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ABSTRACT A typical plant genome-wide association study (GWAS) uses a mixed linear model (MLM) that
includes a trait as the response variable, a marker as an explanatory variable, and fixed and random effect
covariates accounting for population structure and relatedness. Although effective in controlling for false
positive signals, this model typically fails to detect signals that are correlated with population structure or
are located in high linkage disequilibrium (LD) genomic regions. This result likely arises from each tested
marker being used to estimate population structure and relatedness. Previous work has demonstrated that it
is possible to increase the power of the MLM by estimating relatedness (i.e., kinship) with markers that are
not located on the chromosome where the tested marker resides. To quantify the amount of additional
significant signals one can expect using this so-called K_chr model, we reanalyzed Mendelian, polygenic,
and complex traits in two maize (Zea mays L.) diversity panels that have been previously assessed using the
traditional MLM. We demonstrated that the K_chr model could find more significant associations, especially
in high LD regions. This finding is underscored by our identification of novel genomic signals proximal to
the tocochromanol biosynthetic pathway gene ZmVTE1 that are associated with a ratio of tocotrienols. We
conclude that the K_chr model can detect more intricate sources of allelic variation underlying agronom-
ically important traits, and should therefore become more widely used for GWAS. To facilitate the imple-
mentation of the K_chr model, we provide code written in the R programming language.
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The evaluation of associations between a set of genomic markers and a
trait of interest makes it possible to obtain biological insight into the
relationship between genetic and phenotypic variation. This can poten-
tially culminate in the identification of specific genes associatedwith the
trait anda rigorousassessmentof the abilityof themarkers tocollectively
predict trait values (reviewed in Lipka et al. 2015). Given recent ad-

vances in genotyping technologies and corresponding cost reductions,
analyses that utilize genome-wide marker sets to study the genetic
components underlying phenotypic variation are becoming increas-
ingly commonplace (Zhu et al. 2008; Daetwyler et al. 2013; Flint and
Eskin 2012). One such analysis is the genome-wide association study
(GWAS), where markers spanning an entire genome are tested for
associations with a group of traits in a panel consisting of a diverse
set of individuals (Myles et al. 2009). Because a typical diversity panel
captures a substantial amount of allelic diversity and historical recom-
bination events, it is assumed that a marker identified in a GWAS as
significantly associated with a trait is in strong linkage disequilibrium
(LD) with one or more causal genomic variants (Platt et al. 2010).

An important drawback of the GWAS is that false positive marker-
trait associations due to population structure and familial relatedness
could arise if unaccounted for (Yu et al. 2006; Lipka et al. 2015; Zhang
et al. 2010). The ability to adjust for such sources of false positives in a
computationally efficient manner has been an active area of research
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(Kang et al. 2008, 2010; Zhou and Stephens 2012); consequently, a
typical GWAS in plants will employ statistical approaches that take
population structure and familial relatedness into account (Lipka
et al. 2015).

Of all the state of the art statistical approaches that have been
developed to control for false positive marker-trait associations, the
unified mixed linear model (MLM; Yu et al. 2006) is arguably the best
suited for GWAS data sets. In addition to including a testedmarker as a
fixed effect, this model includes fixed effect covariates that account for
population structure and a random polygenic effect to control for re-
latedness among the individuals. To ensure that these additional terms
adequately adjust for false positive signals, genome-wide marker sets
are usually used to obtain the fixed effect covariates (calledQ), as well as
a kinship matrix (K) that estimates the variance-covariance among the
individuals (i.e., the variance-covariance of the random polygenic ef-
fect). In general, the unified MLM has been successful in identifying
marker-trait associations withmoderate to large effect sizes (Lipka et al.
2015), with some notable examples in maize including signals proxi-
mal to candidate genes for flowering time (Romay et al. 2013) and
tocochromanol and carotenoid biosynthesis (Lipka et al. 2013;
Owens et al. 2014). Nevertheless, one impediment of this model is that
it has been generally unable to detect small effect loci that underlie
complex trait variation (as described in Atwell et al. 2010). Thus, there
remains a critical need to modify the traditional unifiedMLM so that it
has sufficient statistical power to detect these weak signals, while still
adequately controlling for false positives.

