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Review

Pulmonary fibrosis is a lung disease that is re-
fractory to treatment and carries a high mortal-
ity rate. It includes a heterogeneous group of 
lung disorders characterized by the progressive 
and irreversible destruction of lung architecture 
caused by scar formation that ultimately leads 
to organ malfunction, disruption of gas ex-
change, and death from respiratory failure. 
Idiopathic pulmonary fibrosis (IPF), a particu-
larly severe form of pulmonary fibrosis with 
unknown etiology has a life expectancy of 2–6 yr 
after diagnosis (Selman et al., 2001). Lung fi-
brosis can also develop after viral infections and 
after exposure to radiotherapy, chemotherapeu-
tic drugs, and aerosolized environmental toxins 
(Denham and Hauer-Jensen, 2002; Kelly et al., 
2002; Fubini and Hubbard, 2003; Chen and 
Stubbe, 2005). It also occurs in some bone mar-
row transplant recipients suffering from chronic 
graft versus host disease and in a subset of indi-
viduals with chronic inflammatory diseases like 
scleroderma and rheumatoid arthritis (Wolff  
et al., 2002; Young et al., 2007). Currently, the 
only effective treatment available for progres-
sive lung fibrosis is lung transplantation.

Repair of damaged tissues is a fundamental 
biological mechanism that allows the ordered 
replacement of dead or damaged cells after in-
jury, a process critically important for survival 
(Wynn, 2007). However, if this process becomes 
dysregulated, it can lead to the development of 
a permanent fibrotic “scar,” which is character-
ized by the excess accumulation of extracellular 
matrix (ECM) components (e.g., hyaluronic 

acid, fibronectin, proteoglycans, and interstitial 
collagens) at the site of tissue injury. Conse-
quently, fibrogenesis is often defined as an out 
of control wound healing response. Wound repair 
has four distinct stages that include a clotting/
coagulation phase, an inflammatory phase, a 
fibroblast migration/proliferation phase, and a 
final remodeling phase where normal tissue ar-
chitecture is restored (Fig. 1). In the earliest 
stages after tissue damage, epithelial cells and/or 
endothelial cells release inflammatory mediators 
that initiate an antifibrinolytic-coagulation cas-
cade that triggers clotting and development of 
a provisional ECM. Platelet aggregation and 
subsequent degranulation in turn promotes 
blood vessel dilation and increased permeabil-
ity, allowing efficient recruitment of inflam-
matory cells (e.g., neutrophils, macrophages, 
lymphocytes, and eosinophils) to the site of 
injury. Neutrophils are the most abundant in-
flammatory cell at the earliest stages of wound 
healing, but are quickly replaced by macro-
phages after neutrophil degranulation. During 
this initial leukocyte migration phase, acti-
vated macrophages and neutrophils debride 
the wound and eliminate any invading organ-
isms. They also produce a variety of cytokines 
and chemokines that amplify the inflamma-
tory response and trigger fibroblast proliferation 
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therapeutic options. Although research on the pathogenesis of pulmonary fibrosis has 
frequently focused on the mechanisms that regulate the proliferation, activation, and 
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cellular and molecular mechanisms of pulmonary fibrosis could help pave the way for 
effective therapeutics for this devastating and complex disease.
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in IPF (Demedts et al., 2005). An improved clinical, radio-
graphical, and histopathologic classification of the various 
forms and stages of pulmonary fibrosis and a more detailed 
understanding of the molecular mechanisms of fibrogenesis is 
needed so that therapies can be better tailored to specifically 
attack the underlying causes of the disease.

Although many forms of pulmonary fibrosis can be effec-
tively modeled and studied in rodents including drug (e.g., 
bleomycin), particulate-matter (e.g., asbestos and silica), radia-
tion, bronchiolitis obliterans, and chronic graft-versus-host–
induced pulmonary fibrosis, it remains unclear whether any 
of the experimental models truly duplicate the idiopathic 
form of the disease that is commonly seen in humans (Moore 
and Hogaboam, 2008). Nevertheless, many important ad-
vances have been generated from rodent models, which have 
been dominated by transgenic and knockout mice that dis-
play either enhanced or decreased susceptibility to pulmonary 
fibrosis. These important studies have greatly expanded our 
understanding of the mechanisms of pulmonary fibrosis and 
are a major focus of this review.

Whereas nearly two decades of research have suggested 
that TGF- plays a central role in the pathogenesis of pulmo-
nary fibrosis by promoting the activation, proliferation, and 
differentiation of epithelial cells and collagen-producing 
myofibroblasts (Border and Noble, 1994), little progress has 
been made in moving TGF- pathway inhibitors from the 
bench to the bedside (Kisseleva and Brenner, 2008). In fact, 
there are still currently no approved drugs that specifically 
target any proposed mechanism of pulmonary fibrosis. Over 
the past few years several novel antifibrotic strategies have 
been described that do not involve targeting the TGF- sig-
naling pathway directly (Fig. 2). This review will highlight 
some of these exciting discoveries and illustrate how these 

and recruitment. Myofibroblasts are recruited from a variety 
of sources including local mesenchymal cells, bone marrow 
progenitors (called fibrocytes), and via a process called epithelial–
mesenchymal transition (EMT), wherein epithelial cells trans-
differentiate into fibroblast-like cells. The overall importance 
of each fibroblast population, however, remains unclear. 
Once fibroblasts become activated, they transform into  
-smooth muscle actin–expressing myofibroblasts that secrete 
ECM components. Finally, in the wound maturation/remod-
eling phase, myofibroblasts promote wound contraction, a pro-
cess where the edges of the wound migrate toward the center 
and epithelial/endothelial cells divide and migrate over the 
temporary matrix to regenerate the damaged tissue. Fibrosis 
develops when the wound is severe, the tissue-damaging irri-
tant persists, or when the repair process becomes dysregulated. 
Thus, many stages in the wound repair process can go awry 
and contribute to scar formation, likely explaining the com-
plex nature of pulmonary fibrosis.

Although the relative importance of inflammation in the 
progression of pulmonary fibrosis has been debated, many 
forms of the disease are believed to be induced, at least ini-
tially, by a strong inflammatory response (Crystal et al., 2002). 
Although some types of pulmonary fibrosis maintain a signif-
icant inflammatory component throughout the course of the 
disease, other forms like IPF are often characterized as exhib-
iting highly progressive fibrotic disease in the absence of de-
tectable inflammation (Thannickal et al., 2004). In this case, it 
has been hypothesized that intrinsic defects in the wound 
healing response involving lung epithelial cells and fibroblasts 
contribute to the progression of fibrosis. The fact that an  
active inflammatory response is not a strict prerequisite likely 
explains why standard antiinflammatory therapies, including 
corticosteroids and cytotoxic agents have shown little efficacy 

Figure 1. Disruptions in normal wound healing contribute to the development of pulmonary fibrosis. Wound healing has four distinct stages: a 
clotting/coagulation phase (1), an inflammatory cell migration phase (2), a fibroblast migration/proliferation/activation phase (3), and a tissue remodeling 
and resolution phase (4). After lung injury, epithelial cells release inflammatory mediators that initiate an antifibrinolytic coagulation cascade, which trig-
gers platelet activation and blood clot formation. This is followed by entry of leukocytes (e.g., neutrophils, macrophages, and T cells). The recruited leuko-
cytes secrete profibrotic cytokines such as IL-1, TNF, IL-13, and TGF-. The activated macrophages and neutrophils also remove dead cells and eliminate 
any invading organisms. In the subsequent phase, fibrocytes from the bone marrow and resident fibroblasts proliferate and differentiate into myofibro-
blasts, which release ECM components. Fibroblasts and myofibroblasts may also be derived from epithelial cells undergoing EMT. In the final remodeling 
and resolution phase, activated myofibroblasts can promote wound repair, leading to wound contraction and restoration of blood vessels. However, fibro-
sis often develops if any stage in the tissue repair program is dysregulated or when the lung-damaging stimulus persists.
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proinflammatory cytokines and neutrophils can quickly 
evolve to a progressive fibrotic response (Kolb et al., 2001; 
Lappalainen et al., 2005). The IL-1 receptor antagonist damp-
ens the profibrotic effects of IL-1 (Ortiz et al., 2007), and 
studies with IL-1R1/, MyD88/, ASC/, Caspase-1/, 
and Nalp3/ mice have suggested that uric acid (induced 
by bleomycin), asbestos, and silica are detected by the Nalp3 
inflammasome in macrophages, leading to IL-1R1/MyD88 
signaling that is critical in the pathogenesis of particulate mat-
ter and bleomycin-driven fibrosis (Gasse et al., 2007, 2009; 
Cassel et al., 2008; Dostert et al., 2008).

IL-17A has also been implicated in the pathogenesis of 
pulmonary fibrosis (Langrish et al., 2005; Bettelli et al., 2006; 
Simonian et al., 2009; Wilson et al., 2010). IL-17A is increased 
in the bronchoalveolar lavage (BAL) fluid of patients with IPF 
(Wilson et al., 2010). IL-17A expression is associated with the 
persistent neutrophilia observed in a variety of lung disorders, 
including bacterial pneumonia and cystic fibrosis (Ye et al., 
2001; Decraene et al., 2010; Brodlie et al., 2011; Hsu et al., 
2011). Notably, recruitment of neutrophils to the BAL is an 
important predictor of early mortality in IPF patients (Kinder 
et al., 2008). IL-17A– and IL-17RA–dependent signaling are 
also important for the development of pulmonary fibrosis 
after exposure to bleomycin or Saccharopolyspora rectivirgula, a 
bacterium that causes hypersensitivity pneumonitis in rodent 
models (Simonian et al., 2009; Wilson et al., 2010). Detailed 
mechanistic studies in mice with bleomycin-induced fibrosis 
suggested that IL-23 and possibly IL-12 are important inducers 
of IL-17A–dependent fibrosis. Although  T cells are an 
important source of IL-17A, CD4+ T cells were identified 
as the dominant producer of IL-17A after bleomycin expo-
sure. Interestingly, IL-22 produced by  T cells protected 
mouse lungs from Bacillus subtilis–induced fibrosis, perhaps 
suggesting opposing roles for CD4+ Th17 cells and IL-22–
 expressing  T cells in the development of pulmonary fibro-
sis (Simonian et al., 
2010). Bleomycin-
induced IL-17A pro-
duction is also highly  

unique targets and approaches might be exploited to treat this 
highly heterogeneous and complex disease. It also emphasizes 
that although many important advances have been made over 
the past few years, a great deal of work is needed before we 
can fully integrate all of the pathways and mechanisms that 
regulate the pathogenesis of pulmonary fibrosis.

A role for proinflammatory mediators in pulmonary fibrosis
It seems clear that inflammatory mediators play a role in both 
the initiation and progression of some forms of pulmonary 
fibrosis (Bringardner et al., 2008). Surgical biopsies and serum 
samples from patients with idiopathic or systemic sclerosis- 
associated pulmonary fibrosis display elevated levels of TNF 
and mice that overexpress the cytokine in the lung develop 
progressive pulmonary fibrosis (Piguet et al., 1993; Miyazaki 
et al., 1995; Hasegawa et al., 1997). Macrophages and many 
other cell types produce TNF in the lung after exposure to 
silica, asbestos, and bleomycin (Piguet et al., 1990; Piguet and 
Vesin, 1994; Zhang et al., 1993). Clinical trials were recently 
initiated to investigate if TNF pathway inhibitors like Etaner-
cept might be beneficial in the treatment of IPF (Raghu et al., 
2008). However, although inhibitors of TNF have shown effi-
cacy in some pulmonary fibrosis models, because TNF can 
inhibit collagen synthesis in myofibroblasts, TNF antagonists 
might have the undesired effect of worsening the disease (Siwik 
et al., 2000). Indeed, TNF blockade exacerbated pulmonary 
fibrosis in rheumatoid arthritis patients taking methotrexate 
(Thavarajah et al., 2009). Therefore, it remains unclear if  TNF 
blockade will ultimately prove beneficial in IPF or other forms 
of pulmonary fibrosis.

