develop drowsiness 
countermeasures, a greater understanding of driver fatigue in terms of its physiological properties is 
required [2,3]. The spectral analysis of the drowsiness state can be classified into a few discrete 
categories: the driver’s facial and body motion and physiological status (heartbeat, pulse rate); the 
vehicle's operating condition; the in-vehicle environment; the driver’s driving aptitude or behavior 
(lane-keeping, speeding, anger, anxiety); and a combination of these.  

Ji et al. [4] predicted driver fatigue levels using a probabilistic model based on a visual cues model 
that included eyelid movement, gaze movement, and head motion. Kumar et al. [5] presented a 
methodology for driver drowsiness detection using tracking of the pupils’ motion. The driver is 
determined to be fatigued only if the eyes are closed for several consecutive frames within a specific 
time period; otherwise, the driver is blinking his or her eyes, and a diagnosis of fatigue would be false. 
A vision system is proposed by Yao et al. [6] to measure the driver’s vigilance level by integrating a 
number of facial parameters, including those of the eyes, mouth, and gaze. Lee et al. [7] proposed a 
system that uses two fixed cameras to capture images of the driver and the road, respectively. The 
images are then mapped to global coordinates to monitor the driver’s sight line. These systems require 
extra cameras to be installed to capture driver facial images. Our proposed system utilizes the 
smartphone front camera without any vehicle modification, especially power wiring or external 
cameras, to perform eye detection task. 

On the other hand, Kecklund et al. [8] stated that recorded EEG signals demonstrate a significant 
intra-individual correlation between subjective sleepiness and alpha burst activity. Lin et al. [9] 
proposed a real-time brain-computer interface (BCI) system to monitor human physiological and 
cognitive states by analyzing EEG signals. They demonstrated that the amplitude of an EEG peak value, 
which is estimated by a drowsiness detection system, may predict a driving error. Wang et al. [10] 
proposed a latent variable to represent the attributes of individual drivers to recognize their emotional 
state using four sensors, specifically, respiration, blood pressure, skin conductance and temperature 
sensors. Yang et al. [11] used a first order Hidden Markov Model (HMM) to compute the dynamics of 
a Bayesian Network (BN) for compiling information to infer the level of driver fatigue by analyzing 
multiple physiological characteristics, such as ECG and EEG signals. In order to measure EEG signals, 
sensors must be placed at the forehead or other parts around the brain. In [29], the ECG electrodes are 
placed at the driver seat and measurements are carried out when the driver’s back side is in contact 
with the electrodes, but ECG signals can’t be measured if the driver seat cloth is too thick as the 
contact distance between body and electrodes is increased. Meanwhile, Yang et al. [30] integrated the 
sensors in a wearable shirt to measure ECG signals. Most drivers are not willing to wear such shirts 
during driving as it may feel uncomfortable and most importantly the shirt is difficult to clean and 
wash. Our proposed system avoids such limitations by integrating the circuit on the steering wheel. 
ECG signals are measured from fabric electrode when hands are placed on the fabric.  
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Zhao et al. [12] studied the reliability of steering behavior analysis for detecting driver fatigue by 
applying a support vector machine (SVM) model using a multi-wavelet packet energy spectrum. 
Pauwelussen et al. [13] developed a traffic-simulation model in which a vehicle is equipped with an 
adaptive cruise-control (ACC) and a lane-departure warning (LDW) system to monitor driver 
behaviors in real traffic environments. Wang et al. [14] introduced a dangerous-driving warning 
system that uses statistical modeling to mine the safe/dangerous driving patterns from time-series data 
with very limited labeling information. Although the labeling information is targeted only for 
accidents, the learned model is able to predict non-crash dangers, such as a near miss or other 
dangerous driving maneuvers. Moreover, Liang et al. [15] developed an in-vehicle system to detect 
driver distraction that applies SVMs, trained on all the data collected in simulator experiments. Three 
factors were investigated: how distraction can be defined; which data should be input to the model; and 
how the input data should be summarized. The above systems predict the driver vigilance index based 
on driving behavior and vehicle movement instead of driver actual condition in real-time. The alertness 
prediction is more accurate by analyzing on the driver facial features and biomedical signals. 