Recent studies have identified two particular situations in which the
unified MLM overcorrects for false positive signals. The first situation
arises when a trait under study is correlated with population structure
(Larsson et al. 2013). For such a trait, markers in strong LD with a
putatively causal locus will likely not be detected using the unified
MLM because they are strongly correlated with the fixed effects Q.
The second situation occurs when a genomic signal is located in a
region of high LD. It has been shown that a failure to detect such signals
arises because the common procedures used to calculate the kinship
matrix gives more weight to genomic regions containing markers in
strong LD (Rincent et al. 2014). In both of these situations, failure to
detect such signals is likely attributable to the fact that each marker
being tested for associations is typically also used to estimate population
structure and relatedness. This failure could also occur if a GWAS is
conducted on an independentmarker set that captures the same degree
of population structure and relatedness as the original marker set used
to calculate Q and K. To account for these deficiencies, it has therefore
been suggested that only certain subsets of genomic markers be used to
account for these sources of false positives (Listgarten et al. 2012;
Bernardo 2013). In particular, Rincent et al. (2014) explored the statis-
tical power that was gained by using kinship matrices that were calcu-
lated with markers that were not in LD with a given marker being
tested. By directly calculating power and evaluating three maize diver-
sity panels, it was concluded that using kinship matrices specific to each
chromosome in the unified MLM could result in greater statistical
power to detect associations (an approach called the “K_Chr” model).

As such, this approach has great potential to enable the unifiedMLM to
identify a greater amount of statistically significant marker-trait asso-
ciations, while simultaneously controlling for false positives.

Given the increased availability of high density marker sets obtained
from the latest sequencing technologies, the GWAS is likely to continue
to play a predominant role in unraveling the genetic architecture un-
derlying important traits in a wide variety of species (Korte and Farlow
2013). To facilitate an accurate dissection of genomic signals, it is
essential to use a statistical approach that maximizes the power for
detecting associations. Therefore, the objective of this study was to
evaluate the ability of the K_chr model, proposed by Rincent et al.
(2014), to provide further insight into the genomic signals that underlie
traits in two maize diversity panels that have been previously analyzed
using the traditional unified MLM. We hypothesized that the K_chr
model would provide the greatest enhancement in genomic resolution
for signals located in high LD regions.

MATERIALS AND METHODS

Sources of phenotypic and genotypic data

Goodman diversity panel: In this study, we analyzed publicly available
phenotypicandgenotypicdata fromtwomaizediversitypanels.Thefirst
panel was the Goodman diversity panel (described in Flint-Garcia et al.
2005), which consists of 281 diverse maize lines. To assess the perfor-
mance of the K_chr model under different genetic architectures, we
considered three classes of phenotypes that have been previously
assessed via GWAS in this panel (Table 1). The first class of phenotypes
included 15 carotenoid compounds, sums, ratios, and proportions that
were obtained on a subset of 201 maize lines with kernel color ranging
from light yellow to dark orange (originally published in Owens et al.
2014). The relatively small number of genes underlying these traits
makes it possible for maize breeders to substantially increase essential
nutrients, including provitamin A, in maize kernels by selecting on
targeted genomic regions containing carotenoid biosynthetic and re-
lated genes. As such, our analysis of carotenoids provided an essential
counterpoint to the other polygenic and complex traits considered for
this study.

n Table 1 Summary information for three classes of traits that were analyzed in the Goodman association panel described in Flint-Garcia
et al. (2005)

Trait Class No. Traits Analyzed Sample Size No. Markers for GWAS Data Source

Carotenoid 15 201 291,939 Owens et al. 2014
Tocochromanol 20 252 293,863 Lipka et al. 2013
Flowering time 3 278 299,253 www.maizegenetics.net/tassel

GWAS, genome-wide association study.

n Table 2 Summary information for the traits that were analyzed
in the North Central Regional Plant Introduction Station maize
association panel described in Romay et al. (2013)

Trait
Sample
Size

No. Markers
for GWAS Data Source

Sweet vs. starchy 2631 387,612 Romay et al. 2013
Days to silking 2279 391,060 Romay et al. 2013
Days to anthesisa 2293 391,044 Peiffer et al. 2014
Plant heighta 2293 391,044 Peiffer et al. 2014
Ear heighta 2293 391,044 Peiffer et al. 2014

