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1 Estimating mean and dispersion parameters from real data

The mean and dispersion parameters that are used in the simulation of the synthetic data
sets are estimated from two real RNA-seq data sets available from the tweeDEseqCountData
R package and from http://bowtie-bio.sourceforge.net/recount/ [5], following the
methodology outlined by [12]. The Pickrell data set [8] contains RNA-seq data from 69
unrelated Nigerian individuals. The Cheung data set [4] contains RNA-seq data from
41 unrelated Caucasian individuals of European descent. Each data set was processed
individually according to the following description and in the end, the obtained mean and
dispersion estimates from the two data sets were merged to form the final set of mean-
dispersion pairs.

First, we removed all samples for which the library size was smaller than 2 million,
and all genes for which the average count across the samples was less than 1. Then, we
resampled the reads for each sample so that the library sizes for all samples were equal to
the smallest library size. For each gene, we then found maximum likelihood estimates of
the mean p, and the dispersion ¢4 from the resampled counts. The log-likelihood function
for N iid variables from a Negative Binomial distribution, given counts yi,...,yn, is (as in

[12])

N
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The maximum likelihood estimate (MLE) of y is first obtained as the average count for gene
g across all samples. Then, we estimate ¢, by numerically maximizing the log-likelihood
function using the observed values for the counts y1,...,yn.

Supplementary Figure 1 shows the estimates of u, and ¢, obtained from the two data
sets in different colors (most of the black dots, from the Pickrell data set, are hidden behind
the red ones, from the Cheung data set). We notice an excellent agreement between the
estimates from the two data sets, which justifies the merging. To generate the synthetic data
sets we then, for each gene, sample a pair (pq, ¢g) from those obtained by the estimation
described here.

To see how well some characteristics of the simulated data correspond to those of real
data, we compare the mean-variance relationship obtained for the Pickrell data to that for
normalized counts from one instance of simulation study B{ (Supplementary Figure 2(a)).
There is good agreement, suggesting that the generative data model fits well with reality.
We also compute the average count for each gene, and compare the distributions of these
between the real and synthetic data sets (Supplementary Figure 2(b)). Also here we note
a good agreement between the data sets.
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Supplementary Figure 1. The MLEs of the mean and dispersion pa-
rameters based on the Pickrell data set (black dots) and the Cheung data
set (red dots). The mean and dispersion parameters for the simulated
data sets are sampled from these pairs of values.
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Supplementary Figure 2. Comparison between real and synthetic
data. (a) Mean-variance relationship. (b) Average count distribution.



2 Effect of different parameter choices

In this section, we examine the effect of selecting different options for the input parameters
for edgeR and DESeq, and we also evaluate two additional transformations that can be
used to transform the counts before applying limma to find differentially expressed genes.

2.1 edgeR

In edgeR [9], the user is given the opportunity to select which method to use for normaliza-
tion of counts between samples (the available methods are TMM [10], RLE [1] and upper
quartile [3]). For two-group comparisons, the user can choose between performing an exact
test [11] and using a generalized linear model (GLM) based on the NB distribution [7]. For
more complex experimental designs, only the GLM option is available. Finally, the user
can decide how to estimate the dispersion parameter for each gene. There are three main
options, namely using a common dispersion estimate for all genes, computing a trended
estimate (allowing the dispersion to depend on the mean), or estimating a gene-wise dis-
persion. The gene-wise dispersion estimate is squeezed towards either the common estimate
or towards the trended estimate by means of a weighted likelihood procedure. Depending
on the test that is used for the differential expression analysis, the dispersion estimation is
performed in different ways. The so called qCML method [11] is used for the exact test,
but it is not applicable for the more general GLM, where instead the Cox-Reid estimator
is the default choice [7], although the "Pearson and ’deviance’ options are available as well.

In Supplementary Figure 3 we show the effect of choosing these parameters in different
ways, for simulation studies BJ and B$32, in terms of type I error rate (simulation study BY),
AUC and the true FDR and TPR when setting the significance threshold at a false discov-
ery rate of 0.05 (simulation study Bg%g’). Recall that for simulation study Bg%g, 1,250 genes
are truly DE, and the set of DE genes consists of both genes upregulated in S and genes
downregulated in Sy compared to S7. The parameter combination corresponding to the one
used in the main paper is the one denoted 'edgeR.exact. TMM.tagwise.movingave’. First, we
note that for these simulation settings, the choice of normalization method appears to have
little effect in all respects (compare the results for ’edgeR.exact. XXX.tagwise.movingave’
with XXX replaced by TMM, RLE and upper, respectively). We made the same obser-
vations for most of the other simulation settings as well, except when all DE genes were
upregulated in condition Sy compared to S; (i.e., simulation studies B{?*° and Bg°").
In these situations, the upper quartile normalization gave slightly worse results than the
TMM and RLE methods, in terms of higher FDR and lower TPR and AUC (Supplementary
Figures 4(a)-4(c)).