In addition, environmental factors, such as temperature, light, vibration, etc., are considered capable 
of influencing a driver’s drowsiness. Landstrom et al. [16] evaluated the efficiency of temperature 
variation measurements in a vehicle as an indication of the driver’s drowsiness. The application's 
results indicated that the chances of drowsy driving occurring can be greatly reduced by maintaining a 
cooler temperature in the vehicle. Li et al. [17] investigated the effect of an innovative cooling device 
that is intended to make subjects more alert and less sleepy, and found that induced temperature shifts 
may reduce the body’s capability to enter the sleep state. It is clear that most people cannot fall into a 
drowsy state when the atmosphere is frigid, and sleep symptoms are more likely in a warm atmosphere. 
Besides temperature, vehicle speed is also crucial for avoiding accidents. Moreno et al. [18] combined 
steering wheel movement data, acceleration and braking data, and speed of the vehicle for detecting 
that the driving pattern of a driver indicates drowsiness. The first results of the research were 
promising; however, Moreno concluded that more elaborate driving tests must be performed to 
evaluate and adjust the system for optimal performance. Dillies et al. [19] used a real-time fuzzy 
pattern recognition process implemented in a neural network whose input is signals from the steering 
wheel, a sensor that measures the speed of the car, and the accelerator. Briefly, the parameters of these 
external factors such as speed and temperature can contribute to predict the driver’s vigilance index 
and is well implemented in our proposed system. 

Even though existing drowsiness monitoring systems perform well, they have limitations in terms 
of their approach. For instance, methodology that uses facial features requires a long moving-averaged 
window to track slow changes in a driver’s vigilance. In the case of bio-signal processing, existing 
techniques require that sensors be attached to the human body to obtain vital signs. This could distract 
the driver and cause discomfort. Finally, in order to study driver-vehicle interaction, the vehicle's 
structure has to be modified, which is impractical and unwise in a real assessment. 

The focus and objective of this study was to develop a reliable, well-controlled and non-intrusive [31] 
drowsiness monitoring system that comprises the following aspects: (1) fusion of attributes or data that 
are obtained from sensory data to derive an accurate drowsiness prediction; (2) implementation of a 
multi-functional monitoring system in an Android-based smartphone device; (3) integration of a Fuzzy 
Bayesian network in a smartphone device to predict the driver’s aptitude and alertness state over time; 
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(4) a low-cost solution for capturing the driver’s image using the front-facing video sensor of a 
smartphone device; and (5) a reliable fake incoming call type alert system to warn and wake the driver 
without generating adverse effects on the driver. 

2. System Design  

This section describes the backbone of the system, which comprises several modules. Basically, 
these are: a facial features motion module; a bio-signals spectral analysis module; an inference 
paradigm framework module; a smartphone device module; and a fake call alert module. Figure 1 
illustrates an overview of the system design for the proposed system. Essentially, the smartphone 
device receives sensory data via biomedical sensors that are attached on the steering wheel, and also 
the driver’s facial images via the smartphone’s built-in front-facing camera. In addition, the system 
optimizes a built-in sensor to gather the required sensor readings. The three-axis accelerometer reading 
from a built-in accelerometer sensor can be used to measure the speed of the vehicle. Temperature data 
can be obtained via a humidity sensor, which is placed on the steering wheel so that the temperature 
can be measured as close as possible to the driver to obtain an optimal reading. An extraction process 
is performed to extract meaningful features from the received data; these features then serve as input 
models to an inference network to analyze the driver’s vigilance level. The network predicts the 
driver’s alertness state through a series of computations, and displays the computed results on the 
smartphone’s screen. An alert system is triggered if the statistical results indicate that the driver’s 
alertness is predicted to be low. 

Figure 1. System design overview consists of several modules where smartphone device 
receives data from ECG, PPG and humidity sensors that placed on the steering wheel. 
Driver facial image is captured via smartphone front camera and vehicle speed is 
calculated with built-in three-axis accelerometer. Alert system is triggered if prediction 
vigilance index reached over 75 (0 is lowest and 100 is highest). 

 

The extraction of sensory data is further explained in the following subsection. 
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2.1. Eyes Feature Extraction 

Feature extraction can be divided into two main processes: template-matching and color-based 
extraction. The template matching technique finds small parts of an image by matching it to a template 
image, while color information can be used to estimate the facial area that matches a certain skin color. 
The color-based approach is more suitable for application in a smartphone device because this 
approach does not require as large a database as template-matching does. In fact, the detection 
accuracy depends only on the type of skin color to be matched.  