GWAS, genome-wide association study.
a
Both best linear unbiased predictors and best linear unbiased estimators of
these three traits are available in the supplement of Peiffer et al. 2014. We used
best linear unbiased estimators for this analysis.
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The second set of phenotypes included 20 tocochromanol com-
pounds, sums, ratios, andproportions thatwere published inLipka et al.
(2013). Similar to carotenoids, tocochromanol compounds have a
tractable genetic architecture in maize, which could allow breeders to
increase vitamin E and antioxidant levels in maize grain by selecting
on a small number of genes in the tocochromanol biosynthetic and
precursor pathways. However, previous QTL analyses in maize grain
suggest that tocochromanols are controlled by more genes relative to
carotenoids (Wong et al. 2003; Chander et al. 2008; Kandianis et al.
2013), thus making tocochromanols an ideal set of polygenic traits to
evaluate with the K_chr model.

The final set of phenotypes we evaluated included three phenotypes
related to flowering time (i.e., days to pollen, ear height, and ear di-
ameter). Because of their complex genetic architecture and importance
for breeding, flowering time-related phenotypes have been extensively
studied in maize association studies (e.g., Flint-Garcia et al. 2005; Salvi
et al. 2007; Buckler et al. 2009; Thornsberry et al. 2001; Larsson et al.
2013; Romay et al. 2013; Peiffer et al. 2014), yet the characterization of
the vast majority of the loci underlying their genetic variability has
remained elusive. Therefore, it will be critical to determine the extent
to which the K_chr model can identify loci associated with flowering
time, especially those located in regions of high LD.

The genome-wide SNPs used in this study have been previously
described (Lipka et al. 2013; Larsson et al. 2013; Owens et al. 2014).
Briefly, these markers were obtained from the MaizeSNP50 BeadChip
(Cook et al. 2012; available at http://cbsusrv04.tc.cornell.edu/users/
panzea/download.aspx?filegroupid=7), the genotyping-by-sequencing
(GBS) protocol (Elshire et al. 2011; available at http://cbsusrv04.tc.cornell.
edu/users/panzea/download.aspx?filegroupid=5), and several other
SNP genotyping assays (Yu et al. 2006; McMullen et al. 2009). Summary

statistics for these three marker sets are included in Supplemental
Material, Table S1. Upon removal of SNPs that either i) exhibited
minor allele frequency (MAF) of less than 0.05, ii) had low quality
scores, or iii) were not anchored to the B73 RefGen_v2 genome
assembly (removal of such SNPs is critical for the K_chr model),
between 291,939–299,253 SNPs were available for the three pheno-
typic classes (Table 1). To enable direct comparisons with the results
from previous studies, all markers were conservatively imputed with
the major allele prior to the GWAS.

USDA-ARS North Central Regional Plant Introduction Station
(NCRPIS) panel: The second maize diversity panel we analyzed was
the 2815-member NCRPIS panel (described in Romay et al. 2013).
Consisting of�10 times as many individuals as the Goodman diversity
panel, the ability of the NCRPIS panel to detect loci associated with
traits including flowering time and plant height has been demonstrated
(Romay et al. 2013; Peiffer et al. 2014). We analyzed a total of five
publicly available phenotypes in this panel (Table 2). The first of these
was a Mendelian trait, namely sweet corn vs. starchy corn. A GWAS of
this trait conducted in Romay et al. (2013) identified peak associations
for sweet corn vs. starchy corn in a chromosome 4 region containing
the kernel starch biosynthesis gene Su1. Because the selection pressure
of sweet vs. starchy corn resulted in high LD in this genomic region
(Romay et al. 2013), our analysis of this trait enabled a direct compar-
ison of the ability of the K_chr model and the traditional unifiedMLM
to detect associations under elevated LD. The remaining four pheno-
types analyzed were related to flowering time and plant height (i.e., days
to silking, days to anthesis, plant height, and ear height). When ana-
lyzed using the traditional unified MLM in Romay et al. (2013) and
Peiffer et al. (2014), it was demonstrated that the sample size of the

n Table 3 Number of significant associations detected at both 5% and 10% false discovery rates between the K_Chr model and traditional
unified mixed linear model in the Goodman diversity panel

Trait Class
Genetic

Architecture

No. Significant
Associations (5% FDR)

No. Significant
Associations (10% FDR)