In Supplementary Figure 3(b), we further note that all parameter choices have only
minor effects on the ability to rank the truly DE genes before the truly non-DE ones (sum-
marized by the AUC). This was observed for almost all simulation studies, and the largest
deviation was found for simulation study B3’ (Supplementary Figure 4(a)). However, the
sets of genes called DE are quite different for different parameter values. As can be seen
in Supplementary Figures 3(a), 3(c) and 3(d), using a common dispersion estimate gives
the highest number of false positive findings and generally the lowest number of true pos-
itive findings. Seen over all simulation studies, the common dispersion estimate gives the



highest FDR in all cases except for simulation setting BE‘;OOO (i.e., when almost one third of

the genes are DE, and all are regulated in the same direction). Also, squeezing the tagwise
estimates towards a trended estimate generally gives better results than squeezing towards
a common estimate (the 'notrend’ option).

For the GLM option, the choice of tagwise dispersion estimation procedure ('deviance’
or ’CoxReid’) has no detectable influence on the results in any of our simulation studies.
Finally, from the results presented here it seems that the GLM approach finds somewhat
more significant genes (both true and false) than the exact test.
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2.2 DESeq

With DESeq [1], just as for edgeR, the user can choose whether to perform an exact test
(here referred to as 'mbinom’) or to use a GLM. Also here, there are opportunities for
selecting how the dispersion estimation is performed. As described in the main paper, the
dispersion parameters are obtained from the observed mean-variance relationship for the
genes in the data set. The user can choose whether to model this relationship parametrically
or by means of local regression. It is also possible to choose if the dispersion should be
estimated for each condition separately, if it should be estimated separately and then pooled
to a common estimate, or if the samples from all conditions should be pooled before the
estimation (the 'blind’ option). After the mean-variance relationship is modeled, the user
can also select if the final dispersion estimate for a gene should be the fitted value (fit’
below), the original estimate (regardless of the fitting, 'gene’ below) or the largest of the
two values (‘max’ below).

Supplementary Figure 5 shows the effect of selecting these parameters differently, in
simulation studies 38 and ngg’. The combination used in the main paper is the one
denoted 'DESeq.nbinom.pooled.max.local’. Clearly, as for edgeR, the parameter values
have only a marginal influence on the ability to rank truly DE genes before truly non-DE
genes (Supplementary Figure 5(b)). The same observation was made across all simulation
studies. However, the set of genes called differentially expressed is highly affected by the
different parameter choices. Overall, taking the conservative approach of selecting the
largest of the individual dispersion estimate and the fitted value naturally gives the lowest
numbers of differentially expressed genes (both true and false). The other choices (gene-
wise or fitted values) are generally too liberal and not able to control the false discovery
rate or the type I error satisfactorily for any simulation setting. As expected, the gene-wise
estimates are very poor for the smallest sample size, since it is very difficult to estimate
gene-wise dispersions accurately based on only few samples, without borrowing information
across genes. The performance when using the gene-wise dispersion estimates improves
considerably with increasing sample size.

The choice of parametric or local modeling of the mean-variance relationship appears
to have only a minor impact on the results. As for edgeR, the GLM approach seems to give
slightly more significantly differentially expressed genes (both true and false).
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Supplementary Figure 5. The effect of varying parameter values on
the results obtained by DESeq, for simulation studies B8 and ngg.
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2.3 Transformations

In the main paper, we studied two variance-stabilizing transformations that were specifically
developed for RNA-seq data. Here, we compare the performance of these methods to
two other transformations. First, we consider the log-transformation, more precisely we
transform the count for gene g in sample s by

Ygs +0.5 6
1 =10 1
e toe (255 .

where n f; is the TMM normalization factor and My is the library size for sample s. This is
the same transformation as is used by voom, but as we noted in the main article, voom pro-
ceeds by estimating gene weights from the mean-variance relationship for the transformed
data, and uses these weights during the differential expression analysis with limma. We
also consider replacing the log in equation (1) by a square root transformation.