The HSV [20], also known as HSI, color space is a good indicator for locating a facial area given an 
input image. H stands for hue and refers to the degree to which a stimulus can be described as similar 
to or different from other stimuli, which are red, green, blue, and yellow. S stands for saturation, which 
is the combination of the hue and lightness values, and V stands for value (I stands for intensity). In the 
Android platform, the image data buffer is encoded in YUV format. First, the YUV image is converted 
into the HSV color space. Once a converted HSV image has been obtained, its binary threshold is 
calculated based on its hue index, and the image is converted further into a black and white image, 
known as a binary image. The morphological close operation is performed to smooth the border areas, 
and any holes outside the large boundary areas are then removed. Based on the border that surrounds 
the black region, a facial region is extracted. Figure 2 shows an example of face and eyes detection 
based on the HSV color model. Once the binary threshold image is obtained, the regions of both eyes 
can be identified inside the white regions (with the boundary surrounded by the black region). 
Normally, both eyes are located on a vertical line. However, if two identical scenarios are found, such 
as eyebrows and eyes, as shown in Figure 2(b), the boundary that is located in the lower part of the 
facial region and is larger has a higher confidence level of being eyes. The proposed smartphone 
application is presented in landscape mode to avoid any distraction to the driver if smartphone is 
placed at the back of steering wheel. However, the smartphone can be placed at the left or right side 
near to steering wheel as long as the smartphone front camera is able to capture the driver face image.  

Figure 2. Eyes detection using the HRV color model approach. (a) Original face image 
captured by smartphone front video-sensor. (b) Converted binary threshold image. (c) The 
eyes location is indicated using the facial region; the eyes are located in the upper part and 
are vertically synchronized with each other, with an error tolerance of ±10 pixels.  
(d) Location of eyes in original image. 

 
(a) (b) 
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Figure 2. Cont. 

 
(c) (d) 

2.2. Bio-signal Feature Extraction 

The proposed system also indicates the driver’s fatigue level, using electrocardiography (ECG) and 
photoplethysmography (PPG) signals collected from an in-door driving simulation as its training set. 
The PPG signal system [21] is a non-invasive optical technique that measures changes in skin blood 
volume and perfusion. It contains components that are synchronous with respiratory and cardiac 
rhythms. This technique measures changes in skin blood using a light probe that is placed on the 
surface of the skin. Meanwhile, the ECG signal is the manifestation of the contractile activity of the 
heart, which is a valuable indicator of the individual’s overall activity level [22]. It is the recording of 
the electrical activity on the body surface generated by the heart. Figure 3 illustrates the waveform of 
PPG and ECG signals, respectively. 

Figure 3. Waveform of PPG and ECG signals in which ECG is the manifestation of heart 
contractile activity while PPG is signals that measure the changes in skin blood volume and 
perfusion. These signals are further extracted into useful parameters as inputs to inference 
network for vigilance prediction. 

 

2.3. Features Measurement Method  

The extracted features can be used further to predict the driver’s drowsiness level by observing the 
feature variation over time. The percentage of eyelid closure (PR) [23] over the pupil over time can 
reflect slow eyelid closure (“droops”) rather than blinks to predict driver drowsiness. Here, the 
duration of the eyelid closure refers to the percentage of eyelid closure over a specific time and has 
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P70, P80, EM three measurement methods. P80 refers to 80% of the largest pupil size and is 
considered the best indicator of a driver’s drowsiness. A fatigued driver should have longer eyelid 
closure duration, since he or she blinks distinctly more slowly than an alert driver. 

Another indicator is heart rate variability (HR). It is as a known physiological phenomenon that the 
time interval between heart beats varies. This indicator can be obtained by measuring the R wave to R 
wave (RR) interval of ECG signals. Another fatigue analysis indicator is blood pressure (BP), 
sometimes referred to as arterial blood pressure, which is the pressure exerted by circulating blood 
upon the walls of blood vessels, and is one of the principal vital signs. Hayashi et al. [24] studied 
ambulatory blood pressure for 24 hours in white-collar workers. They showed that subjects who 
worked a large amount of overtime (mean 84 hours/month) had higher blood pressure, slept fewer 
hours, and were more fatigued before and after work than subjects who worked a smaller amount of 
overtime (mean 26 hours/month), whose hypertension was only mild. It seems that the blood pressure 
can be used to infer the vigilance index of a driver. BP is calculated from PPG signals as defined in 
Equation (1): ࡼ࡮ ൌ ሺࢇ כ ሻࡼࡼ െ (1) ࢈

Here, ࡼࡼ is the interval between PPG peak and valley in a single cycle measured in a time unit. 
Meanwhile, ࢇ and ࢈ are the constant values calculated using a calibration method. Different people 
may exhibit different values, but for flexibility purposes, we used the mean values of ࢇ  and ࢈  , 
respectively, based on the training dataset. The calibration technique is outside the scope of this 
research; further details are given in [25]. 