No. Significant
Associations Identified
Using K_chr Model
in Novel Regionsa

No. Significant
Associations Identified
Using Traditional MLM

in Novel RegionsbK_Chr Trad. MLM K_Chr Trad. MLM

Carotenoid Polygenic 48 30 82 40 28 0
Tocochromanol Polygenic 110 77 207 146 47 6
Flowering time Complex 0 0 0 0 0 0

FDR, false discovery rate; MLM, mixed linear model; Trad., traditional.
a
A marker that is significantly associated with a trait at 10% FDR when using the K_chr model was declared to be in a novel genomic region if there is no marker
within 6 250 kb that is significantly associated with the same trait at 10% FDR when using the traditional unified MLM.

b
A marker that is significantly associated with a trait at 10% FDR when using the traditional unified MLM was declared to be in a novel genomic region if there is no
marker within 6 250 kb that is significantly associated with the same trait at 10% FDR when using the K_chr model.

n Table 4 Number of significant associations detected at a 5% false discovery rate between the K_Chr model and traditional unified
mixed linear model in the North Central Regional Plant Introduction Station diversity panel

Trait
Genetic

Architecture

No. Significant Associations (5% FDR) No. Significant Associations
Identified Using K_chr Model

in Novel Regionsa

No. Significant Associations
Identified Using Traditional
MLM in Novel RegionsbK_Chr Trad. MLM

Sweet vs. starchy Mendelian 22,600 21,985 18 0
Days to silking Complex 30,590 32,874 97 0
Days to anthesis Complex 17,254 11,564 263 0
Plant height Complex 488 227 33 0
Ear height Complex 2596 1016 311 0

FDR, false discovery rate; MLM, mixed linear model; Trad., traditional.
a
A marker that is significantly associated with a trait at 5% FDR when using the K_chr model was declared to be in a novel genomic region if there is no marker within
6 250 kb that is significantly associated with the same trait at 5% FDR when using the traditional unified MLM.

b
A marker that is significantly associated with a trait at 5% FDR when using the traditional unified MLM was declared to be in a novel genomic region if there is no
marker within 6 250 kb that is significantly associated with the same trait at 5% FDR when using the K_chr model.
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NCRPIS panel was sufficient to identify genomic signals associated
with these complex traits. Thus, our reanalysis of these four pheno-
types made it possible to assess the capability of the K_chr model to
provide further elucidation into the genomic sources of complex
trait variation.

The genome-wide SNP set used to analyze the NCRPIS panel has
been previously described (Romay et al. 2013), and summary statistics
are included in Table S1. Briefly, these markers were obtained using the
GBS protocol (Elshire et al. 2011) and are publicly available at http://
cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=6.
All SNPs with MAF , 0.05 were removed, resulting in between
387,612–391,060 markers that were available for the GWAS. To be
consistent with the procedures conducted in Romay et al. (2013) and

Peiffer et al. (2014), all markers were imputed with the heterozygote
prior to conducting the GWAS.

Evaluation of K_chr in GWAS
TheGWASof the carotenoid, tocochromanol,flowering time, andplant
height traits was conducted using procedures that are similar to those
described in Larsson et al. (2013), Lipka et al. (2013), Romay et al.
(2013), Peiffer et al. (2014), and Owens et al. (2014). The only major
difference was that the K_chr model (described in Rincent et al. 2014)
was used in place of the traditional unified MLM. Briefly, the K_chr
model is stated as follows:

Y ¼ Qv þ Saþ Zuþ e; (1)

where Y is a vector of observed trait values among n individuals, v is a
vector of population substructure effects, Q is a matrix of covariates
relating v to Y , a is a vector of marker effects, S is an incidence
matrix relating a to Y , u is a vector of polygenic effects accounting
for relatedness among the individuals, Z is an incidence matrix re-
lating u to Y , and e is a vector of residual effects. u is a random effect
with variance VarðuÞ ¼ 2KVG, while e is a random effect with vari-
ance VarðeÞ ¼ IVE , where K is a kinship matrix quantifying the de-
gree of relatedness between the individuals,VG is the genetic variance,
I is the identity matrix, and VE is the residual variance. In the tradi-
tional unifiedMLM,marker sets that capture genome-wide variability
are used to calculate both Q and K (Yu et al. 2006). In contrast, the
K_chr model pioneered by Rincent et al. (2014) calculates a separate
kinship matrix for each chromosome. That is, for a given chromo-
some, the kinship matrix is calculated using all markers throughout
the genome except for those that reside on that chromosome. In this
work, we also use a similar approach to obtain separateQmatrices for
each chromosome.