Like TNF, IL-1 can induce acute lung injury and may 
contribute to the progression of pulmonary fibrosis (Kolb et al., 
2001). Interestingly, IL-1–induced fibrosis is associated with 
increased expression of TNF, suggesting that IL-1– and 
TNF–triggered fibrosis might be linked mechanistically. The 
neutrophil attracting CXC chemokines CXCL1 (KC) and 
CXCL2 (MIP-2) are also increased by IL-1, as are the 
profibrotic cytokines platelet-derived growth factor (PDGF) 
and TGF-1, illustrating how acute lung injury initiated by 

Figure 2. Proinflammatory and profi-
brotic mediators in the initiation and 
maintenance of fibrosis. Irritants like silica, 
asbestos, and bleomycin (uric acid) can injure 
lung epithelial cells and can be detected by 
the Nalp3 inflammasome in macrophages. 
These irritants stimulate the production of 
ROS, chemokines, and cytokines. These in-
flammatory mediators enhance the recruit-
ment and activation of leukocytes at the site 
of tissue injury. For example, IL-1 induces 
the activation of ROS-expressing neutrophils, 
which can further damage epithelial cells.  
IL-1 also promotes production of TGF-1, an 
important profibrotic cytokine that triggers 
fibroblast proliferation and activation. TGF- 
also targets epithelial cells, inducing EMT and 
the formation of ECM-producing myofibro-
blasts. TGF-1 further exacerbates the inflam-
matory response by stimulating the 
differentiation of Th17 cells. Interactive PPT 
slides for this figure are available online.
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activity, as prostaglandin F-2 , found in the BAL fluid of 
subjects with IPF, was shown to stimulate collagen produc-
tion in fibroblasts through a TGF-1–independent/PG(F) 
receptor–dependent mechanism (Oga et al., 2009). Never-
theless, these observations illustrate an important role  
for various mediators in inflammation-driven pulmonary  
fibrosis (Fig. 2).

Regulation by Th2 responses and IL-13
There is a great deal of evidence that CD4+ Th1 and Th2 cells 
play important roles during the inflammatory/maintenance 
phase of pulmonary fibrosis (Wynn, 2004). Indeed, cytokines 
associated with CD4+ Th1 and Th2 cells have exhibited con-
trasting activity in fibrogenesis (Wynn et al., 1995; Fig. 3). 
IFN- inhibits fibrosis, whereas the Th2-associated cytokines 
IL-4, IL-5, and IL-13 have been causally linked to the devel-
opment of fibrosis in a variety of chronic inflammatory 
diseases (Wynn, 2004). Transgenic mice that specifically over-
express IL-4 or IL-13 in the lung confirmed that both cyto-
kines function as profibrotic mediators by both directly and 
indirectly influencing the activation of myofibroblasts (Rankin 
et al., 1996; Zhu et al., 1999). IL-5 can also promote fibrosis 
in the lung by recruiting eosinophils that produce TGF-1, 
PDGF, and IL-13 (Huaux et al., 2003b; Cho et al., 2004; 
Fulkerson et al., 2006; Reiman et al., 2006). Nevertheless,  
detailed mechanistic studies conducted with IL-4 and IL-13 
inhibitors and il-4/, il13/, il-4ra/, and il13ra1/ mice 
suggest that the IL-13 signaling pathway likely serves as the 
dominant inducer of Th2-dependent fibrosis in several chronic 
lung diseases (Chiaramonte et al., 1999b; Kumar et al., 2002; 
Huaux et al., 2003a; Kolodsick et al., 2004; Yang et al., 2004; 
Lama et al., 2006; Keane et al., 2007; Ramalingam et al., 2008). 
IL-13 is detected in the BAL fluid of IPF patients, IPF fibroblasts 
are hyperresponsive to IL-13, and expression of both IL-13 

dependent on TGF-1 signaling, and recombinant IL-17A–
driven fibrosis is dependent on the downstream profibrotic 
activity of TGF-1, suggesting codependent roles for IL-17A 
and TGF-1 in the development of pulmonary fibrosis 
(Wilson et al., 2010).

Oxidative stress also perpetuates profibrotic inflammatory 
responses. Indeed, activation of the Nalp3 inflammasome and 
IL-1 secretion are largely driven by reactive oxygen species 
(ROS) derived by ROS-generating mitochondria (Naik and 
Dixit, 2011; Zhou et al., 2011) and NADPH oxidase (NOX) 
family members expressed in macrophages and neutrophils 
(Cassel et al., 2008; Dostert et al., 2008). NOX4 activity is 
induced in the lungs of mice after particle phagocytosis and 
promotes fibrogenesis in two distinct models of lung injury 
(Hecker et al., 2009). NOX4 is also increased in cases of human 
IPF. Mechanistically, NOX4 is required for TGF-1–induced 
myofibroblast differentiation, ECM synthesis, and fibro-
blast contractility.

In addition to directly promoting fibroblast activation, 
ROS, IL-1, and TNF can also promote fibrosis by increas-
ing expression of plasminogen activator inhibitor 1, which 
functions as a physiological inhibitor of the ECM degrad-
ing plasmin/plasminogen activator system that protects 
mouse lungs from fibrosis (Liu, 2008). The plasmin/plas-
minogen activation system also increases production of 
prostaglandin E2 and COX-2, which exhibit potent anti-
fibrotic activity in the lung (Park and Christman, 2006;  
Bauman et al., 2010). The antifibrotic mediator prostaglan-
din E2 is also induced in the lungs of mice deficient in cyto-
solic phospholipase A(2), suggesting that antagonists of 
cytosolic phospholipase A(2) might represent an additional 
strategy to treat fibrotic lung disease (Nagase et al., 2002; 
Peters-Golden et al., 2002; Wilborn et al., 1996). It is important 
to note, however, that not all prostaglandins exhibit antifibrotic 

Figure 3. Specialized subsets of T helper 
cells and macrophages play distinct roles in 
pulmonary fibrosis. After injury, epithelial cells 
release IL-25, IL-33, and TSLP, which can facili-
tate the development of profibrotic Th2 re-
sponses. T cells also release IL-21 and IL-25, 
which promote Th2 differentiation. Th2 cells 
release IL-4 and IL-13, which promote the devel-
opment of a profibrotic macrophage subpopula-
tion that secretes TGF-1 among other 
mediators. IL-13 can also directly activate fibro-
blasts independently of TGF-1. Th2 cytokines 
also trigger specific chemokines that promote 
the recruitment of collagen-secreting fibrocytes 
from the bone marrow, which amplify fibrotic 
responses. The resulting myofibroblasts release 
ECM components. However, Th2 cytokines can 
also trigger antifibrotic feedback mechanisms. 
For example, Th2 cytokines activate arginase-1 
activity in M2 macrophages, which inhibit fur-

ther IL-13 production and myofibroblast differentiation. IL-13 can also up-regulate the IL-13 decoy receptor in fibroblasts, which antagonizes ECM production via 
a negative feedback loop. In addition, IFN-, produced by Th1 cells, exhibits potent antifibrotic activity by suppressing collagen synthesis in fibroblasts and by 
promoting the activation of inflammatory M1 macrophages that favor ECM degradation. Interactive PPT slides for this figure are available online.
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by facilitating the recruitment of bone marrow–derived 
collagen–secreting fibrocytes to the lung (Phillips et al., 
2004; Moore et al., 2005, 2006). Signals through the chemo-
kine receptors CCR2, CXCR3, and CXCR2 also regulate 
fibrosis associated with bronchiolitis obliterans syndrome, by 
regulating vascular remodeling and recruitment of mononu-
clear phagocytes and neutrophils (Belperio et al., 2001, 2002b, 
2005). The lysophosphatidic acid receptor 1 also controls the 
recruitment of fibroblasts in mice with bleomycin-induced 
fibrosis and levels of lysophosphatidic acid are increased in the 
BAL fluid of people with IPF (Tager et al., 2008).

Interestingly, however, not all chemoattractants promote 
pulmonary fibrosis. CXCL10, CXCL11, and CXCR3 inhibit 
bleomycin-induced fibrosis by preventing fibroblast recruit-
ment, decreasing angiogenesis in the lung, and by promoting 
the production of the antifibrotic cytokine IFN-, respec-
tively (Jiang et al., 2004, 2010; Burdick et al., 2005). Thus, dis-
rupting and/or augmenting specific chemokine signaling 
pathways could have a significant impact on the progression 
of pulmonary fibrosis. Given the well-known redundancy in 
chemokine–chemokine receptor signaling, it will be impor-
tant to determine which forms and stages of pulmonary  
fibrosis might benefit from targeting these pathways.

Factors influencing epithelial cell and fibroblast 
differentiation and proliferation
Aberrant activation of developmental and wound-healing 
pathways also contributes to the pathogenesis of pulmonary 
fibrosis, particularly in IPF, where ongoing inflammation is 
believed to play less of a role. For example, the Wnt–-catenin 
signaling pathway, which regulates homeostatic self-renewal 
in several adult tissues, is constitutively active in ATII cells in 
both a mouse model of pulmonary fibrosis and in patients 
diagnosed with IPF (Chilosi et al., 2003; Königshoff et al., 
2008, 2009). Treatment with WNT1-inducible signaling pro-
tein-1 (WISP-1) promotes proliferation and EMT of mouse 
ATII cells and synthesis of ECM components by mouse 
and human lung fibroblasts. Development of pulmonary  
fibrosis in bleomycin-treated mice is reduced when the 
WNT1 pathway is blocked with WISP1-neutralizing anti-
bodies (Königshoff et al., 2009). Thus, as an inducer of EMT, 
WISP1 is a potential therapeutic target in IPF (Fig. 4; Thiery 
and Sleeman, 2006). The integrin 31, expressed on epithelial 
cells, is another important inducer of EMT. Therefore, the 
31 and Wnt–-catenin pathways both appear to be involved 
in the development of pulmonary fibrosis (Kim et al., 2009a).

Fibroblasts isolated from IPF patients also display consti-
tutive changes in their proliferative ability (Ramos et al., 
2001), fail to invade the ECM, and display altered expression 
of genes in matrix production and degradation (Lovgren  
et al., 2011), suggesting that intrinsic defects in the activation 
status of fibroblasts might contribute to the pathogenesis of 
pulmonary fibrosis. 1 integrin inhibits fibroblast prolifera-
tion when bound to polymerized type 1 collagen by facilitat-
ing the activation of the tumor suppressor phosphatase and 
tensin homologue (PTEN), which normally suppresses the 

and IL-13R1 correlate with the severity of the disease 
(Murray et al., 2008; Park et al., 2009).