As opposed to the values above, the temperature value is fed directly from the humidity sensor, no 
additional conversion or computation being required. In order to measure the speed (SP) of the vehicle, 
a smartphone built-in three-axis accelerometer is utilized. The calculation of speed in a km/h 
measurement unit is defined in Equation (2):  ࡼࡿതതതത ൌ ඥ࢙࢏࢞ࢇ_࢞૛ ൅ ૛࢙࢏࢞ࢇ_࢟ ൅ ૛࢙࢏࢞ࢇ_ࢠ ࡼࡿ  ൌ ሺࡼࡿതതതത െ ሻ࡯ כ ૜. ૟  

(2)

where ࡼࡿതതതത is the non-calibrated speed value, while ࢙࢏࢞ࢇ_࢟ ,࢙࢏࢞ࢇ_࢞ and ࢙࢏࢞ࢇ_ࢠ is the reading of the 
accelerometer for the x, y and z axis, respectively. ࡯ is the standard gravity value of 1 g or can be 
defined precisely as 9.80665 m/s2, or about 35.30394 (km/h)/s. 

3. Fuzzy Bayesian Network 

The proposed Fuzzy Bayesian network (FBN) is a Bayesian network, the variables of which have 
fuzzy states. A Bayesian network [26] is a directed acyclic graph (DAG) that represents a joint 
probability distribution among a set of variables. Nodes are the variables and the connected links 
among the nodes are the conditional dependencies among variables. Each node is associated with a 
probability function that takes a particular set of values as inputs for the node’s parent variables and 
gives the probability of the variable represented by node. Those dependencies are characterized by a 
conditional probability table (CPT). In order to set up a Bayesian network, the first step is to specify 
the nodes of the discrete network. The second step is to specify what features are used to represent the 
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discrete variables while the final step is to configure the initial states of variables for calculating the 
Bayesian network.  

The concept of fuzzy sets is used to aid the estimation of entropies (uncertainty). It provides a basis 
for a qualitative approach to the analysis of complex system that employs linguistic rather than 
numerical variables to describe system behavior and performance. The fuzzy rule expression is close to 
an expert natural language. A fuzzy system manages the uncertain knowledge and infers higher level 
of behavior from the observed data. Each fuzzy variable defines the membership degree [heart rate 
(HR), blood pressure (BP), temperature (TP), speed (SP) and PERCLOS (PR)] to output state, 
fatigue: as the value of fatigue closer to 1, the higher prediction of being drowsy, and vice versa. 

In a Bayesian network, although all the variables defined are discrete, most are genuinely 
continuous. According to the axioms of the probability theory, the discrete states of an originally 
continuous variable must be mutually exclusive and collectively exhaustive. Therefore, since the cut 
between two neighboring discrete states is often hard to define, it is difficult to quantize the mapping 
from the continuous value domain to the discrete state frame logically. FBN combines the fuzzy 
knowledge of a variable state with uncertainty. Finally, the integration of fuzzy logic and a Bayesian 
network can adapt the advantages of both representations. Further details of fuzzy logic and Bayesian 
network are presented in [26]. The indicator ࢟ can be defined as in Equation (3), where ࢞ is the total ࢔ 
members in fuzzy states, while ࢑ denotes the probability distribution of the respective members:  ࢟ ൌ ሼࢇ࢞૚, ,૛࢈࢞ ,૜ࢉ࢞ … , ሽ (3)࢔࢑࢞

Belief propagation in FBN is quite similar to that in a Bayesian network. In real-time analysis, the 
fuzzy values of input variables can be obtained through the membership functions. The five indicators, 
HR, BP, TP, SP and PR are the parent nodes of the output variable, fatigue in FBN. The integration of 
parent components can be measured using the Cartesian product in which the membership functions 
for each variable can be calculated using the product t-norm [27]. The fatigue can be calculated based 
on a conditional probability table (CPT) and fuzzy values, as shown in Equation (4), assuming that the 
fuzzy values of the four indicators have only true and false values: 