Supplementary Figure 6 summarizes the results for the four different transformations,
for simulation studies Bg and Bg%g . Generally, the results are quite similar, the largest
deviation being between the square root transformation and the other three, for small
sample sizes. All transformations manage to control the FDR at least close to the desired
level, but lacks power to detect differentially expressed genes for the smallest sample size.
In the present example, the extra gene weight estimation provided by voom appears to
provide the biggest advantage over only the log-transformation for the medium sample
sizes, in terms of higher true positive rate and slightly lower false discovery rate. For large
sample sizes, the performances of voom and the log-transformation were more similar. The
same observation can be done in general for most simulation studies.
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Supplementary Figure 6. The effect of varying parameter values on

the results obtained by different transformations, combined with limma,

simulation studies Bj and Bgs:.

(a) Observed type I error rate at a

(b) Area

nominal p-value threshold of 0.05, for simulation study Bg.

under the ROC curve (AUC) for simulation study BS%:. (c) True FDR
for a significance threshold put at an adjusted p-value of 0.05, for simu-

lation study ngg’. (d) True positive rate for a significance threshold put

at an adjusted p-value of 0.05, for simulation study BS32.
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3 Analysis of the Blekhman data set

This data set [2] contains RNA-seq counts from liver samples from three men and three
women. It was downloaded from bowtie-bio.sourceforge.net/recount/. After filtering
out genes with less than 10 counts in total across all samples, the data set contains 8,031
genes. We applied the different methods, with the same parameter choices as in the main
article, and recorded for each of them the set of DE genes found at an FDR threshold of 0.05,
when contrasting the expression levels among men and women. Only four of the methods,
namely TSPM, NBPSeq, EBSeq and edgeR, found any DE genes at all (Supplementary
Figure 7). Also for these four methods, the number of DE genes at the imposed significance
threshold was very low. Comparing the sets of DE genes, we noted that 122 of the 127
DE genes found by TSPM were not shared by any of the other methods. Similarly, 34 of
the 48 DE genes found by EBSeq were unique to this method. On the other hand, the
15 DE genes found by edgeR formed a subset of the 57 DE genes found by NBPSeq. No
gene was found to be DE by all four methods. Comparing to the within-group comparison
for the Bottomly data set in the main article we note the same pattern in this data set,
which suggests that the DE genes found by the four methods in the Blekhman data set

may actually be false positives.

edgeR EBSeq

120 —
NBPSeq
100 —

80

60 o

Number of significant genes

40 4

20

ShrinkSeq
edgeR
EBSeq

NBPSeq
TSPM

(a) (b)
Supplementary Figure 7. The number of DE genes found by the

different methods for the Blekhman data set (panel (a)) and the overlap
between the sets of DE genes found by the methods (panel (b)).
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4 Analysis of the Hammer data set

This data set [6] contains RNA-seq counts from four rats with chronic neuropathic pain
and four control rats. It was downloaded from bowtie-bio.sourceforge.net/recount/.
After filtering out genes with less than 10 counts in total across all samples, the data set
contains 14,228 genes. As above, we applied the different methods and recorded the set of
genes that were found to be differentially expressed between controls and rats with chronic
neuropathic pain for each of the methods. The results are shown in Supplementary Fig-
ure 8. Supplementary Figure 8(a) shows that ShrinkSeq and SAMseq found the highest
number of DE genes, while baySeq and EBSeq found the smallest numbers. Supplementary
Figures 8(b)-8(d) show the overlap between the sets of DE genes found by the different
methods, for four methods at a time to increase the interpretability. Supplementary Fig-
ure 8(b) compares four of the methods that are based on a NB model (edgeR, DESeq,
NBPSeq and baySeq). Among these methods, the sets of DE genes formed almost a nested
sequence, where most of the DE genes found by a method returning a lower number of DE
genes were found also by the methods returning more DE genes. Supplementary Figure 8(c)
compares four of the remaining methods. We did not see the same nested structure for these
methods, mainly since TSPM found a set of DE genes that were not shared by any of the
other methods. Finally, Supplementary Figure 8(d) compares baySeq and EBSeq to the
two transformation-based methods. Supplementary Table 1 shows the overlap between the
sets of called DE genes for each pair of methods.

Supplementary Table 1. The overlap between the sets of called DE
genes for each pair of methods in the Hammer data set. The diagonal
elements, indicating the number of DE genes found by each method, are
highlighted in bold.