Statistical model specific to the Goodman diversity panel: The
K_chr model, as described in Equation 1, was used for the GWAS in
both diversity panels. In the Goodman diversity panel, all 37,824 non-
industry SNPs from the Illumina MaizeSNP50 BeadChip that were
anchored to a unique B73 RefGen_v2 position except those located on
the chromosome under consideration were used to calculate a Loiselle
kinship matrix (Loiselle et al. 1995) accounting for relatedness and to
obtain principal components (PCs; Price et al. 2006) accounting for
population structure. The unified MLM (Yu et al. 2006) with popula-
tion parameters previously determined (P3D; Zhang et al. 2010) was
then used in the Genome Association and Prediction Integrated Tool
(GAPIT) package (Lipka et al. 2012) in the R programming language
(R Core Team 2015), to evaluate the association between each marker
and trait.

For each trait, the GWAS statistical model was optimized and
marker-trait associations were evaluated using the same procedures
described in Lipka et al. (2013). Briefly, the Bayesian information
criterion (BIC; Schwarz 1978) was implemented to determine the
most favorable number of PCs to include in the model as covariates.
For each evaluated trait, the optimal number of PCs was zero, sug-
gesting that either these evaluated traits were not strongly correlated
with population structure or that the kinship matrix is accounting for
population structure in addition to familial relatedness. The amount
of phenotypic variation explained by the model was evaluated using a
likelihood-ratio-based R2 statistic called R2

LR (Sun et al. 2010). Fi-
nally, the Benjamini and Hochberg (1995) procedure was used to
control the false-discovery rate (FDR) at 5 and 10%. Although the
latter FDR is less conservative and could hence result in increased

Figure 1 Manhattan plots depicting all SNPs significantly associated
with carotenoid (A) and tocochromanol (B) traits at 10% FDR using the
K_chr model located in novel genomic regions. Such a SNP is in a
novel genomic region if there are no SNPs within 6 250 kb signifi-
cantly associated with that same trait at 10% FDR when using the
traditional unified mixed linear model. (A) The X-axis depicts the
B73 RefGen_v2 position along the maize genome and the Y-axis
shows the 2log(10) P-values for each significant SNP at 10% FDR
located in a novel genomic region. The blue dots represent novel
genomic signals for b-xanthophylls/a-xanthophylls, the light orange
dot represents such a signal for a-carotene/zeinoxanthin, and the dark
orange dots represent such genomic signals for zeinoxanthin/lutein.
The minor allele frequencies of the SNPs depicted in the figure range
from 0.09–0.45. (B) The X- and Y-axes are as described in (A). The blue
dot represents novel genomic signals for g-tocopherol/(g-tocopherol +
a-tocopherol), the light orange dots represent such signals for
d-tocotrienol/(g-tocotrienol + a-tocotrienol), the dark orange dots rep-
resent such signals for d-tocotrienol/g-tocotrienol, and the purple dots
represent such signals for a-tocopherol/g-tocopherol. The minor allele
frequencies of the SNPs depicted in the figure range from 0.08–0.48.
The approximate B73 RefGen_v2 positions of relevant biosynthetic
pathway genes are depicted by dotted gray arrows. FDR, false discov-
ery rate; SNP, single nucleotide polymorphism.
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false positive signals, it was nevertheless also considered because of
the limitations in statistical power arising from the relatively small
sample size of the Goodman diversity panel (Lipka et al. 2013; Owens
et al. 2014).