ࢋ࢛ࢍ࢏࢚ࢇࢌ ൌ ቌ෍ ࢖തതതതതതതതതതത࢓࢘࢕࢔_࢚ ൈ ࡸୀ࢖࢖തതതതത࢚࢖ࢉ
૚ , ෍ ࢖࢓࢘࢕࢔_࢚ ൈ ࡸୀ࢖࢖࢚࢖ࢉ

૚ ቍ  (4)

Here, ࡸ is the total number of possible combinations available, and ࢓࢘࢕࢔_࢚തതതതതതതതതതത and ࢚࢖ࢉതതതതത refer to the 
product t-norm and the CPT that denotes the false value, respectively. The fatigue is classified with 
three output states which are denoted as “safe”, “warning” and “dangerous”. Each fuzzy state has an 
FBN probability which define how high the possibility of the state being is. For instance, if state “safe” 
shows probability of 0.2, it denotes that this state has probability of 0.2 is being the current driver 
vigilance state. Therefore, the current driver vigilance state can be defined as the state that possesses 
the highest probability value. In summary, the calculation complexity of the FBN output probability 
depends on the number of fuzzy members in each membership function, as well as the number of 
elements (nodes) in the Bayesian network. 
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4. Experimental Setup 

Figure 4(a) depicts the installation of ECG, PPG and temperature sensor modules on a steering 
wheel, which are connected to an Atmega128 microprocessor with a Bluetooth module attached on it; 
the ECG, PPG and temperature data packets are transmitted to the smartphone device through a 
Bluetooth connection. The smartphone device used in our proposed system is the Samsung Galaxy S 
III (http://www.samsung.com/global/galaxys3; accessed on 17 September 2012). The experiments 
were simulation-based, where the smartphone device was placed behind the steering wheel, and the 3D 
driving simulation was displayed in front of the driving seat. 

Figure 4. (a) ECG, PPG and temperature sensor modules placed on a steering wheel where 
the sensor data are transmitted to the smartphone device via Bluetooth communication. 
PPG signals are measured by placing a finger on the sensor while ECG signals are 
measured by placing both hands on the electrode fabric (integrated on steering wheel). 
Infra-red lights array with a light dependent resistor (to detect light intensity) can be placed 
on the steering wheel or other regions to enable clear capture of facial images during night 
driving. (b) Experiment scenario for dataset collection and application testing with 3D 
driving simulation, a steering wheel for driving control and acceleration and brake pedals. 

  

 
(a) 
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Figure 4. Cont. 

 
(b) 

5. Results and Discussion 

The fatigue evaluation performed by the proposed FBN inference network is displayed in Table 1. 
The FBN inference results revealed a high rate of true awake state prediction for subject E, and an 
accurate and true drowsy state prediction for subjects D, F, and G, representing an approximately 99% 
accuracy rate. In contrast, the test subsets showed the lowest rate of true awake state prediction (94%) 
for subjects A and J, and the lowest rate of true drowsy state prediction (94%) for subjects A and B. 
The true awake or drowsy state predictions of the FBN, which represent an accuracy rate greater than 
95%, are considered satisfactory, whereas the other predictions, such as those for subjects A, B, and J 
are considered unsatisfactory. Even though the average rate of true predictions for either the awake or 
drowsy state was relatively high, the rate of false estimations was moderately high as well, being 
greater than 5% for subjects A, B, and J. Finally, the average rates of true awake state predictions and 
true drowsy state predictions were 96% and 97%, respectively. Despite these results, the results of the 
fatigue analysis using the FBN inference model are promising, since a higher complexity yielding a 
higher accuracy of the inference network might slow down the overall processing of the smartphone 
device, which is not appropriate for long-term use. 

In the process of fatigue prediction, a safety monitoring system must be able to notify a driver 
within a very short time period when a dangerous situation arises. Wakasugi [28] observed that drivers 
proceed to change lanes when the time before a collision would otherwise occur is at least six seconds. 
It was recognized that a lower threshold might be required if a driver returns to the lane very quickly 
following a warning. The overall system response time is approximately two seconds. However, an 
accident might already have occurred if the system issued the warning to the driver within two 
seconds. In this developed application, the change in the driver’s condition from non-partial sleep to 
partial sleep can be recognized in approximately 0.2 s. It is shown that for a fully awake subject, the 
FBN probabilities are maintained at an interval value between 0.30 and 0.54. If the probability interval 
value of the FBN increases to 0.60, it is considered that the driver is starting to get drowsy. The FBN 
probability at an interval value between 0.60 and 0.75 is defined as the threshold for signifying the 
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driver is in the partial-sleep condition, and the driver will be advised to rest. Once the probability has 
reached a value greater than 0.75, a warning service is triggered to alert the driver. 