ShrinkSeq DESeq edgeR NBPSeq TSPM voom vst baySeq EBSeq SAMseq
ShrinkSeq 10361 6134 6873 7453 6064 6952 5792 4491 4131 9183
DESeq 6134 6153 6149 6121 4689 6150 5373 4446 3371 6153
edgeR 6873 6149 6895 6811 5072 6825 5534 4500 3797 6890
NBPSeq 7453 6121 6811 7478 5409 6874 5594 4499 3937 7392
TSPM 6064 4689 5072 5409 6118 5087 4402 3355 2143 6095
voom 6952 6150 6825 6874 5087 6982 5506 4501 3843 6955
vst 5792 5373 5534 5594 4402 5506 5817 4445 3105 5803
baySeq 4491 4446 4500 4499 3355 4501 4445 4501 2808 4500
EBSeq 4131 3371 3797 3937 2143 3843 3105 2808 4164 4039
SAMseq 9183 6153 6890 7392 6095 6955 5803 4500 4039 9403
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the sets of DE genes found by different subsets of the compared methods.
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5 Simulations with 3 samples/condition

In the main article, we present results for simulated data with 2, 5, and 10 samples per
condition. These values were chosen to represent a large variety of different experiments and
to compare the methods under different settings. However, in real RNA-seq experiments
the choice is often still between having two or three replicates per condition, and for this
reason we show here some comparisons of the methods also for 3 samples per condition,
and relate them to the results for 2 and 5 samples per condition.

In Figure 9 we show the type I error rate for simulation study 38 , at a nominal p-value
threshold of 0.05. The TSPM method is most clearly affected by changing sample size, with
a noticeable drop in error rate between 2 and 3 samples per condition.

Figure 10 shows the AUC (top left panel), representative false discovery curves (top right
panel) and the true FDR (bottom left panel) and TPR (bottom right panel) for simulation
study Bg%g’. Figure 11 shows the corresponding figures for simulation study Bgooo. We can
see that already when the number of samples per condition is increased from 2 to 3, the
FDR of most methods decrease noticeably, and the transformation-based methods (voom
and vst) are able to detect differentially expressed genes. The non-parametric SAMseq
method, however, requires more than 3 samples to be able to call differentially expressed
genes at the imposed FDR cutoff.

Type | error rate at p_nom < 0.05, Bg

0.20

0.15

&

=
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0.00 |
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Supplementary Figure 9. The type I error rate for simulation study
BY at a nominal p-value threshold of 0.05, for 2, 3, and 5 samples per
condition, respectively.
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6 Simulations with unequal dispersion across conditions

In the simulation results shown in the main article, we simulated the data using the same
value for the dispersion (¢) in both compared conditions. In this section, we evaluate how
the results are affected by having unequal dispersions in the two conditions. To generate
data for these comparisons, we again make use of the mean-dispersion relationship estimated
from real data (Supplementary Figure 1). As before, we draw the mean and dispersion
parameter from condition S7 from the estimated pairs. After computing the value of Ayg,,
we then draw a corresponding value for ¢4, among the estimated dispersions in all pairs
with a mean value similar to Ags,. Hence, if gene g is not differentially expressed (so that
AgS1 = Ags,) we draw a dispersion value for gene g in condition S among the dispersion
estimates for genes with mean count close to Ayg,. If gene g is upregulated in Sp compared
to S1, the dispersion will be drawn from a distribution which is somewhat shifted towards
lower values, since the mean is higher. We will denote the simulation studies thus obtained
by B(A¢).

Figure 12 shows the type I error for simulation study B (Agb)g, as well as the AUC and
the observed FDR and TPR for simulation study B(A¢)3z. Figure 13 shows representative
false discovery curves for simulation study B(A¢)%32, for 2, 5, and 10 samples per condition,
respectively. The results in Supplementary Figure 12 can be compared to Figure 3A (for the
type I error rate in simulation study BY), Figure 1B (AUC in simulation study Bg2?), Figure
4B (FDR in simulation study Bg32) and Supplementary Figure 22 (TPR for simulation
study Bg%g’). Similarly, the curves shown in Supplementary Figure 13 can be compared to
Supplementary Figure 18, Figure 2B and Supplementary Figure 19. In general, the non-
equal dispersions did not have a very large effect on the rankings of the genes. baySeq
seemed to be somewhat negatively affected, and the transformation-based methods as well,
while NOISeq appeared to be least affected. Larger effects were seen for the observed false
discovery rates, where most methods performed worse when the dispersion differed between
the conditions. The least affected methods were edgeR, NBPSeq and EBSeq. Notably, the
FDR of voom+limma, vst-+limma, SAMseq and baySeq, as well as the type I error rate
of the transformation-based methods, increased considerably when the dispersions were
different in the two conditions.