Consequently, recent studies have focused on elucidating 
mechanisms that regulate IL-13 effector function. In addition 
to expressing an IL-13 signaling receptor, a heterodimer com-
posed of the IL-4R and IL-13R1 subunits, fibroblasts also 
express a decoy receptor for IL-13, IL-13R2 (Chiaramonte 
et al., 2003). The latter exhibits four orders of magnitude 
increased affinity for IL-13 (Lupardus et al., 2010) and sup-
presses IL-13-IL-13R1–induced responses, including pul-
monary fibrosis (Wilson et al., 2007; Ramalingam et al., 2008; 
Zheng et al., 2008). IL-21 produced by T cells, IL-33, and 
thymic stromal lymphopoietin (TSLP) released from dam-
aged epithelial cells, as well as IL-25 produced by both  
T cells and epithelial cells, also represent potential targets for 
antifibrotic therapy, as each of these cytokines has been re-
ported to play a major role in the induction and/or amplifica-
tion of type 2 immunity (Fort et al., 2001; Schmitz et al., 
2005; Zhou et al., 2005; Pesce et al., 2006). Nevertheless, al-
though IL-21 regulates liver fibrosis during S. mansoni infec-
tion (Pesce et al., 2006) and IL-33 is a major inducer of 
IL-13–dependent cutaneous fibrosis (Rankin et al., 2010), 
few studies have examined whether these “Th2-initiating  
cytokines” participate in the development of pulmonary fi-
brosis (Ramalingam et al., 2009). In addition to focusing on 
upstream mediators that regulate IL-13 production, several 
groups have also been elucidating the downstream mecha-
nisms that are targeted by IL-13. IL-1 (Ingram et al., 2004), 
TGF-1 (Lee et al., 2001), adenosine (Blackburn et al., 2003), 
chitinase family members (Zhu et al., 2004; Lee et al., 2009), 
chemokines (Belperio et al., 2002a; Zhu et al., 2002; Ma et al., 
2004), matrix metalloproteinases (Lanone et al., 2002; Madala 
et al., 2010) and various fibroblast subsets (Chiaramonte et al., 
1999a; Murray et al., 2008; Shao et al., 2008) are emerging as 
important targets of profibrotic IL-13. Together, these studies 
support recent efforts investigating the therapeutic potential 
of IL-13 antagonists in IPF and other chronic lung diseases 
(Hariyawasam et al., 2009).

Chemokines recruit leukocytes and fibroblasts to the lung
Chemokines are a large family of chemoattractants that re-
cruit leukocytes, fibroblast precursors, and other key effector 
cells to sites of tissue injury and therefore represent potential 
targets for antifibrotic therapy (Strieter et al., 2007). Serum 
levels of CCL18 correlate negatively with declining pulmo-
nary function in patients with pulmonary fibrosis of various 
causes, suggesting that CCL18 might be developed as a serum 
biomarker of progressive pulmonary fibrosis (Prasse et al., 2006; 
Prasse et al., 2009).

Blocking or genetically deleting CCL2 (monocyte-chemo-
attractant protein-1), CCL6 (C10), or CCR1 provides signifi-
cant protection from bleomycin-induced pulmonary fibrosis, 
albeit through mechanisms that remain undefined (Smith 
et al., 1994; Moore et al., 2001; Tokuda et al., 2000; Belperio 
et al., 2002a). CXCL12, CCL12, and CCR2 also play important 
roles in FITC- and bleomycin-induced pulmonary fibrosis 
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development of 
pulmonary fibro-
sis (Coward et al., 
2010). Interestingly, DNA methyltransferase inhibitors re-
versed epigenetic modifications and protected mice from 
pulmonary fibrosis (Sanders et al., 2008). Therefore, because 
epigenetic modifications are potentially reversible, they may 
represent attractive targets for novel antifibrotic therapies.

Additional potential therapeutic targets and strategies
Peroxisome proliferator-activated receptors (PPARs) , /, 
and  are ligand-activated transcription factors that belong 
to the nuclear hormone receptor family and important regu-
lators of metabolic and inflammatory processes (Kostadinova  
et al., 2005). The receptors are found on a wide variety of 
tissues in the lung, including airway epithelial cells and 
smooth muscle cells, and PPAR signaling has been impli-
cated in the pathogenesis of a wide variety of inflammatory 
diseases of the lung (Huang et al., 2005). Agonists of the three 
receptors suppress inflammation by inhibiting the production 
of proinflammatory cytokines, including IL-1 and TNF, 
and by reducing the influx of neutrophils into the lung. Some 
PPAR ligands also reduce the expression of Th2 cytokines, 
adhesion molecules, and chemokines that function as major 
drivers of pulmonary fibrosis (Sime, 2008). PPAR agonists 
reduce the development of bleomycin-induced pulmonary 
fibrosis, and mice deficient in PPAR develop exacerbated 
lung fibrosis associated with increased production of IL-1 
and TNF (Genovese et al., 2005b). PPAR/ agonists also 
inhibit lung fibroblast proliferation and enhance the anti-
fibrotic properties of PPAR agonists. PPAR agonists display 

PI3K–Akt–S6K1 signaling pathway (Xia et al., 2008). IPF  
fibroblasts evade this inhibitory mechanism by displaying a 
pathological pattern of 1 integrin expression that leads to 
low PTEN activity and uncontrolled activation of the PI3K–
AKT–S6K1 pathway (Fig. 4). In support of this theory, mice 
deficient in PTEN display a prolonged fibroproliferative re-
sponse after tissue injury (Xia et al., 2008). Loss of either 
-arrestin1 or -arrestin2 was shown to block fibroblast inva-
sion into the ECM and to protect mice from bleomycin- 
induced fibrosis (Lovgren et al., 2011). In contrast, mice 
deficient in the cationic amino acid transporter Slc7a2 ex-
hibit heightened fibroproliferative responses and increased  
Th2-cytokine–associated fibrosis (Thompson et al., 2008). 
Thus, intrinsic defects in fibroblast proliferative pathways  
can have a significant impact on the progression of pulmo-
nary fibrosis.

Epigenetic changes in fibroblasts have also been hypothe-
sized to contribute to the pathogenesis of fibrosis by prevent-
ing proliferating fibroblasts from returning to their resting 
state. A recent genome-wide methylation scan of fibroblasts 
revealed several DNA methylation modifications that were 
unique to collagen-secreting myofibroblasts obtained from fi-
brotic kidneys (Bechtel et al., 2010). One of these modifica-
tions led to the epigenetic silencing of Rasal1, a suppressor of 
the Ras protooncogene, which led to increased Ras activity 
and growth factor–independent proliferation of fibroblasts. 
This study was important because it provided a novel molec-
ular explanation for the sustained and heritable activation of 
fibroblasts that is often observed when fibrosis becomes  
advanced (Fig. 4). The targeted repression of known antifi-
brotic genes by hypermethylation may also contribute to the  

Figure 4. Intrinsic changes in the activation 
status of epithelial cells and fibroblasts can 
promote growth factor–independent pulmo-
nary fibrosis. Wnt–-catenin signaling activated 
(for example) by WISP-1, is constitutively active 
in some ATII epithelial cells in IPF patients and in 
mice with bleomycin-induced pulmonary fibrosis. 
This signaling triggers EMT and synthesis of ECM 
components by fibroblasts. In healthy fibroblasts, 
collagen-mediated stimulation of 1 integrin 
(blue) up-regulates PTEN activity and inhibits 
proliferation. IPF fibroblasts, however, display a 
pathological pattern of 1 integrin expression 
and signaling that can lead to decreased PTEN 
expression, aberrant activation of PI3 kinase, and 
excessive proliferation. Profibrotic mediators also 
promote epigenetic changes in fibroblasts that 
contribute to the pathogenesis of fibrosis. For 
example, the promoter regions of various genes 
encoding autocrine growth and/or differentiation 
factors can be demethylated, leading to their 
sustained and heritable activation. In addition, 
tumor suppressor genes can become methylated 
(red flag) and therefore inactivated, leading to 
the sustained activation of oncogenes that pro-
mote growth factor–independent proliferation of 
fibroblasts. miRNAs (e.g., miR-21) may operate in 
a similar fashion by blocking the translation or 
promoting the degradation of tumor suppressor 
genes in fibroblasts.
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(Iredale, 2007; Wynn and Barron, 2010). Studies conducted 
with CD11b-DTR mice showed that if macrophages were 
depleted during the early inflammatory/maintenance phase 
of a fibrotic response, scarring was reduced and myofibroblasts 
were decreased (Fig. 1). In contrast, if macrophages were de-
pleted during the late remodeling/recovery phase, fibrosis 
persisted (Duffield et al., 2005). This important study con-
firmed that macrophages could play distinct roles in the in-
flammatory and remodeling phases of wound healing and 
fibrosis. Macrophages inhibit fibrosis by secreting mediators 
that induce myofibroblast apoptosis, removing cellular debris 
that can drive inflammation, digesting and engulfing ECM 
components, and stimulating the production of collagen- 
degrading MMPs in a variety of cell types, including myo-
fibroblasts and neutrophils (Atabai et al., 2009; Wynn and 
Barron, 2010). Th2 cytokine-stimulated macrophages that 
express the enzyme arginase-1 also exhibit potent antifibrotic 
activity (Pesce et al., 2009). An important goal of future re-
search will be to determine if the pro- and antifibrotic  
activities of macrophages are performed by distinct subpopu-
lations or whether the same macrophage can adjust its pheno-
type over time in coordination with new stimuli found in the 
local environment. Harnessing the protective activity of anti-
fibrotic macrophages may be key to ameliorating established 
and progressive fibrosis, as restoration of normal tissue archi-
tecture can proceed only if the existing collagen matrix is 
successfully removed.

Conclusions and future perspectives
A variety of experimental models have been generated to 
study the mechanisms of pulmonary fibrosis (Moore and  
Hogaboam, 2008). However, the mouse bleomycin model 
has garnered the most attention, perhaps because it is a well- 
characterized and clinically relevant model of pulmonary 
fibrosis. Nevertheless, although it successfully models the 
early proinflammatory stages of the disease, because of the 
transient nature of the bleomycin response and the reversi-
bility of the fibrosis, it is unclear whether this model can 
truly replicate the chronic and progressive forms of the dis-
ease seen in humans. Epithelial damage, inflammation, EMT, 
myofibroblast activation, and repetitive cycles of tissue in-
jury are certainly important initiators of fibrosis. However, 
if we are to develop effective therapeutics for pulmonary fi-
brosis, a more detailed understanding of the complex envi-
ronmental, cellular, genetic, and epigenetic changes that 
synergize to promote the progression of chronic pulmonary 
fibrosis is needed. Inflammatory and profibrotic mediators 
likely serve as the trigger for the epigenetic modifications 
that are observed in epithelial cells, endothelial cells, and 
fibroblasts. Therefore, a more integrated approach that  
targets key inflammatory cytokines, profibrotic mediators, 
and epigenetic modifications simultaneously will likely 
emerge as the most successful strategy to treat this highly 
complex and devastating disease. As there are numerous 
causes, forms, and stages of pulmonary fibrosis, the hetero-
geneous nature of the disease must be considered when 

similar protective activity and inhibit TGF-1–driven myo-
fibroblast differentiation in vitro and the profibrotic activity 
of TGF-1 in vivo (Burgess et al., 2005; Genovese et al., 
2005a; Milam et al., 2008). Thus, in cases where pulmonary 
fibrosis is associated with a persistent proinflammatory re-
sponse, PPAR ligands may prove beneficial.