Table 1. FBN inference network performances for ten subjects. 

Tester 
Total of Test 

Samples 
Total of True 

Prediction 
Total of False 

Prediction 
True (%) False (%) 

AW DW AW DW AW DW AW DW AW DW 
A 126 142 118 133 8 9 94% 94% 6% 6% 
B 182 155 176 146 6 9 97% 94% 3% 6% 
C 146 137 141 132 5 5 97% 96% 3% 4% 
D 167 166 161 164 6 2 96% 99% 4% 1% 
E 181 171 179 165 2 6 99% 96% 1% 4% 
F 157 166 150 164 7 2 96% 99% 4% 1% 
G 186 175 178 174 8 1 96% 99% 4% 1% 
H 153 149 148 145 5 4 97% 97% 3% 3% 
I 163 181 155 176 8 5 95% 97% 5% 3% 
J 144 173 135 165 9 8 94% 96% 6% 4% 

Total 1605 1615 1541 1564 64 51 96% 97% 4% 3% 
AW–awake samples, DW–drowsy samples. 

Table 2. Lane departure systems available on market. 
OEM System Technology (Video Camera) Trigger Speed Driver Alert 

Lexus LDW 
Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 
 Audio-visual 

Warning 

After 
Market SafeTRAC 

Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 
 

Visual Lane 
Position 
Display 

Mercedes SPA 
Mounted behind windscreen 
monitors coach position in 
relation to lane markings 

80 km/h 
(50 mile/h) 

Vibrating 
Driver’s Seat 

Nissan LDW 
Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 

72 km/h 
(45 mile/h) 

Dashboard 
Display & 
Audible 

Audi/ 
VW Lane Assist 

Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 

65 km/h 
(41 mile/h) 

Steering Wheel 
Vibration 

BMW LDW 
Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 

70 km/h 
(44 mile/h) 

Dashboard 
Display or 

Steering Wheel 
Vibration 

GM LDW 
Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 

56 km/h 
(35 mile/h) 

Audible & 
Visual 

Citroen LDWS Six pairs of infra-red sensors 
at front of car 

80 km/h 
(50 mile/h) 

Vibrating 
Driver’s Seat 

Volvo LDW 
Mounted behind windscreen 
monitors vehicle position in 

relation to lane markings 

64 km/h 
(40 mile/h) Audible 
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Table 2 summarizes the lane departure systems available in the market for different vehicle 
manufacturers. Almost all the lane warning systems employed similar methods by either mounting 
video cameras or infra-red sensors to detect lane markings on the road. Very little research has been 
published on the evaluation of lane change assistance systems in this field of expertise. This may be 
due to sensitivities surrounding advanced commercially produced systems. There may also be a 
reluctance to sponsor such research due to the difficulty in assessing in experiments whether the 
system has prevented a collision. At the present time, very few field tests or simulation studies on lane 
change assistance systems exist. Further research is required on the effects of lane change assistance 
and the potential for unintended consequences. 

Table 3. Overview of existing drowsiness detection system. 

System Sensors/Parameters Algorithm Accuracy 
[1] EEG, ECG Mean power frequency - 

PODS 
[3] 

Respiration Rate, Heart Rate,  
Heart Rate Variability 

Power Spectrum - 

[4] 
Cameras/Eyelid movement,  

gaze movement, gaze movement,  
head movement and facial expression 

Kalman filtering tracking 
Yawn–82% 

PERCLOS–86% 
AECS–95% 

[5] IR Camera Thresholding, Mean - 

[6] 
Camera/facial features of eyes,  

mouth and head 
Fuzzy reasoning 

Only focused on detection 
rate for facial tracking and 

face tracking rate 
BCI 
[9] 

EEG 
Principal Component Analysis 

(PCA) 
Training–92.6% 
Testing–74.6% 

[11] ECG, EEG 
dynamic Bayesian network,  

first-order Hidden Markov Model 
Drowsy (best)–91% 
Active (best)–91% 

IVIS 
[15] 