In fact, two of the methods considered here (DESeq and baySeq) allow the user to tune
the parameters to obtain condition-specific dispersion estimates, which are then used in the
differential expression analysis. Supplementary Figures 14 and 15 compare the results of
using these settings to those obtained assuming that the dispersion is identical in the two
groups. For DESeq, using the condition-specific dispersion estimates provides an advantage
for the large sample sizes, but less so for very small sample sizes. Interestingly, using
the condition-specific dispersion estimates seemed to worsen the performance of baySeq,
especially for large sample sizes.
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observed FDR (c) and the observed TPR (d) for DESeq and bay-
Seq, with and without condition-specific dispersion estimates, in sim-

ulation studies B(A¢)Y and B(A¢)332.

Supplementary Figure 14.

The methods denoted 'DE-

Seq.nbinom.percond.max.local’ and ’baySeq.edgeR.NB.QL.diffdisp’ cor-

respond to those estimating condition-specific dispersion parameters.
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7 R commands

Here, we give the R commands that were used to run the differential expression analyses in
the main paper. For the analyses shown in the Supplementary Material, some parameter
values were changed as indicated in the text (see also the help pages for the respective
functions and packages). All analyses were performed with R version 2.15. We assume that
we have a count matrix, denoted count.matrix, with |G| rows (genes) and |S| columns
(samples). We also have a length-|S| vector class, which encodes the conditions of the |S|
samples, represented as 1 and 2, respectively.

7.1 edgeR

The edgeR package can be installed from Bioconductor. In the present paper, we used
version 2.7.11.

> library(edgeR)
> edgeR.dgelist
> edgeR.dgelist
> edgeR.dgelist = estimateCommonDisp(edgeR.dgelist)

> edgeR.dgelist = estimateTagwiseDisp(edgeR.dgelist, trend = "movingave')
>

>

>

DGEList (counts = count.matrix, group = factor(class))
calcNormFactors (edgeR.dgelist, method = "TMM")

edgeR.test = exactTest (edgeR.dgelist)
edgeR.pvalues = edgeR.test$table$PValue
edgeR.adjpvalues = p.adjust(edgeR.pvalues, method = "BH")

7.2 DESeq

The DESeq package can be installed from Bioconductor. In the present paper, we used
version 1.8.2.

> library(DESeq)

> DESeq.cds = newCountDataSet (countData = count.matrix,

+ conditions = factor(class))

> DESeq.cds = estimateSizeFactors(DESeq.cds)

> DESeq.cds = estimateDispersions(DESeq.cds, sharingMode = "maximum",
+ method = "pooled", fitType = "local")

> DESeq.test = nbinomTest(DESeq.cds, "1", "2")

> DESeq.pvalues = DESeq.test$pval

> DESeq.adjpvalues = p.adjust(DESeq.pvalues, method = "BH")

7.3 NBPSeq

The NBPSeq package can be installed from Bioconductor. In the present paper, we used
version 0.1.6.

> library(edgeR)
> library (NBPSeq)
> NBPSeq.dgelist = DGEList(counts = count.matrix, group = factor(class))
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NBPSeq.dgelist = calcNormFactors(NBPSeq.dgelist, method = "TMM")
NBPSeq.norm.factors = as.vector (NBPSeq.dgelist$samples$norm.factors)
NBPSeq.test = nbp.test(counts = count.matrix, grp.ids = class,
grpl = 1, grp2 = 2, norm.factors = NBPSeq.norm.factors,
method.disp = "NBP")
NBPSeq.pvalues = NBPSeq.test$p.values
NBPSeq.adjpvalues = NBPSeq.test$q.values

vV V. + + VvV Vv Vv

7.4 baySeq

The baySeq package can be installed from Bioconductor. In the present paper, we used
version 1.10.0.