MicroRNAs (miRNAs) are small, evolutionarily conserved, 
noncoding RNAs 22 nt in length that play important  
roles in a variety of pathophysiologic processes by blocking 
the translation or promoting the degradation of specific target 
mRNAs. Unique miRNA expression patterns have been 
identified in a variety of lung disorders including COPD, em-
physema, cystic fibrosis, asthma, lung cancer, and IPF, suggest-
ing that distinct subsets of genes are targeted by microRNAs 
in each disease (Nana-Sinkam et al., 2009). Recently, miR-21 
was identified in the lungs of patients with IPF and in mice 
with bleomycin-induced pulmonary fibrosis (Liu et al., 2010). 
In agreement with related studies (Thum et al., 2008; Kim  
et al., 2009b), miR-21 production was primarily localized to 
myofibroblasts and expression was tightly controlled by the 
profibrotic cytokine TGF-1 (Liu et al., 2010). Administra-
tion of miR-21 antisense probes decreased the severity of 
bleomycin-induced fibrosis in mice and attenuated the pro-
fibrotic activity of TGF-1 in fibroblasts, confirming a critical 
role for miR-21 in lung fibrogenesis. Interestingly, miR-21 
targets several tumor suppressor genes and promotes tumor 
growth and invasion (Fig. 4), suggesting it can function as an 
oncogene (Meng et al., 2007; Zhu et al., 2007, 2008; Asangani 
et al., 2008). miR-21 also operates as antiapoptotic factor in 
tumor cells (Chan et al., 2005). Thus, aberrant expression of 
miR-21 in fibroblasts could promote their survival and 
differentiation into pathogenic collagen-secreting myofibro-
blasts. Therefore, small-molecule inhibitors of miR-21 might 
be developed to treat IPF. Identifying specific miRNAs that 
block profibrotic genes or promote lung regeneration could 
also prove highly beneficial in the treatment of pulmonary  
fibrosis (Pandit et al., 2010).

Disease stage-specific roles of macrophages
Macrophages are integrated into all stages of the fibrotic pro-
cess, perhaps because they serve as key regulators of fibroblast 
recruitment, proliferation, and activation (Wynn and Barron, 
2010). They promote fibrosis by secreting chemokines and 
specific matrix metalloproteinases that degrade ECM com-
ponents, thus facilitating the recruitment of inflammatory 
cells to sites of tissue injury (Zuo et al., 2002; Jiang et al., 
2005). They also produce several profibrotic mediators, in-
cluding TGF-1 and PDGF that induce the proliferation and 
activation of collagen-secreting myofibroblasts (Song et al., 
2000). Alveolar macrophages isolated from fibrotic lung 
tissues are also capable of producing profibrotic cytokines 
(Hancock et al., 1998; Ingram et al., 2004; Cassel et al., 2008; 
Wilson et al., 2010).

Nevertheless, although some macrophages clearly pro-
mote tissue fibrogenesis, other macrophage subpopulations 
may facilitate the resolution and/or reversal of fibrosis  



1346 Mechanisms of pulmonary fibrosis | Wynn

TGF-beta induced pulmonary myofibroblast differentiation and collagen 
production: implications for therapy of lung fibrosis. Am. J. Physiol. Lung 
Cell. Mol. Physiol. 288:L1146–L1153. doi:10.1152/ajplung.00383.2004

Cassel, S.L., S.C. Eisenbarth, S.S. Iyer, J.J. Sadler, O.R. Colegio, L.A. Tephly, 
A.B. Carter, P.B. Rothman, R.A. Flavell, and F.S. Sutterwala. 2008. The 
Nalp3 inflammasome is essential for the development of silicosis. Proc. 
Natl. Acad. Sci. USA. 105:9035–9040. doi:10.1073/pnas.0803933105

Chan, J.A., A.M. Krichevsky, and K.S. Kosik. 2005. MicroRNA-21 is an anti-
apoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 
doi:10.1158/0008-5472.CAN-05-0137

Chen, J., and J. Stubbe. 2005. Bleomycins: towards better therapeutics. Nat. 
Rev. Cancer. 5:102–112. doi:10.1038/nrc1547

Chiaramonte, M.G., D.D. Donaldson, A.W. Cheever, and T.A. Wynn. 1999a. 
An IL-13 inhibitor blocks the development of hepatic fibrosis dur-
ing a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 
104:777–785. doi:10.1172/JCI7325

Chiaramonte, M.G., L.R. Schopf, T.Y. Neben, A.W. Cheever, D.D. Donaldson, 
and T.A. Wynn. 1999b. IL-13 is a key regulatory cytokine for Th2 cell-
mediated pulmonary granuloma formation and IgE responses induced 
by Schistosoma mansoni eggs. J. Immunol. 162:920–930.

Chiaramonte, M.G., M. Mentink-Kane, B.A. Jacobson, A.W. Cheever, M.J. 
Whitters, M.E. Goad, A. Wong, M. Collins, D.D. Donaldson, M.J. Grusby, 
and T.A. Wynn. 2003. Regulation and function of the interleukin 13 
receptor 2 during a T helper cell type 2-dominant immune response.  
J. Exp. Med. 197:687–701. doi:10.1084/jem.20020903

Chilosi, M., V. Poletti, A. Zamò, M. Lestani, L. Montagna, P. Piccoli, S. Pedron, 
M. Bertaso, A. Scarpa, B. Murer, et al. 2003. Aberrant Wnt/beta-catenin 
pathway activation in idiopathic pulmonary fibrosis. Am. J. Pathol. 
162:1495–1502. doi:10.1016/S0002-9440(10)64282-4

Cho, J.Y., M. Miller, K.J. Baek, J.W. Han, J. Nayar, S.Y. Lee, K. McElwain, S. 
McElwain, S. Friedman, and D.H. Broide. 2004. Inhibition of airway 
remodeling in IL-5-deficient mice. J. Clin. Invest. 113:551–560.

Coward, W.R., K. Watts, C.A. Feghali-Bostwick, G. Jenkins, and L. Pang. 
2010. Repression of IP-10 by interactions between histone deacetylation 
and hypermethylation in idiopathic pulmonary fibrosis. Mol. Cell. Biol. 
30:2874–2886. doi:10.1128/MCB.01527-09

Crystal, R.G., P.B. Bitterman, B. Mossman, M.I. Schwarz, D. Sheppard, L. 
Almasy, H.A. Chapman, S.L. Friedman, T.E. King Jr., L.A. Leinwand, 
et al. 2002. Future research directions in idiopathic pulmonary fibrosis: 
summary of a National Heart, Lung, and Blood Institute working group. 
Am. J. Respir. Crit. Care Med. 166:236–246. doi:10.1164/rccm.2201069

Decraene, A., A. Willems-Widyastuti, A. Kasran, K. De Boeck, D.M. Bullens, 
and L.J. Dupont. 2010. Elevated expression of both mRNA and protein 
levels of IL-17A in sputum of stable cystic fibrosis patients. Respir. Res. 
11:177. doi:10.1186/1465-9921-11-177

Demedts, M., J. Behr, R. Buhl, U. Costabel, R. Dekhuijzen, H.M. Jansen, W. 
MacNee, M. Thomeer, B. Wallaert, F. Laurent, et al; IFIGENIA Study 
Group. 2005. High-dose acetylcysteine in idiopathic pulmonary fibrosis. 
N. Engl. J. Med. 353:2229–2242. doi:10.1056/NEJMoa042976

Denham, J.W., and M. Hauer-Jensen. 2002. The radiotherapeutic injury—a 
complex ‘wound’. Radiother. Oncol. 63:129–145. doi:10.1016/S0167- 
8140(02)00060-9

Dostert, C., V. Pétrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 
2008. Innate immune activation through Nalp3 inflammasome sensing of 
asbestos and silica. Science. 320:674–677. doi:10.1126/science.1156995

Duffield, J.S., S.J. Forbes, C.M. Constandinou, S. Clay, M. Partolina, S. 
Vuthoori, S. Wu, R. Lang, and J.P. Iredale. 2005. Selective depletion of 
macrophages reveals distinct, opposing roles during liver injury and re-
pair. J. Clin. Invest. 115:56–65.

Fort, M.M., J. Cheung, D. Yen, J. Li, S.M. Zurawski, S. Lo, S. Menon, T. 
Clifford, B. Hunte, R. Lesley, et al. 2001. IL-25 induces IL-4, IL-5, and 
IL-13 and Th2-associated pathologies in vivo. Immunity. 15:985–995. 
doi:10.1016/S1074-7613(01)00243-6

Fubini, B., and A. Hubbard. 2003. Reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) generation by silica in inflammation and fibrosis. 
Free Radic. Biol. Med. 34:1507–1516. doi:10.1016/S0891-5849(03)00149-7

Fulkerson, P.C., C.A. Fischetti, and M.E. Rothenberg. 2006. Eosinophils and 
CCR3 regulate interleukin-13 transgene-induced pulmonary remodel-
ing. Am. J. Pathol. 169:2117–2126. doi:10.2353/ajpath.2006.060617

evaluating the results from individual mouse models, and, 
most importantly, when designing and implementing novel 
treatment strategies.

I would like to sincerely thank the past and present members of my laboratory for 
their guidance and support. The Wynn laboratory is supported by the intramural 
research program of the National Institute of Allergy and Infectious Disease/
National Institutes of Health.

REFERENCES
Asangani, I.A., S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. 

Post, and H. Allgayer. 2008. MicroRNA-21 (miR-21) post-transcriptionally 
downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasa-
tion and metastasis in colorectal cancer. Oncogene. 27:2128–2136. doi:10 
.1038/sj.onc.1210856

Atabai, K., S. Jame, N. Azhar, A. Kuo, M. Lam, W. McKleroy, G. Dehart, S. 
Rahman, D.D. Xia, A.C. Melton, et al. 2009. Mfge8 diminishes the sever-
ity of tissue fibrosis in mice by binding and targeting collagen for uptake 
by macrophages. J. Clin. Invest. 119:3713–3722. doi:10.1172/JCI40053

Bauman, K.A., S.H. Wettlaufer, K. Okunishi, K.M. Vannella, J.S. Stoolman, 
S.K. Huang, A.J. Courey, E.S. White, C.M. Hogaboam, R.H. Simon, et al. 
2010. The antifibrotic effects of plasminogen activation occur via prosta-
glandin E2 synthesis in humans and mice. J. Clin. Invest. 120:1950–1960. 
doi:10.1172/JCI38369

Bechtel, W., S. McGoohan, E.M. Zeisberg, G.A. Müller, H. Kalbacher, D.J. 
Salant, C.A. Müller, R. Kalluri, and M. Zeisberg. 2010. Methylation de-
termines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 
16:544–550. doi:10.1038/nm.2135

Belperio, J.A., M.P. Keane, M.D. Burdick, J.P. Lynch III, Y.Y. Xue, A. Berlin, 
D.J. Ross, S.L. Kunkel, I.F. Charo, and R.M. Strieter. 2001. Critical role 
for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis 
obliterans syndrome. J. Clin. Invest. 108:547–556.

Belperio, J.A., M. Dy, M.D. Burdick, Y.Y. Xue, K. Li, J.A. Elias, and M.P. Keane. 
2002a. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-
induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 27:419–427.

Belperio, J.A., M.P. Keane, M.D. Burdick, J.P. Lynch III, Y.Y. Xue, K. Li, 
D.J. Ross, and R.M. Strieter. 2002b. Critical role for CXCR3 chemo-
kine biology in the pathogenesis of bronchiolitis obliterans syndrome.  
J. Immunol. 169:1037–1049.

Belperio, J.A., M.P. Keane, M.D. Burdick, B. Gomperts, Y.Y. Xue, K. Hong, J. 
Mestas, A. Ardehali, B. Mehrad, R. Saggar, et al. 2005. Role of CXCR2/
CXCR2 ligands in vascular remodeling during bronchiolitis obliterans 
syndrome. J. Clin. Invest. 115:1150–1162.