Statistical model specific to the NCRPIS panel: The statistical ap-
proach used to evaluate the K_chr model in the NCRPIS panel was
similar to that used for the Goodman diversity panel with a few
exceptions. To be consistent with the analyses conducted in Romay
et al. (2013) and Peiffer et al. (2014), the VanRaden (2008) method
was used to calculate all kinship matrices using a randomly selected
10% of the appropriate subsets of GBS SNPs, and the compressed
MLM (Zhang et al. 2010) was run in the GAPIT R package (Lipka
et al. 2012). When the two traits from Romay et al. (2013) (i.e., sweet
vs. starchy and days to silking) were assessed, the first five PCs (from
a principal component analysis of the same markers used to calcu-
late the kinship matrices) were included as fixed effect covariates in
the Q matrix. To reflect the GWAS models used in Peiffer et al.
(2014), we substituted the five PCs in the Q matrix with the six
eigenvectors exhibiting the largest eigenvalues from the correspond-
ing kinship matrix to evaluate days to anthesis, plant height, and ear
height. Finally, to account for the adequate sample size of NCRPIS
panel to identify genomic loci associated with complex traits, the
Benjamini and Hochberg (1995) procedure was used to control the
FDR at only 5%.

Assessment of performance of the K_chr model relative
to the traditional unified MLM
To enable a direct comparison of the K_chr approach to the traditional
unifiedMLM, all traits were also evaluated using the traditional unified
MLM as described in Larsson et al. (2013), Lipka et al. (2013), Romay
et al. (2013), Peiffer et al. (2014), and Owens et al. (2014). The results
from the traditional unified MLM were compared to the K_chr model
in two specific scenarios. First, for each trait with at least one statistically
significant marker-trait association found using the K_chr model, the
genomic region within 6 250 kb of each significant marker identified
from the K_chr model was scanned for significantly associated markers
identified (for the same trait) using the traditional unified MLM. In

this evaluation, statistical significance was determined at 10% FDR for
the Goodman diversity panel (to account for deficiencies in statistical
power) and at 5% FDR for the NCRPIS panel. A similar criterion was
used to determine if there were any significantly associated markers
identified by the traditional unified MLM that were not in the vicinity
ofmarkers identified by the K_chrmodel. Additionally, the distribution
of two sets of P-values (for a given trait) from markers within specific
genomic regions, identified in Lipka et al. (2013), Romay et al. (2013),
and Owens et al. (2014) as having peak associations, were compared;
one set was from the K_chr model fitted to eachmarker while the other
set was from the traditional unified MLM fitted to each marker. The
Wilcoxon signed rank test (Wilcoxon 1945) was then used to compare
the resulting two distributions of P-values.

Data availability
To facilitate the implementation of the K_chr model into associa-
tion studies, we provide sample R code on Github (https://github.
com/angelahchen/K_Chr_manuscript).

RESULTS

K_chr model tends to identify more significant marker-
trait associations than the traditional unified MLM
We explored the ability of the K_chr model proposed by Rincent et al.
(2014) to detect genomic signals associated with a variety of agronom-
ically important traits measured in two maize diversity panels. Because
these traits differ in genetic architecture, we were able to systematically
assess the performance of this model for Mendelian (sweet vs. starchy),
polygenic (carotenoid and tocochromanol), and complex (flowering
time and plant height) traits. Furthermore, the contrasting sample sizes
of the two diversity panels enabled us to evaluate the performance of the
K_chr model for both small and large data sets. For each trait, we
compared the number of statistically significant associations identified
using the K_chr model to those detected using the traditional unified
MLM. At a genome-wide 5% FDR, the K_chr model identified more
statistically significant marker-trait associations for the carotenoid and
tocochromanol traits (Table 3), as well as for all traits analyzed in the
NCRPIS panel except for days to silking (Table 4). To account for the

n Table 5 For each indicated trait analyzed in the Goodman diversity panel, the number of significant markers identified by the K_chr
model at 10% false discovery rate that are located in novel genomic regions are presented

Trait Name

No. Significant
Associations in
Novel Regionsa

B73 RefGen_v2 Position of
Nearest Novel Significant

Association to Candidate Geneb
Candidate Gene Name and
B73 RefGen_v2 Positionc

b-Xanthophylls/a-xanthophylls 25 Chr 2: 51,751,723 zep1 - Chr2: 44,440,299-44,449,237
Chr 8: 131,533,827 lcyE - Chr8: 138,882,594-138,889,812

a-Carotene/zeinoxanthin 1 Chr 1: 92,347,976 lut1 - Chr1: 86,838,334-86,848,726
Zeinoxanthin/lutein 2 Chr 1: 92,347,976 lut1 - Chr1: 86,838,334-86,848,726
g-Tocopherol/(g-tocopherol

+ a-tocopherol)
2 NA NA

d-Tocotrienol/(g-tocotrienol
+ a-tocotrienol)