> library(baySeq)

> baySeq.cd = new('"countData", data = count.matrix, replicates = class,
+ groups = list(NDE = rep(1, length(class)), DE = class))

> baySeq.cd@libsizes = getLibsizes(baySeq.cd, estimationType = "edgeR")
> baySeq.cd = getPriors.NB(baySeq.cd, samplesize = 5000,

+ equalDispersions = TRUE, estimation = "QL", ¢l = NULL)

> baySeq.cd = getLikelihoods.NB(baySeq.cd, prs = c(0.5,

+ 0.5), pET = "BIC", ¢l = NULL)

> baySeq.posteriors.DE = exp(baySeq.cd@posteriors) [, 2]

> baySeq.table = topCounts(baySeq.cd, group = "DE", FDR = 1)

> baySeq.FDR = baySeq.table$FDR[match(rownames (count.matrix),

+ rownames (baySeq.table))]

7.5 EBSeq

The EBSeq package can be downloaded from www.biostat.wisc.edu/ kendzior/EBSEQ/.
In the present paper, we used version 1.1.

library(EBSeq)
sizes = MedianNorm(count.matrix)
EBSeq.test = EBTest(Data = count.matrix, Conditions = factor(class),
sizeFactors = sizes, maxround = 10)
EBSeq.ppmat = GetPPMat (EBSeq.test)
EBSeq.probabilities.DE = EBSeq.ppmat[, "PPDE"]
EBSeq.1FDR = 1 - EBSeq.ppmat[, "PPDE"]
EBSeq.FDR = rep(NA, length(EBSeq.1FDR))
for (i in 1:length(EBSeq.l1FDR)) {
EBSeq.FDR[i] = mean(EBSeq.1FDR[which(EBSeq.l1FDR <=
EBSeq.1FDR[i])])

+ + + VVVVV + V VYV
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7.6 TSPM

The TSPM R script can be downloaded from http://www.stat.purdue.edu/ doerge/
software/TSPM.R. The version used in this paper was downloaded on May 4, 2012.

library(edgeR)
source ("TSPM.R")
TSPM.dgelist = DGEList(counts = count.matrix, group = factor(class))
TSPM.dgelist = calcNormFactors(TSPM.dgelist, method "TMM")
norm.lib.sizes = as.vector (TSPM.dgelist$samples$norm.factors) *
as.vector (TSPM.dgelist$samples$lib.size)
TSPM.test = TSPM(counts = count.matrix, x1 = factor(class),
x0 = rep(1, length(class)), lib.size = norm.lib.sizes)
TSPM.pvalues = TSPM.test$pvalues
TSPM.adjpvalues = TSPM.test$padj

VV + V + VVVVYyV

7.7 SAMseq

SAMseq is available from the samr package, which can be installed from CRAN. In the
present paper, we used version 2.0.

> library(samr)

> SAMseq.test = SAMseq(count.matrix, class,

+ resp.type = "Two class unpaired",

+ geneid = rownames (count.matrix), genenames = rownames (count.matrix),
+ nperms = 100, nresamp = 20, fdr.output = 1)

> SAMseq.result.table = rbind(SAMseq.test$siggenes.table$genes.up,

+ SAMseq.test$siggenes.table$genes.lo)

> SAMseq.score = rep(0, nrow(count.matrix))

> SAMseq.score[match(SAMseq.result.tablel[,

+ 1], rownames (count.matrix))] = as.numeric(SAMseq.result.tablel,
+ 31

> SAMseq.FDR = rep(1, nrow(count.matrix))

> SAMseq.FDR[match(SAMseq.result.tablel[,

+ 1], rownames(count.matrix))] = as.numeric(SAMseq.result.tablel,
+ 51)/100

7.8 NOISeq

The NOISeq R script can be downloaded from http://bioinfo.cipf.es/noiseq/doku.
php?id=downloads. The version used in this paper was downloaded on May 2, 2012.

> library(edgeR)

> source("noiseq.r")

> nf = calcNormFactors (count.matrix)

> libsizes = apply(count.matrix, 2, sum)

> common.libsize = prod(libsizes~(1/length(libsizes)))
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> normfactors = nf * libsizes/common.libsize

> norm.matrix = sweep(count.matrix, 2, normfactors, "/")

> NOISeq.test = noiseq(norm.matrix[, class == 1], norm.matrix[,

+ class == 2], repl = "bio", k = 0.5, norm = "n", long = 1000)
> NOISeq.probabilities = NOISeq.test$probab

7.9 voom-+limma

The voom transformation is available within the limma package. which can be downloaded
from Bioconductor. In the present paper, we used version 3.10.2.