Bettelli, E., Y. Carrier, W. Gao, T. Korn, T.B. Strom, M. Oukka, H.L. Weiner, 
and V.K. Kuchroo. 2006. Reciprocal developmental pathways for the 
generation of pathogenic effector TH17 and regulatory T cells. Nature. 
441:235–238. doi:10.1038/nature04753

Blackburn, M.R., C.G. Lee, H.W. Young, Z. Zhu, J.L. Chunn, M.J. Kang, 
S.K. Banerjee, and J.A. Elias. 2003. Adenosine mediates IL-13-induced 
inflammation and remodeling in the lung and interacts in an IL-13- 
adenosine amplification pathway. J. Clin. Invest. 112:332–344.

Border, W.A., and N.A. Noble. 1994. Transforming growth factor beta in tis-
sue fibrosis. N. Engl. J. Med. 331:1286–1292. doi:10.1056/NEJM19941 
1103311907

Bringardner, B.D., C.P. Baran, T.D. Eubank, and C.B. Marsh. 2008. The role 
of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. 
Antioxid. Redox Signal. 10:287–301. doi:10.1089/ars.2007.1897

Brodlie, M., M.C. McKean, G.E. Johnson, A.E. Anderson, C.M. Hilkens, A.J. 
Fisher, P.A. Corris, J.L. Lordan, and C. Ward. 2011. Raised interleukin-
17 is immunolocalised to neutrophils in cystic fibrosis lung disease. Eur. 
Respir. J. 37:1378–1385. doi:10.1183/09031936.00067110

Burdick, M.D., L.A. Murray, M.P. Keane, Y.Y. Xue, D.A. Zisman, J.A. Belperio, 
and R.M. Strieter. 2005. CXCL11 attenuates bleomycin-induced pul-
monary fibrosis via inhibition of vascular remodeling. Am. J. Respir. Crit. 
Care Med. 171:261–268. doi:10.1164/rccm.200409-1164OC

Burgess, H.A., L.E. Daugherty, T.H. Thatcher, H.F. Lakatos, D.M. Ray, M. 
Redonnet, R.P. Phipps, and P.J. Sime. 2005. PPARgamma agonists inhibit 

dx.doi.org/10.1152/ajplung.00383.2004
dx.doi.org/10.1073/pnas.0803933105
dx.doi.org/10.1158/0008-5472.CAN-05-0137
dx.doi.org/10.1038/nrc1547
dx.doi.org/10.1172/JCI7325
dx.doi.org/10.1084/jem.20020903
dx.doi.org/10.1016/S0002-9440(10)64282-4
dx.doi.org/10.1128/MCB.01527-09
dx.doi.org/10.1164/rccm.2201069
dx.doi.org/10.1186/1465-9921-11-177
dx.doi.org/10.1056/NEJMoa042976
dx.doi.org/10.1016/S0167-8140(02)00060-9
dx.doi.org/10.1016/S0167-8140(02)00060-9
dx.doi.org/10.1126/science.1156995
dx.doi.org/10.1016/S1074-7613(01)00243-6
dx.doi.org/10.1016/S0891-5849(03)00149-7
dx.doi.org/10.2353/ajpath.2006.060617
dx.doi.org/10.1038/sj.onc.1210856
dx.doi.org/10.1038/sj.onc.1210856
dx.doi.org/10.1172/JCI40053
dx.doi.org/10.1172/JCI38369
dx.doi.org/10.1038/nm.2135
dx.doi.org/10.1038/nature04753
dx.doi.org/10.1056/NEJM199411103311907
dx.doi.org/10.1056/NEJM199411103311907
dx.doi.org/10.1089/ars.2007.1897
dx.doi.org/10.1183/09031936.00067110
dx.doi.org/10.1164/rccm.200409-1164OC


JEM Vol. 208, No. 7 1347

Review

Kelly, B.G., S.S. Lok, P.S. Hasleton, J.J. Egan, and J.P. Stewart. 2002. A rear-
ranged form of Epstein-Barr virus DNA is associated with idiopathic 
pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 166:510–513. doi:10 
.1164/rccm.2103058

Kim, K.K., Y. Wei, C. Szekeres, M.C. Kugler, P.J. Wolters, M.L. Hill, J.A.  
Frank, A.N. Brumwell, S.E. Wheeler, J.A. Kreidberg, and H.A. Chapman. 
2009a. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad 
signaling to promote myofibroblast formation and pulmonary fibrosis.  
J. Clin. Invest. 119:213–224.

Kim, Y.J., S.J. Hwang, Y.C. Bae, and J.S. Jung. 2009b. MiR-21 regulates adipo-
genic differentiation through the modulation of TGF-beta signaling in 
mesenchymal stem cells derived from human adipose tissue. Stem Cells. 
27:3093–3102.

Kinder, B.W., K.K. Brown, M.I. Schwarz, J.H. Ix, A. Kervitsky, and T.E. King 
Jr. 2008. Baseline BAL neutrophilia predicts early mortality in idiopathic 
pulmonary fibrosis. Chest. 133:226–232. doi:10.1378/chest.07-1948

Kisseleva, T., and D.A. Brenner. 2008. Mechanisms of fibrogenesis. Exp. Biol. 
Med. (Maywood). 233:109–122. doi:10.3181/0707-MR-190

Kolb, M., P.J. Margetts, D.C. Anthony, F. Pitossi, and J. Gauldie. 2001. 
Transient expression of IL-1beta induces acute lung injury and chronic 
repair leading to pulmonary fibrosis. J. Clin. Invest. 107:1529–1536. 
doi:10.1172/JCI12568

Kolodsick, J.E., G.B. Toews, C. Jakubzick, C. Hogaboam, T.A. Moore, A. 
McKenzie, C.A. Wilke, C.J. Chrisman, and B.B. Moore. 2004. Protection 
from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but 
not IL-4-deficient, mice results from impaired collagen synthesis by fi-
broblasts. J. Immunol. 172:4068–4076.

Königshoff, M., N. Balsara, E.M. Pfaff, M. Kramer, I. Chrobak, W. Seeger, 
and O. Eickelberg. 2008. Functional Wnt signaling is increased in idio-
pathic pulmonary fibrosis. PLoS ONE. 3:e2142. doi:10.1371/journal 
.pone.0002142

Königshoff, M., M. Kramer, N. Balsara, J. Wilhelm, O.V. Amarie, A. Jahn, F. 
Rose, L. Fink, W. Seeger, L. Schaefer, et al. 2009. WNT1-inducible signal-
ing protein-1 mediates pulmonary fibrosis in mice and is upregulated in 
humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119:772–787.

Kostadinova, R., W. Wahli, and L. Michalik. 2005. PPARs in diseases: con-
trol mechanisms of inflammation. Curr. Med. Chem. 12:2995–3009. 
doi:10.2174/092986705774462905

Kumar, R.K., C. Herbert, M. Yang, A.M. Koskinen, A.N. McKenzie, and P.S. 
Foster. 2002. Role of interleukin-13 in eosinophil accumulation and air-
way remodelling in a mouse model of chronic asthma. Clin. Exp. Allergy. 
32:1104–1111. doi:10.1046/j.1365-2222.2002.01420.x

Lama, V.N., H. Harada, L.N. Badri, A. Flint, C.M. Hogaboam, A. McKenzie, 
F.J. Martinez, G.B. Toews, B.B. Moore, and D.J. Pinsky. 2006. Obligatory 
role for interleukin-13 in obstructive lesion development in airway al-
lografts. Am. J. Pathol. 169:47–60. doi:10.2353/ajpath.2006.050975

Langrish, C.L., Y. Chen, W.M. Blumenschein, J. Mattson, B. Basham, J.D. 
Sedgwick, T. McClanahan, R.A. Kastelein, and D.J. Cua. 2005. IL-23 
drives a pathogenic T cell population that induces autoimmune inflam-
mation. J. Exp. Med. 201:233–240. doi:10.1084/jem.20041257

Lanone, S., T. Zheng, Z. Zhu, W. Liu, C.G. Lee, B. Ma, Q. Chen, R.J. Homer, 
J. Wang, L.A. Rabach, et al. 2002. Overlapping and enzyme-specific con-
tributions of matrix metalloproteinases-9 and -12 in IL-13-induced in-
flammation and remodeling. J. Clin. Invest. 110:463–474.

Lappalainen, U., J.A. Whitsett, S.E. Wert, J.W. Tichelaar, and K. Bry. 2005. 
Interleukin-1beta causes pulmonary inflammation, emphysema, and air-
way remodeling in the adult murine lung. Am. J. Respir. Cell Mol. Biol. 
32:311–318. doi:10.1165/rcmb.2004-0309OC

Lee, C.G., R.J. Homer, Z. Zhu, S. Lanone, X. Wang, V. Koteliansky, J.M. Shipley, 
P. Gotwals, P. Noble, Q. Chen, et al. 2001. Interleukin-13 induces tissue 
fibrosis by selectively stimulating and activating transforming growth factor 
beta(1). J. Exp. Med. 194:809–821. doi:10.1084/jem.194.6.809

Lee, C.G., D. Hartl, G.R. Lee, B. Koller, H. Matsuura, C.A. Da Silva, M.H. 
Sohn, L. Cohn, R.J. Homer, A.A. Kozhich, et al. 2009. Role of breast 
regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13- 
induced tissue responses and apoptosis. J. Exp. Med. 206:1149–1166. doi:10 
.1084/jem.20081271

Liu, R.M. 2008. Oxidative stress, plasminogen activator inhibitor 1, and lung 
fibrosis. Antioxid. Redox Signal. 10:303–319. doi:10.1089/ars.2007.1903

Gasse, P., C. Mary, I. Guenon, N. Noulin, S. Charron, S. Schnyder-Candrian, 
B. Schnyder, S. Akira, V.F. Quesniaux, V. Lagente, et al. 2007. IL-1R1/
MyD88 signaling and the inflammasome are essential in pulmonary in-
flammation and fibrosis in mice. J. Clin. Invest. 117:3786–3799.

Gasse, P., N. Riteau, S. Charron, S. Girre, L. Fick, V. Pétrilli, J. Tschopp, V. 
Lagente, V.F. Quesniaux, B. Ryffel, and I. Couillin. 2009. Uric acid is a 
danger signal activating NALP3 inflammasome in lung injury inflamma-
tion and fibrosis. Am. J. Respir. Crit. Care Med. 179:903–913. doi:10.1164/ 
rccm.200808-1274OC

Genovese, T., S. Cuzzocrea, R. Di Paola, E. Mazzon, C. Mastruzzo, P. Catalano, 
M. Sortino, N. Crimi, A.P. Caputi, C. Thiemermann, and C. Vancheri. 
2005a. Effect of rosiglitazone and 15-deoxy-Delta12,14-prostaglandin 
J2 on bleomycin-induced lung injury. Eur. Respir. J. 25:225–234. doi:10 
.1183/09031936.05.00049704

Genovese, T., E. Mazzon, R. Di Paola, C. Muia, C. Crisafulli, A.P. Caputi, and 
S. Cuzzocrea. 2005b. Role of endogenous and exogenous ligands for 
the peroxisome proliferator-activated receptor alpha in the development 
of bleomycin-induced lung injury. Shock. 24:547–555. doi:10.1097/01 
.shk.0000190825.28783.a4

Hancock, A., L. Armstrong, R. Gama, and A. Millar. 1998. Production of 
interleukin 13 by alveolar macrophages from normal and fibrotic lung. 
Am. J. Respir. Cell Mol. Biol. 18:60–65.

Hariyawasam, H.H., G.C. Nicholson, A.J. Tan, N. Syngal, D. Quinn, C. 
Boulton, C. Walker, D. Rodman, J. Westwick, O.M. Kon, et al. 2009. 
Effects of Anti-IL-13 (Novartis QAX576) on Inflammatory Responses 
Following Nasal Allergen Challenge (NAC). Am. J. Respir. Crit. Care 
Med. 179:A3642.