Eye movement,  
driving performance data 

Support Vector Machines (SVMs) 
Distraction detection 

(average)–81.1% 
Proposed 
System 

Smartphone (display and front camera), 
ECG, PPG 

Fuzzy Bayesian network 
True Awake–96% 
True Drowsy–97% 

Meanwhile, Table 3 illustrates the overview of existing drowsiness systems developed by researchers. 
Some researchers are focusing on identifying the regions in which fatigue or drowsiness may occur but 
are less concentrated on identification of performances in the long term. Others, such as [4] 
demonstrated the system performance based on each defined parameter, but did not combine them to 
develop a trustful fatigue detections system. Therefore, the proposed system has greater advantages 
than do the existing systems in various aspects. First, the proposed system is not easily affected by 
external factors. For instance, in the above systems, the infrared sensors or cameras are not able to 
detect lane markings reliably and correctly under heavy rain conditions. Moreover, these systems also 
performed badly when the road was covered with thick snow or mud. In addition, so the sensors or 
cameras can be mounted, vehicle structure modifications, especially in terms of electrical wiring, is 
essential. These extra tools and accessories are usually expensive and most drivers have no intention of 
spending extra money on such modifications. Furthermore, the smartphone applications are much 
more easily updated than hardware (sensors) of a vehicle due to their different life cycle and lifespan. 
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Extra efforts are required to change or replace sensors in the vehicle if a sensor integration inside the 
vehicle approach is being adopted. The commercial products are focused basically on the driving 
behavior instead of the physical state of the driver. In addition, the lane marking evaluation system can 
be operated only at speeds of between 60 and 250 km/h and only after the system had detected a lane 
marking. In summary, the proposed developed system is not constrained by the limitations mentioned 
above and is able to perform comprehensive fatigue analysis.  

Figure 5. Application flowchart where the application first converts the sensors reading 
into useful parameters which serves as inputs to Fuzzy Bayesian network and the fake call 
service is triggered if predicted vigilance metric is over 75 (0 is lowest and 100 is highest). 

 

Figure 5 illustrates the flow chart for the application developed in a smartphone device. Firstly, the 
application received the ECG, PPG and temperature readings from the respective sensors. Then, 
features or parameters are derived including heart rate, blood pressure, temperature, speed and 
PERCLOS which are extracted from ECG, PPG, humidity readings, three-axis accelerometer values 
and driver facial image respectively. If the FBN has probability of over 0.75 (75%), fake call service is 
generated to warn the driver with ringtone and vibration enabled. 

Table 4 denotes the time computation for each processing in the developed application. The 
application spends longest times in the vigilance prediction process using FBN analysis network which 
is approximately 0.1 s. Each variable extraction takes around 0.01 s depending on the data buffer size. 
If the buffer contains less than fifteen data points, there is the likelihood that more than two peaks or 
valleys can be detected. The screen update is near to 0.05 s, while sensor reading and encoding 
conversion takes less than 0.001 s. The raw sensor readings are converted from a byte array to 
hexadecimal encoding and finally into decimal values. 
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Table 4. Application processing time. 

State Time (s) 
Sensors Reading and Encoding Conversion  0.001 
Eyes detection and PERCLOS calculation 0.050 
ECG R-R wave detection and heart rate derivation 0.010 
PPG peak-to-valley detection and blood pressure derivation 0.010 
Temperatures reading and speed derivation 0.020 
FBN analysis 0.100 
Update display screen 0.005 
Total 0.196 

Figure 6 demonstrates a few screenshots of the prototype system, which was developed on the 
Android platform. Figure 6(a) shows the main screen of the system that performs fatigue analysis in 
real-time, and Figure 6(b) shows the capability of our proposed system to perform face and eyes 
detection during night time with the integration of IR lights. Figure 6(e) shows the fake call generator’s 
main configuration screen, which allows the caller’s name and phone number, and messages for the 
text messaging service to be modified. 

Figure 6. Screenshots captured in a real Android-based smartphone device. (a) Main 
screen for safety monitoring application with real-time eyes detection, plotting of ECG and 
PPG signals, parameters update include heart rate, blood pressure, temperature, speed as 
well as vigilance evaluation. (b) Demonstrates the face and eyes detection at night using IR 
lights. (c) A map navigation service is included to aid the driver so that an additional GPS 
monitor for driving guidance is not required. (d) Bluetooth settings menu to connect to the 
sensor modules to receive sensor data. (e) Fake incoming call alert service to warn the 
driver if the evaluation metric has reached over 75%. 

(a) (b) 

(c) (d) 
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