> library(limma)

> nf = calcNormFactors(count.matrix, method = "TMM")

> voom.data = voom(count.matrix, design = model.matrix(“factor(class)),
+ lib.size = colSums(count.matrix) * nf)

> voom.data$genes = rownames (count.matrix)
>
>
>
>

voom.fitlimma = ImFit(voom.data, design = model.matrix("“factor(class)))
voom.fitbayes = eBayes(voom.fitlimma)

voom.pvalues = voom.fitbayes$p.valuel[, 2]

voom. adjpvalues = p.adjust(voom.pvalues, method = "BH")

7.10 vst+limma

The vst transformation is available within the DESeq package. In the present paper, we
used version 1.8.2 of the DESeq package and version 3.10.2 of limma.

library(DESeq)
library(limma)
DESeq.cds = newCountDataSet (countData = count.matrix,
conditions = factor(class))
DESeq.cds = estimateSizeFactors(DESeq.cds)
DESeq.cds = estimateDispersions(DESeq.cds, method = "blind",
fitType = "local")
DESeq.vst = getVarianceStabilizedData (DESeq.cds)
DESeq.vst.fitlimma = 1mFit(DESeq.vst, design = model.matrix(~factor(class)))
DESeq.vst.fitbayes = eBayes(DESeq.vst.fitlimma)
DESeq.vst.pvalues = DESeq.vst.fitbayes$p.value[, 2]
DESeq.vst.adjpvalues = p.adjust(DESeq.vst.pvalues, method = "BH")

V VVVYV + VYV + VvV VYV

7.11 ShrinkSeq

The ShrinkSeq is available as a function in the ShrinkBayes R package, which can be
downloaded from http://www.few.vu.nl/ "mavdwiel/ShrinkBayes.html. In this paper,
we used version 1.6.

> library(ShrinkBayes)
> library(edgeR)
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nf = calcNormFactors(count.matrix, method = "TMM") x*
colSums (count.matrix)/exp(mean(log(colSums (count.matrix))))
count.matrix = round(sweep(count.matrix, 2, nf, "/"))
group = factor(class)
form =y ~ 1 + group
ShrinkSeq.shrinkres = ShrinkSeq(form = form, dat = count.matrix,
shrinkfixed = "group", mixtdisp = FALSE, shrinkdisp = TRUE,

fams = "zinb", ncpus = 1)

ShrinkSeq.fitzinb = FitAllShrink(forms = form, dat = count.matrix,
fams = "zinb", shrinksimul = ShrinkSeq.shrinkres,
ncpus = 1)

ShrinkSeq.npprior = NonParaUpdatePrior(fitall = ShrinkSeq.fitzinb,
modus = "fixed", shrinkpara = "group", maxiter = 15,
ncpus = 1)

ShrinkSeq.nppostshr = NonParaUpdatePosterior (ShrinkSeq.fitzinb,
ShrinkSeq.npprior, ncpus = 1)
ShrinkSeq.lfdrless = SummaryWrap(ShrinkSeq.nppostshr,

thr = 0, direction = "lesser")
ShrinkSeq.lfdrgreat = SummaryWrap (ShrinkSeq.nppostshr,
thr = 0, direction = "greater")

ShrinkSeq.FDR = BFDR(ShrinkSeq.lfdrless, ShrinkSeq.lfdrgreat)

28



8 Computational time requirement

To estimate the computational time required to find DE genes with each of the evalu-
ated methods, we ran the code shown in the previous section to perform the differential
expression analysis for each method, and measured the required CPU time. The analy-
sis were performed on one instance of simulation study Bg%g for each sample size (2, 5,
and 10 samples per condition, respectively). The number of genes remaining after filter-
ing out those with fewer than 10 counts in total were, respectively, 12,068 (2 samples per
condition), 12,412 (5 samples per condition) and 12,490 (10 samples per condition). The
computational time for some methods depends heavily on parameter choices, such as the
number of iterations or resamplings and whether or not a cluster is used, and the resulting
estimates, presented in Supplementary Figure 16, therefore merely reflect the relative time
requirements between the methods with the parameter values set as in the present study.