Hasegawa, M., M. Fujimoto, K. Kikuchi, and K. Takehara. 1997. Elevated  
serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: 
association with pulmonary fibrosis. J. Rheumatol. 24:663–665.

Hecker, L., R. Vittal, T. Jones, R. Jagirdar, T.R. Luckhardt, J.C. Horowitz, S. 
Pennathur, F.J. Martinez, and V.J. Thannickal. 2009. NADPH oxidase-4 
mediates myofibroblast activation and fibrogenic responses to lung in-
jury. Nat. Med. 15:1077–1081. doi:10.1038/nm.2005

Hsu, E., H. Shi, R.M. Jordan, J. Lyons-Weiler, J.M. Pilewski, and C.A. Feghali-
Bostwick. 2011. Lung tissues in patients with systemic sclerosis have 
gene expression patterns unique to pulmonary fibrosis and pulmonary 
hypertension. Arthritis Rheum. 63:783–794. doi:10.1002/art.30159

Huang, T.H., V. Razmovski-Naumovski, B.P. Kota, D.S. Lin, and B.D. 
Roufogalis. 2005. The pathophysiological function of peroxisome pro-
liferator-activated receptor-gamma in lung-related diseases. Respir. Res. 
6:102. doi:10.1186/1465-9921-6-102

Huaux, F., T. Liu, B. McGarry, M. Ullenbruch, and S.H. Phan. 2003a. Dual 
roles of IL-4 in lung injury and fibrosis. J. Immunol. 170:2083–2092.

Huaux, F., T. Liu, B. McGarry, M. Ullenbruch, Z. Xing, and S.H. Phan. 2003b. 
Eosinophils and T lymphocytes possess distinct roles in bleomycin-
 induced lung injury and fibrosis. J. Immunol. 171:5470–5481.

Ingram, J.L., A.B. Rice, K. Geisenhoffer, D.K. Madtes, and J.C. Bonner. 
2004. IL-13 and IL-1beta promote lung fibroblast growth through co-
ordinated up-regulation of PDGF-AA and PDGF-Ralpha. FASEB J. 
18:1132–1134.

Iredale, J.P. 2007. Models of liver fibrosis: exploring the dynamic nature of 
inflammation and repair in a solid organ. J. Clin. Invest. 117:539–548. 
doi:10.1172/JCI30542

Jiang, D., J. Liang, J. Hodge, B. Lu, Z. Zhu, S. Yu, J. Fan, Y. Gao, Z. Yin, R. 
Homer, et al. 2004. Regulation of pulmonary fibrosis by chemokine 
receptor CXCR3. J. Clin. Invest. 114:291–299.

Jiang, D., J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, G.D. Prestwich, M.M. 
Mascarenhas, H.G. Garg, D.A. Quinn, et al. 2005. Regulation of lung 
injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 
11:1173–1179. doi:10.1038/nm1315

Jiang, D., J. Liang, G.S. Campanella, R. Guo, S. Yu, T. Xie, N. Liu, Y. Jung, R. 
Homer, E.B. Meltzer, et al. 2010. Inhibition of pulmonary fibrosis in 
mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. 
J. Clin. Invest. 120:2049–2057. doi:10.1172/JCI38644

Keane, M.P., B.N. Gomperts, S. Weigt, Y.Y. Xue, M.D. Burdick, H. Nakamura, 
D.A. Zisman, A. Ardehali, R. Saggar, J.P. Lynch III, et al. 2007. IL-13 is 
pivotal in the fibro-obliterative process of bronchiolitis obliterans syn-
drome. J. Immunol. 178:511–519.

dx.doi.org/10.1164/rccm.2103058
dx.doi.org/10.1164/rccm.2103058
dx.doi.org/10.1378/chest.07-1948
dx.doi.org/10.3181/0707-MR-190
dx.doi.org/10.1172/JCI12568
dx.doi.org/10.1371/journal.pone.0002142
dx.doi.org/10.1371/journal.pone.0002142
dx.doi.org/10.2174/092986705774462905
dx.doi.org/10.1046/j.1365-2222.2002.01420.x
dx.doi.org/10.2353/ajpath.2006.050975
dx.doi.org/10.1084/jem.20041257
dx.doi.org/10.1165/rcmb.2004-0309OC
dx.doi.org/10.1084/jem.194.6.809
dx.doi.org/10.1084/jem.20081271
dx.doi.org/10.1084/jem.20081271
dx.doi.org/10.1089/ars.2007.1903
dx.doi.org/10.1164/rccm.200808-1274OC
dx.doi.org/10.1164/rccm.200808-1274OC
dx.doi.org/10.1183/09031936.05.00049704
dx.doi.org/10.1183/09031936.05.00049704
dx.doi.org/10.1097/01.shk.0000190825.28783.a4
dx.doi.org/10.1097/01.shk.0000190825.28783.a4
dx.doi.org/10.1038/nm.2005
dx.doi.org/10.1002/art.30159
dx.doi.org/10.1186/1465-9921-6-102
dx.doi.org/10.1172/JCI30542
dx.doi.org/10.1038/nm1315
dx.doi.org/10.1172/JCI38644


1348 Mechanisms of pulmonary fibrosis | Wynn

independently of transforming growth factor-beta. Nat. Med. 15:1426–
1430. doi:10.1038/nm.2066

Ortiz, L.A., M. Dutreil, C. Fattman, A.C. Pandey, G. Torres, K. Go, and  
D.G. Phinney. 2007. Interleukin 1 receptor antagonist mediates the 
antiinflammatory and antifibrotic effect of mesenchymal stem cells  
during lung injury. Proc. Natl. Acad. Sci. USA. 104:11002–11007. doi:10 
.1073/pnas.0704421104

Pandit, K.V., D. Corcoran, H. Yousef, M. Yarlagadda, A. Tzouvelekis, K.F. Gibson, 
K. Konishi, S.A. Yousem, M. Singh, D. Handley, et al. 2010. Inhibition and 
role of let-7d in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care 
Med. 182:220–229. doi:10.1164/rccm.200911-1698OC

Park, G.Y., and J.W. Christman. 2006. Involvement of cyclooxygenase-
2 and prostaglandins in the molecular pathogenesis of inflammatory 
lung diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L797–L805. 
doi:10.1152/ajplung.00513.2005

Park, S.W., M.H. Ahn, H.K. Jang, A.S. Jang, D.J. Kim, E.S. Koh, J.S. Park, S.T. 
Uh, Y.H. Kim, J.S. Park, et al. 2009. Interleukin-13 and its receptors in 
idiopathic interstitial pneumonia: clinical implications for lung function. 
J. Korean Med. Sci. 24:614–620. doi:10.3346/jkms.2009.24.4.614

Pesce, J., M. Kaviratne, T.R. Ramalingam, R.W. Thompson, J.F. Urban Jr., A.W. 
Cheever, D.A. Young, M. Collins, M.J. Grusby, and T.A. Wynn. 2006. The 
IL-21 receptor augments Th2 effector function and alternative macro-
phage activation. J. Clin. Invest. 116:2044–2055. doi:10.1172/JCI27727

Pesce, J.T., T.R. Ramalingam, M.M. Mentink-Kane, M.S. Wilson, K.C. El 
Kasmi, A.M. Smith, R.W. Thompson, A.W. Cheever, P.J. Murray, and 
T.A. Wynn. 2009. Arginase-1-expressing macrophages suppress Th2 
cytokine-driven inflammation and fibrosis. PLoS Pathog. 5:e1000371. 
doi:10.1371/journal.ppat.1000371

Peters-Golden, M., M. Bailie, T. Marshall, C. Wilke, S.H. Phan, G.B. Toews, 
and B.B. Moore. 2002. Protection from pulmonary fibrosis in leukotri-
ene-deficient mice. Am. J. Respir. Crit. Care Med. 165:229–235.

Phillips, R.J., M.D. Burdick, K. Hong, M.A. Lutz, L.A. Murray, Y.Y. Xue, J.A. 
Belperio, M.P. Keane, and R.M. Strieter. 2004. Circulating fibrocytes 
traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. 
Invest. 114:438–446.

Piguet, P.F., and C. Vesin. 1994. Treatment by human recombinant soluble 
TNF receptor of pulmonary fibrosis induced by bleomycin or silica in 
mice. Eur. Respir. J. 7:515–518. doi:10.1183/09031936.94.07030515

Piguet, P.F., M.A. Collart, G.E. Grau, A.P. Sappino, and P. Vassalli. 1990. 
Requirement of tumour necrosis factor for development of silica-induced 
pulmonary fibrosis. Nature. 344:245–247. doi:10.1038/344245a0

Piguet, P.F., C. Ribaux, V. Karpuz, G.E. Grau, and Y. Kapanci. 1993. Expression 
and localization of tumor necrosis factor-alpha and its mRNA in idio-
pathic pulmonary fibrosis. Am. J. Pathol. 143:651–655.

Prasse, A., D.V. Pechkovsky, G.B. Toews, W. Jungraithmayr, F. Kollert, T. 
Goldmann, E. Vollmer, J. Müller-Quernheim, and G. Zissel. 2006. A vicious 
circle of alveolar macrophages and fibroblasts perpetuates pulmonary  
fibrosis via CCL18. Am. J. Respir. Crit. Care Med. 173:781–792. doi:10 
.1164/rccm.200509-1518OC

Prasse, A., C. Probst, E. Bargagli, G. Zissel, G.B. Toews, K.R. Flaherty, M. 
Olschewski, P. Rottoli, and J. Müller-Quernheim. 2009. Serum CC-
chemokine ligand 18 concentration predicts outcome in idiopathic 
pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179:717–723. doi:10 
.1164/rccm.200808-1201OC

Raghu, G., K.K. Brown, U. Costabel, V. Cottin, R.M. du Bois, J.A. Lasky, 
M. Thomeer, J.P. Utz, R.K. Khandker, L. McDermott, and S. Fatenejad. 
2008. Treatment of idiopathic pulmonary fibrosis with etanercept: 
an exploratory, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 
178:948–955. doi:10.1164/rccm.200709-1446OC

Ramalingam, T.R., J.T. Pesce, F. Sheikh, A.W. Cheever, M.M. Mentink-Kane, 
M.S. Wilson, S. Stevens, D.M. Valenzuela, A.J. Murphy, G.D. Yancopoulos, 
et al. 2008. Unique functions of the type II interleukin 4 receptor iden-
tified in mice lacking the interleukin 13 receptor alpha1 chain. Nat. 
Immunol. 9:25–33. doi:10.1038/ni1544

Ramalingam, T.R., J.T. Pesce, M.M. Mentink-Kane, S. Madala, A.W. 
Cheever, M.R. Comeau, S.F. Ziegler, and T.A. Wynn. 2009. Regulation 
of helminth-induced Th2 responses by thymic stromal lymphopoietin.  
J. Immunol. 182:6452–6459. doi:10.4049/jimmunol.0900181

Liu, G., A. Friggeri, Y. Yang, J. Milosevic, Q. Ding, V.J. Thannickal, N. 
Kaminski, and E. Abraham. 2010. miR-21 mediates fibrogenic activation 
of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207:1589–1597. 
doi:10.1084/jem.20100035

Lovgren, A.K., J.J. Kovacs, T. Xie, E.N. Potts, Y. Li, W.M. Foster, J. Liang, E.B. 
Meltzer, D. Jiang, R.J. Lefkowitz, and P.W. Noble. 2011. beta-arrestin 
deficiency protects against pulmonary fibrosis in mice and prevents  
fibroblast invasion of extracellular matrix. Sci. Transl. Med. 3:74ra23.