10 Chr 5: 132,656,905 ZmVTE1 - Chr 5: 133,501,928-133,518,495

d-Tocotrienol/g-tocotrienol 30 Chr 5: 133,501,858 ZmVTE1 - Chr 5: 133,501,928 - 133,518,495
a-Tocopherol/g-tocopherol 5 NA NA

For all such markers that are on the same chromosome as an a priori candidate gene, information about the corresponding candidate gene is provided. Chr.,
chromosome; NA, not applicable.
a
A marker that is significantly associated with a trait at 10% false discovery rate (FDR) when using the K_chr model was declared to be in a novel genomic region if
there is no marker within 6 250 kb that is significantly associated with the same trait at 10% FDR when using the traditional unified mixed linear model (MLM).

b
If at least one of the markers significantly associated with a trait at 10% FDR using the K_chr model is located in a novel genomic region on the same chromosome as
a relevant candidate gene, then the B73 RefGen_v2 position of the closest such marker to the candidate gene is reported.

c
When applicable, the name of the nearest candidate gene (as depicted in Owens et al. 2014 and Lipka et al. 2013) as well as their B73 RefGen_v2 ORF (open reading
frame) start and stop bp are reported.
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deficiency in the statistical power to detect genomic signals arising from
the small sample size of the Goodman diversity panel (Lipka et al. 2013;
Owens et al. 2014), we also compared the number of statistically sig-
nificant associations detected from the two approaches at a genome-
wide 10% FDR. At this FDR, more statistically significant associations
for both carotenoids and tocochromanols were also detected using the
K_chrmodel. Collectively, these results suggest that, forMendelian, poly-
genic, and complex traits, the K_chrmodel is capable of detecting a larger
number of associated loci compared to the traditional unified MLM.

K_chr model identifies marker-trait associations in novel
genomic regions
One critical aspect of this analysis was to determine if the K_chr model
detected any genomic signals that were not physically located in the
vicinity of those identified using the traditional unifiedMLM. Thus, for
each trait with at least one statistically significant signal detected by the
K_chr model, we searched for significant associations identified using
the traditional unified MLM (when fitted to the same trait) located
within the neighboring 6 250 kb region of each signal detected using
the K_chr model. When this approach was used to assess the GWAS
results from the Goodman diversity panel, statistical significance
was determined at 10% FDR. Accordingly, the K_chr model identi-
fied 75 signals located in novel genomic regions that were associ-
ated with three carotenoid traits (b-xanthophylls/a-xanthophylls,
a-carotene/zeinoxanthin, and zeinoxanthin/lutein) and four tocochro-
manol traits [g-tocopherol/(g-tocopherol + a-tocopherol), d-tocotrienol/
(g-tocotrienol + a-tocotrienol), d-tocotrienol/g-tocotrienol, and
a-tocopherol/g-tocopherol] (Figure 1, Table 3, and Table 5). Under a
similar criterion, the traditional unified MLM identified six signals asso-
ciated with three tocochromanol traits (a-tocopherol, d-tocopherol/
a-tocopherol, and a-tocopherol/g-tocopherol) that were located in
novel genomic regions (Figure S1, Table 3, and Table S2).

When this analysis was conducted in the NCRPIS panel, statistical
significancewas determined at 5%FDR.Across thefive traits assessed in
thispanel, theK_chrmodeldetecteda totalof722signals located innovel
genomic regions (Figure 2, Table 4, and Table 6). These signals were
distributed throughout the entire genome, the strongest of which was
located on chromosome 8 (associated with days to anthesis at P-value
5.26 · 1027; Figure 2). In contrast to the K_chr model, no statistically
significant signals located in novel genomic regions were identified in
the NCRPIS panel using the traditional unified MLM.