The transformation-based methods (voom+limma and vst+limma) required the least
computational time, while baySeq and ShrinkSeq were by far the slowest with the current
settings. However, both these methods can be parallelized. The time requirements for
the non-parametric methods (SAMseq and NOISeq), as well as for EBSeq, were highly
dependent on the sample size. On the contrary, the computational times required for
edgeR, TSPM, ShrinkSeq and the transformation-based methods were largely unaffected
by varying the sample size within the range used in the present study.
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Supplementary Figure 16. CPU time required to run the differen-
tial expression analysis for each of the evaluated methods, for different
sample sizes. The evaluation was based on one instance of simulation
study Bg%g for each sample size. The code that was timed is given in
Section 7.
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9 Supplementary Figures

The following section contains supplementary figures referred to in the main article. We
use the same parameter values as in the main article. Supplementary Figure 17 shows
the results obtained for simulation study P(§2255. Letting the counts for some genes follow a
Poisson distribution rather than a Negative Binomial distribution increased the AUC and
TPR for all methods and decreased the FDR, most notably for TSPM and EBSeq.

Supplementary Figures 18 and 19 shows representative false discovery curves for all
methods, with 2 and 10 samples per condition, respectively, in different simulation studies.
These curves can be compared to Figure 2 in the main paper, where we show the results
for 5 samples per condition. It is clear from these figures that increasing the number of
samples leads to fewer false discoveries among the top-ranked genes.

Supplementary Figures 20 and 21 show representative p-value distributions for the six
methods returning nominal p-values, in all four simulation studies without any truly DE
genes. When we introduced outliers with abnormally high counts (simulation studies S
and Rg, Supplementary Figure 21), edgeR and NBPSeq were clearly becoming more lib-
eral (more low p-values) while DESeq was oppositely affected. TSPM experienced an en-
richment of p-values between 0.05 and 0.3, while the two transformation-based methods
(voom+limma and vst-+limma) were less affected. Letting the counts for half of the genes
follow a Poisson distribution (simulation study PY, Supplementary Figure 20(b)) depleted
the medium-sized p-values for the three methods relying on a NB distribution (edgeR, DE-
Seq and NBPSeq), but did not affect the fraction of p-values below 0.05 much. The p-value
distributions for the other three methods were only marginally affected.

In Supplementary Figure 22, we show the true positive rates (TPR) among the genes
with adjusted p-value below 0.05, for the different simulation studies. These figures should
be interpreted in conjunction with Figure 4 in the main article, which shows the corre-
sponding FDRs.

Supplementary Figure 23 shows MA-type plots for all genes in the Bottomly data set. To
generate the plots, the counts were first normalized using normalization factors computed
by the TMM method combined with the observed library sizes. We then added 0.5 to all
normalized counts and log-transformed the result. On the x-axis, we plotted the average of
the mean values in the two conditions, and on the y-axis we plotted the difference between
the same values. Hence, the x-axis depicts a measure of the overall expression level of the
genes, and the y-axis shows a measure of the level of differential expression between the two
conditions. The colored dots are the genes that are called DE by the respective methods.

In Supplementary Figures 24-28, we show the genes identified as DE by only one method
in the Bottomly data set. For methods identifying more than nine unique DE genes, only
nine are shown. Finally, in Supplementary Figure 29 we show the ranking scores obtained
for the Bottomly data set, by the eleven evaluated methods. We also include the rank
correlations between the ranking scores for each pair of methods.
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Supplementary Figure 19. False discovery curves for the evaluated
methods in different simulation studies, with 10 samples per condition.
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tained by the six methods returning nominal p-values, for data sets
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Supplementary Figure 21. Representative p-value distributions ob-
tained by the six methods returning nominal p-values, for data sets
generated according to simulation studies S (panel (a)) and R (panel
(b)) for 5 samples per condition.
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Supplementary Figure 22. Observed TPRs for the evaluated meth-
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Supplementary Figure 23. MA-type plots for the Bottomly data set,
depicting the expression level (on the x-axis) and the level of differential
expression between the two conditions (on the y-axis), with the genes
called DE by the different methods indicated with color.
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Supplementary Figure 24. The two DE genes found exclusively by
vst+limma, for the Bottomly data set.
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Supplementary Figure 25. Nine of the DE genes found exclusively
by NBPSeq, for the Bottomly data set.
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Supplementary Figure 26. The five DE genes found exclusively by
SAMseq, for the Bottomly data set.
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Supplementary Figure 27. Nine of the DE genes found exclusively
by TSPM, for the Bottomly data set.
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Supplementary Figure 28. Nine of the DE genes found exclusively
by ShrinkSeq, for the Bottomly data set.
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Supplementary Figure 29. Relationships between the gene ranking
scores obtained by the different methods for the Bottomly data set. The
numbers above the diagonal are the Spearman rank correlations.
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