Lupardus, P.J., M.E. Birnbaum, and K.C. Garcia. 2010. Molecular basis for 
shared cytokine recognition revealed in the structure of an unusu-
ally high affinity complex between IL-13 and IL-13Ralpha2. Structure. 
18:332–342. doi:10.1016/j.str.2010.01.003

Ma, B., Z. Zhu, R.J. Homer, C. Gerard, R. Strieter, and J.A. Elias. 2004. 
The C10/CCL6 chemokine and CCR1 play critical roles in the patho-
genesis of IL-13-induced inflammation and remodeling. J. Immunol. 
172:1872–1881.

Madala, S.K., J.T. Pesce, T.R. Ramalingam, M.S. Wilson, S. Minnicozzi, A.W. 
Cheever, R.W. Thompson, M.M. Mentink-Kane, and T.A. Wynn. 2010. 
MMP12-deficiency augments extracellular matrix degrading metallo-
proteinases and attenuates IL-13-dependent fibrosis. J. Immunol. 184: 
3955–3963.

Meng, F., R. Henson, H. Wehbe-Janek, K. Ghoshal, S.T. Jacob, and T. Patel. 
2007. MicroRNA-21 regulates expression of the PTEN tumor suppres-
sor gene in human hepatocellular cancer. Gastroenterology. 133:647–658.

Milam, J.E., V.G. Keshamouni, S.H. Phan, B. Hu, S.R. Gangireddy, C.M. 
Hogaboam, T.J. Standiford, V.J. Thannickal, and R.C. Reddy. 2008. 
PPAR-gamma agonists inhibit profibrotic phenotypes in human lung  
fibroblasts and bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung 
Cell. Mol. Physiol. 294:L891–L901. doi:10.1152/ajplung.00333.2007

Miyazaki, Y., K. Araki, C. Vesin, I. Garcia, Y. Kapanci, J.A. Whitsett, P.F. Piguet, 
and P. Vassalli. 1995. Expression of a tumor necrosis factor-alpha trans-
gene in murine lung causes lymphocytic and fibrosing alveolitis. A 
mouse model of progressive pulmonary fibrosis. J. Clin. Invest. 96:250–
259. doi:10.1172/JCI118029

Moore, B.B., and C.M. Hogaboam. 2008. Murine models of pulmo-
nary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L152–L160. 
doi:10.1152/ajplung.00313.2007

Moore, B.B., R. Paine III, P.J. Christensen, T.A. Moore, S. Sitterding, R. 
Ngan, C.A. Wilke, W.A. Kuziel, and G.B. Toews. 2001. Protection from 
pulmonary fibrosis in the absence of CCR2 signaling. J. Immunol. 
167:4368–4377.

Moore, B.B., J.E. Kolodsick, V.J. Thannickal, K. Cooke, T.A. Moore, C. 
Hogaboam, C.A. Wilke, and G.B. Toews. 2005. CCR2-mediated recruit-
ment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol. 
166:675–684. doi:10.1016/S0002-9440(10)62289-4

Moore, B.B., L. Murray, A. Das, C.A. Wilke, A.B. Herrygers, and G.B. 
Toews. 2006. The role of CCL12 in the recruitment of fibrocytes and 
lung fibrosis. Am. J. Respir. Cell Mol. Biol. 35:175–181. doi:10.1165/ 
rcmb.2005-0239OC

Murray, L.A., R.L. Argentieri, F.X. Farrell, M. Bracht, H. Sheng, B. 
Whitaker, H. Beck, P. Tsui, K. Cochlin, H.L. Evanoff, et al. 2008. Hyper- 
responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, 
IL-13 and CCL2. Int. J. Biochem. Cell Biol. 40:2174–2182. doi:10 
.1016/j.biocel.2008.02.016

Nagase, T., N. Uozumi, S. Ishii, Y. Kita, H. Yamamoto, E. Ohga, Y. Ouchi, 
and T. Shimizu. 2002. A pivotal role of cytosolic phospholipase A(2) in 
bleomycin-induced pulmonary fibrosis. Nat. Med. 8:480–484. doi:10 
.1038/nm0502-480

Naik, E., and V.M. Dixit. 2011. Mitochondrial reactive oxygen species drive 
proinflammatory cytokine production. J. Exp. Med. 208:417–420. 
doi:10.1084/jem.20110367

Nana-Sinkam, S.P., M.G. Hunter, G.J. Nuovo, T.D. Schmittgen, R. Gelinas, 
D. Galas, and C.B. Marsh. 2009. Integrating the MicroRNome into the 
study of lung disease. Am. J. Respir. Crit. Care Med. 179:4–10. doi:10 
.1164/rccm.200807-1042PP

Oga, T., T. Matsuoka, C. Yao, K. Nonomura, S. Kitaoka, D. Sakata, Y.  
Kita, K. Tanizawa, Y. Taguchi, K. Chin, et al. 2009. Prostaglandin F(2alpha) 
receptor signaling facilitates bleomycin-induced pulmonary fibrosis  

dx.doi.org/10.1038/nm.2066
dx.doi.org/10.1073/pnas.0704421104
dx.doi.org/10.1073/pnas.0704421104
dx.doi.org/10.1164/rccm.200911-1698OC
dx.doi.org/10.1152/ajplung.00513.2005
dx.doi.org/10.3346/jkms.2009.24.4.614
dx.doi.org/10.1172/JCI27727
dx.doi.org/10.1371/journal.ppat.1000371
dx.doi.org/10.1183/09031936.94.07030515
dx.doi.org/10.1038/344245a0
dx.doi.org/10.1164/rccm.200509-1518OC
dx.doi.org/10.1164/rccm.200509-1518OC
dx.doi.org/10.1164/rccm.200808-1201OC
dx.doi.org/10.1164/rccm.200808-1201OC
dx.doi.org/10.1164/rccm.200709-1446OC
dx.doi.org/10.1038/ni1544
dx.doi.org/10.4049/jimmunol.0900181
dx.doi.org/10.1084/jem.20100035
dx.doi.org/10.1016/j.str.2010.01.003
dx.doi.org/10.1152/ajplung.00333.2007
dx.doi.org/10.1172/JCI118029
dx.doi.org/10.1152/ajplung.00313.2007
dx.doi.org/10.1016/S0002-9440(10)62289-4
dx.doi.org/10.1165/rcmb.2005-0239OC
dx.doi.org/10.1165/rcmb.2005-0239OC
dx.doi.org/10.1016/j.biocel.2008.02.016
dx.doi.org/10.1016/j.biocel.2008.02.016
dx.doi.org/10.1038/nm0502-480
dx.doi.org/10.1038/nm0502-480
dx.doi.org/10.1084/jem.20110367
dx.doi.org/10.1164/rccm.200807-1042PP
dx.doi.org/10.1164/rccm.200807-1042PP


JEM Vol. 208, No. 7 1349

Review

Thannickal, V.J., G.B. Toews, E.S. White, J.P. Lynch III, and F.J. Martinez. 
2004. Mechanisms of pulmonary fibrosis. Annu. Rev. Med. 55:395–417. 
doi:10.1146/annurev.med.55.091902.103810

Thavarajah, K., P. Wu, E.J. Rhew, A.K. Yeldandi, and D.W. Kamp. 2009. 
Pulmonary complications of tumor necrosis factor-targeted therapy. 
Respir. Med. 103:661–669. doi:10.1016/j.rmed.2009.01.002

Thiery, J.P., and J.P. Sleeman. 2006. Complex networks orchestrate epi-
thelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7:131–142. 
doi:10.1038/nrm1835

Thompson, R.W., J.T. Pesce, T. Ramalingam, M.S. Wilson, S. White, A.W. 
Cheever, S.M. Ricklefs, S.F. Porcella, L. Li, L.G. Ellies, and T.A. Wynn. 
2008. Cationic amino acid transporter-2 regulates immunity by modu-
lating arginase activity. PLoS Pathog. 4:e1000023. doi:10.1371/journal.
ppat.1000023

Thum, T., C. Gross, J. Fiedler, T. Fischer, S. Kissler, M. Bussen, P. Galuppo, S. 
Just, W. Rottbauer, S. Frantz, et al. 2008. MicroRNA-21 contributes to 
myocardial disease by stimulating MAP kinase signalling in fibroblasts. 
Nature. 456:980–984. doi:10.1038/nature07511

Tokuda, A., M. Itakura, N. Onai, H. Kimura, T. Kuriyama, and K. Matsushima. 
2000. Pivotal role of CCR1-positive leukocytes in bleomycin-induced 
lung fibrosis in mice. J. Immunol. 164:2745–2751.

Wilborn, J., M. Bailie, M. Coffey, M. Burdick, R. Strieter, and M. Peters-
Golden. 1996. Constitutive activation of 5-lipoxygenase in the lungs of 
patients with idiopathic pulmonary fibrosis. J. Clin. Invest. 97:1827–1836. 
doi:10.1172/JCI118612

Wilson, M.S., E. Elnekave, M.M. Mentink-Kane, M.G. Hodges, J.T. Pesce, 
T.R. Ramalingam, R.W. Thompson, M. Kamanaka, R.A. Flavell, A. 
Keane-Myers, et al. 2007. IL-13Ralpha2 and IL-10 coordinately sup-
press airway inflammation, airway-hyperreactivity, and fibrosis in mice.  
J. Clin. Invest. 117:2941–2951. doi:10.1172/JCI31546

Wilson, M.S., S.K. Madala, T.R. Ramalingam, B.R. Gochuico, I.O. Rosas, 
A.W. Cheever, and T.A. Wynn. 2010. Bleomycin and IL-1–mediated 
pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 207:535–552. 
doi:10.1084/jem.20092121

Wolff, D., F. Reichenberger, B. Steiner, C. Kahl, M. Leithäuser, T. Skibbe, T. 
Friedrich, H. Terpe, W. Helbig, and M. Freund. 2002. Progressive inter-
stitial fibrosis of the lung in sclerodermoid chronic graft-versus-host dis-
ease. Bone Marrow Transplant. 29:357–360. doi:10.1038/sj.bmt.1703386

Wynn, T.A. 2004. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. 
Immunol. 4:583–594. doi:10.1038/nri1412

Wynn, T.A. 2007. Common and unique mechanisms regulate fibrosis in 
various fibroproliferative diseases. J. Clin. Invest. 117:524–529. doi:10 
.1172/JCI31487

Wynn, T.A., and L. Barron. 2010. Macrophages: master regulators of in-
flammation and fibrosis. Semin. Liver Dis. 30:245–257. doi:10.1055/ 
s-0030-1255354

Wynn, T.A., A.W. Cheever, D. Jankovic, R.W. Poindexter, P. Caspar, F.A. 
Lewis, and A. Sher. 1995. An IL-12-based vaccination method for pre-
venting fibrosis induced by schistosome infection. Nature. 376:594–596. 
doi:10.1038/376594a0

Xia, H., D. Diebold, R. Nho, D. Perlman, J. Kleidon, J. Kahm, S. Avdulov, M. 
Peterson, J. Nerva, P. Bitterman, and C. Henke. 2008. Pathological inte-
grin signaling enhances proliferation of primary lung fibroblasts from 
patients with idiopathic pulmonary fibrosis. J. Exp. Med. 205:1659–1672. 
doi:10.1084/jem.20080001

Yang, G., A. Volk, T. Petley, E. Emmell, J. Giles-Komar, X. Shang, J. Li, A.M. 
Das, D. Shealy, D.E. Griswold, and L. Li. 2004. Anti-IL-13 monoclonal 
antibody inhibits airway hyperresponsiveness, inflammation and airway 
remodeling. Cytokine. 28:224–232. doi:10.1016/j.cyto.2004.08.007

Ye, P., F.H. Rodriguez, S. Kanaly, K.L. Stocking, J. Schurr, P. Schwarzenberger, 
P. Oliver, W. Huang, P. Zhang, J. Zhang, et al. 2001. Requirement 
of interleukin 17 receptor signaling for lung CXC chemokine and 
granulocyte colony-stimulating factor expression, neutrophil recruit-
ment, and host defense. J. Exp. Med. 194:519–527. doi:10.1084/ 
jem.194.4.519

Young, A., G. Koduri, M. Batley, E. Kulinskaya, A. Gough, S. Norton, and J. 
Dixey; Early Rheumatoid Arthritis Study (ERAS) group. 2007. Mortality 
in rheumatoid arthritis. Increased in the early course of disease, in 

Ramos, C., M. Montaño, J. García-Alvarez, V. Ruiz, B.D. Uhal, M. Selman, 
and A. Pardo. 2001. Fibroblasts from idiopathic pulmonary fibrosis 
and normal lungs differ in growth rate, apoptosis, and tissue inhibi-
tor of metalloproteinases expression. Am. J. Respir. Cell Mol. Biol. 24: 
591–598.

Rankin, J.A., D.E. Picarella, G.P. Geba, U.A. Temann, B. Prasad, B. DiCosmo, 
A. Tarallo, B. Stripp, J. Whitsett, and R.A. Flavell. 1996. Phenotypic and 
physiologic characterization of transgenic mice expressing interleukin 
4 in the lung: lymphocytic and eosinophilic inflammation without air-
way hyperreactivity. Proc. Natl. Acad. Sci. USA. 93:7821–7825. doi:10 
.1073/pnas.93.15.7821

Rankin, A.L., J.B. Mumm, E. Murphy, S. Turner, N. Yu, T.K. McClanahan, 
P.A. Bourne, R.H. Pierce, R. Kastelein, and S. Pflanz. 2010. IL-33 in-
duces IL-13-dependent cutaneous fibrosis. J. Immunol. 184:1526–1535. 
doi:10.4049/jimmunol.0903306

Reiman, R.M., R.W. Thompson, C.G. Feng, D. Hari, R. Knight, A.W. 
Cheever, H.F. Rosenberg, and T.A. Wynn. 2006. Interleukin-5 (IL-5) 
augments the progression of liver fibrosis by regulating IL-13 activity. 
Infect. Immun. 74:1471–1479. doi:10.1128/IAI.74.3.1471-1479.2006

Sanders, Y.Y., A. Pardo, M. Selman, G.J. Nuovo, T.O. Tollefsbol, G.P. Siegal, and 
J.S. Hagood. 2008. Thy-1 promoter hypermethylation: a novel epigenetic 
pathogenic mechanism in pulmonary fibrosis. Am. J. Respir. Cell Mol. 
Biol. 39:610–618. doi:10.1165/rcmb.2007-0322OC

Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T.K. McClanahan, G. 
Zurawski, M. Moshrefi, J. Qin, X. Li, et al. 2005. IL-33, an interleukin-
1-like cytokine that signals via the IL-1 receptor-related protein ST2 
and induces T helper type 2-associated cytokines. Immunity. 23:479–490. 
doi:10.1016/j.immuni.2005.09.015

Selman, M., T.E. King, and A. Pardo; American Thoracic Society; European 
Respiratory Society; American College of Chest Physicians. 2001. 
Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about 
its pathogenesis and implications for therapy. Ann. Intern. Med. 134: 
136–151.

Shao, D.D., R. Suresh, V. Vakil, R.H. Gomer, and D. Pilling. 2008. Pivotal 
Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fi-
brocyte differentiation. J. Leukoc. Biol. 83:1323–1333. doi:10.1189/ 
jlb.1107782

Sime, P.J. 2008. The antifibrogenic potential of PPARgamma ligands in pul-
monary fibrosis. J. Investig. Med. 56:534–538.

Simonian, P.L., C.L. Roark, F. Wehrmann, A.K. Lanham, F. Diaz del Valle, 
W.K. Born, R.L. O’Brien, and A.P. Fontenot. 2009. Th17-polarized 
immune response in a murine model of hypersensitivity pneumonitis 
and lung fibrosis. J. Immunol. 182:657–665. doi:10.4049/jimmunol 
.0900013

Simonian, P.L., F. Wehrmann, C.L. Roark, W.K. Born, R.L. O’Brien, and A.P. 
Fontenot. 2010.  T cells protect against lung fibrosis via IL-22. J. Exp. 
Med. 207:2239–2253. doi:10.1084/jem.20100061

Siwik, D.A., D.L. Chang, and W.S. Colucci. 2000. Interleukin-1beta and  
tumor necrosis factor-alpha decrease collagen synthesis and increase  
matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ. Res. 
86:1259–1265.

Smith, R.E., R.M. Strieter, S.H. Phan, N.W. Lukacs, G.B. Huffnagle, 
C.A. Wilke, M.D. Burdick, P. Lincoln, H. Evanoff, and S.L. Kunkel. 
1994. Production and function of murine macrophage inflamma-
tory protein-1 alpha in bleomycin-induced lung injury. J. Immunol. 
153:4704–4712.

Song, E., N. Ouyang, M. Hörbelt, B. Antus, M. Wang, and M.S. Exton. 
2000. Influence of alternatively and classically activated macrophages 
on fibrogenic activities of human fibroblasts. Cell. Immunol. 204:19–28. 
doi:10.1006/cimm.2000.1687

Strieter, R.M., B.N. Gomperts, and M.P. Keane. 2007. The role of CXC 
chemokines in pulmonary fibrosis. J. Clin. Invest. 117:549–556. doi:10 
.1172/JCI30562

Tager, A.M., P. LaCamera, B.S. Shea, G.S. Campanella, M. Selman, Z. Zhao, 
V. Polosukhin, J. Wain, B.A. Karimi-Shah, N.D. Kim, et al. 2008. The 
lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung 
injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 
14:45–54. doi:10.1038/nm1685

dx.doi.org/10.1146/annurev.med.55.091902.103810
dx.doi.org/10.1016/j.rmed.2009.01.002
dx.doi.org/10.1038/nrm1835
dx.doi.org/10.1371/journal.ppat.1000023
dx.doi.org/10.1371/journal.ppat.1000023
dx.doi.org/10.1038/nature07511
dx.doi.org/10.1172/JCI118612
dx.doi.org/10.1172/JCI31546
dx.doi.org/10.1084/jem.20092121
dx.doi.org/10.1038/sj.bmt.1703386
dx.doi.org/10.1038/nri1412
dx.doi.org/10.1172/JCI31487
dx.doi.org/10.1172/JCI31487
dx.doi.org/10.1055/s-0030-1255354
dx.doi.org/10.1055/s-0030-1255354
dx.doi.org/10.1038/376594a0
dx.doi.org/10.1084/jem.20080001
dx.doi.org/10.1016/j.cyto.2004.08.007
dx.doi.org/10.1084/jem.194.4.519
dx.doi.org/10.1084/jem.194.4.519
dx.doi.org/10.1073/pnas.93.15.7821
dx.doi.org/10.1073/pnas.93.15.7821
dx.doi.org/10.4049/jimmunol.0903306
dx.doi.org/10.1128/IAI.74.3.1471-1479.2006
dx.doi.org/10.1165/rcmb.2007-0322OC
dx.doi.org/10.1016/j.immuni.2005.09.015
dx.doi.org/10.1189/jlb.1107782
dx.doi.org/10.1189/jlb.1107782
dx.doi.org/10.4049/jimmunol.0900013
dx.doi.org/10.4049/jimmunol.0900013
dx.doi.org/10.1084/jem.20100061
dx.doi.org/10.1006/cimm.2000.1687
dx.doi.org/10.1172/JCI30562
dx.doi.org/10.1172/JCI30562
dx.doi.org/10.1038/nm1685


1350 Mechanisms of pulmonary fibrosis | Wynn

ischaemic heart disease and in pulmonary fibrosis. Rheumatology (Oxford). 
46:350–357. doi:10.1093/rheumatology/kel253

Zhang, Y., T.C. Lee, B. Guillemin, M.C. Yu, and W.N. Rom. 1993. Enhanced 
IL-1 beta and tumor necrosis factor-alpha release and messenger RNA 
expression in macrophages from idiopathic pulmonary fibrosis or after 
asbestos exposure. J. Immunol. 150:4188–4196.

Zheng, T., W. Liu, S.Y. Oh, Z. Zhu, B. Hu, R.J. Homer, L. Cohn, M.J. 
Grusby, and J.A. Elias. 2008. IL-13 receptor alpha2 selectively in-
hibits IL-13-induced responses in the murine lung. J. Immunol. 180: 
522–529.

Zhou, B., M.R. Comeau, T. De Smedt, H.D. Liggitt, M.E. Dahl, D.B. Lewis, 
D. Gyarmati, T. Aye, D.J. Campbell, and S.F. Ziegler. 2005. Thymic stromal 
lymphopoietin as a key initiator of allergic airway inflammation in mice. 
Nat. Immunol. 6:1047–1053. doi:10.1038/ni1247

Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria 
in NLRP3 inflammasome activation. Nature. 469:221–225. doi:10.1038/ 
nature09663

Zhu, Z., R.J. Homer, Z. Wang, Q. Chen, G.P. Geba, J. Wang, Y. Zhang, and J.A. 
Elias. 1999. Pulmonary expression of interleukin-13 causes inflammation, 
mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities,  

and eotaxin production. J. Clin. Invest. 103:779–788. doi:10.1172/ 
JCI5909

Zhu, Z., B. Ma, T. Zheng, R.J. Homer, C.G. Lee, I.F. Charo, P. Noble, and 
J.A. Elias. 2002. IL-13-induced chemokine responses in the lung: role of 
CCR2 in the pathogenesis of IL-13-induced inflammation and remod-
eling. J. Immunol. 168:2953–2962.

Zhu, Z., T. Zheng, R.J. Homer, Y.K. Kim, N.Y. Chen, L. Cohn, Q. Hamid, 
and J.A. Elias. 2004. Acidic mammalian chitinase in asthmatic Th2 
inflammation and IL-13 pathway activation. Science. 304:1678–1682. 
doi:10.1126/science.1095336

Zhu, S., M.L. Si, H. Wu, and Y.Y. Mo. 2007. MicroRNA-21 targets the tumor 
suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282:14328–14336. 
doi:10.1074/jbc.M611393200

Zhu, S., H. Wu, F. Wu, D. Nie, S. Sheng, and Y.Y. Mo. 2008. MicroRNA-
21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 
18:350–359. doi:10.1038/cr.2008.24

Zuo, F., N. Kaminski, E. Eugui, J. Allard, Z. Yakhini, A. Ben-Dor, L. Lollini, D. 
Morris, Y. Kim, B. DeLustro, et al. 2002. Gene expression analysis reveals 
matrilysin as a key regulator of pulmonary fibrosis in mice and humans. 
Proc. Natl. Acad. Sci. USA. 99:6292–6297. doi:10.1073/pnas.092134099

dx.doi.org/10.1093/rheumatology/kel253
dx.doi.org/10.1038/ni1247
dx.doi.org/10.1038/nature09663
dx.doi.org/10.1038/nature09663
dx.doi.org/10.1172/JCI5909
dx.doi.org/10.1172/JCI5909
dx.doi.org/10.1126/science.1095336
dx.doi.org/10.1074/jbc.M611393200
dx.doi.org/10.1038/cr.2008.24
dx.doi.org/10.1073/pnas.092134099