Across all of the traits in which the K_chrmodel identified signals in
novel genomic regions, d-tocotrienol/g-tocotrienol (which was ana-
lyzed in the Goodman diversity panel) had associations in a novel
chromosome 5 genomic region that completely encompassed the
tocochromanol biosynthetic pathway gene ZmVTE1. Within this
region, the peak SNP locus (S5_133501858; 133,501,858 bp; P-value
4.98 · 1027) was located only 70 bp from the ZmVTE1 transcrip-
tional start site. This result is particularly interesting because no
statistically significant marker-trait associations were identified for

Figure 2 Manhattan plot depicting all SNPs significantly associated
with the traits evaluated in the North Central Regional Plant In-
troduction Station panel at 5% FDR using the K_chr model located in
novel genomic regions. Such a SNP is in a novel genomic region if
there are no SNPs within 6 250 kb significantly associated with that
same trait at 5% FDR when using the traditional unified mixed linear
model. The X-axis depicts the B73 RefGen_v2 position along the
maize genome and the Y-axis shows the 2log(10) P-values for each
significant SNP at 5% FDR located in a novel genomic region. The blue
dots represent novel genomic signals for sweet vs. starchy corn, the
light orange dots represent such signals for days to silking, the red
dots represent such signals for days to anthesis, the black dots repre-
sent such signals for plant height, and the purple dots represent such
signals for ear height. The minor allele frequencies of the SNPs
depicted in the figure range from 0.05–0.50. The approximate B73
RefGen_v2 positions of relevant candidate genes and regulatory ele-
ments are depicted by dotted gray arrows. FDR, false discovery rate;
SNP, single nucleotide polymorphism.

n Table 6 For each indicated trait analyzed in the North Central Regional Plant Introduction Station panel, the number of significant
markers identified by the K_chr model at 5% false discovery rate that are located in novel genomic regions are presented

Trait Name

No. Significant
Associations in
Novel Regionsa

B73 RefGen_v2 Position of
Nearest Novel Significant

Association to Candidate Geneb
Candidate Gene/Regulatory

Element Name and B73 RefGen_v2 Positionc

Sweet vs. starchy 18 NA NA
Days to silking 97 Chr 10: 58,673,233 ZmCCT - Chr10: 94,248,710-94,251,264
Days to anthesis 263 Chr 8: 96,929,838 ZCN8 - Chr8: 123,501,085-123,502,873

Chr 8: 150,876,807 ZmRap2.7 - Chr8: 132,044,001
Chr 10: 94,588,819 ZmCCT - Chr10: 94,248,710-94,251,264

Plant height 33 NA NA
Ear height 311 NA NA

For all such markers that are on the same chromosome as an a priori candidate gene or regulatory element, corresponding genomic information is provided. NA, not
applicable; Chr., chromosome.
a
A marker that is significantly associated with a trait at 5% false discovery rate (FDR) when using the K_chr model was declared to be in a novel genomic region if there
is no marker within 6 250 kb that is significantly associated with the same trait at 5% FDR when using the traditional unified MLM.

b
If at least one of the markers significantly associated with a trait at 5% FDR using the K_chr model is located in a novel genomic region on the same chromosome as a
relevant candidate gene or regulatory element, then the B73 RefGen_v2 position of the closest such marker is reported.

c
When applicable, the name of the nearest candidate gene or regulatory element as well as their B73 RefGen_v2 ORF (open reading frame) start and stop bp are
reported.
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this trait when the GWAS was conducted using the traditional unified
MLM (Lipka et al. 2013). Although the biological basis of these
novel signals needs to be rigorously evaluated in future molecular
biology and biochemical studies, these findings nevertheless indi-
cate that the K_chr model is capable of detecting genomic sources
of phenotypic variation on a finer scale relative to the traditional
unified MLM.

K_chr model provides more insight into genomic signals
in high LD regions
We next evaluated the ability of the K_chr model to further elucidate
the sources of genomic variation underlying specific regions harboring
peak GWAS associations for five carotenoid traits (zeinoxanthin,
b-xanthophylls/a-xanthophylls, a-carotene/zeinoxanthin, zeinoxanthin/
lutein, and zeaxanthin), seven tocochromanol traits [d -tocotrienol/
g-tocotrienol, a-tocopherol, d-tocotrienol, d-tocotrienol/(g-tocotrienol +
a-tocotrienol), d-tocopherol/a-tocopherol, g-tocopherol/(g-tocopherol +
a-tocopherol), and a-tocopherol/g-tocopherol], and all five of the traits
analyzed in the NCRPIS panel. All of these genomic regions have
been identified in previous association studies (Lipka et al. 2013;
Owens et al. 2014; Romay et al. 2013). Because the amount of local
LD varied among these genomic regions (as reported in Lipka et al.
2013, Owens et al. 2014, and Romay et al. 2013), our evaluation
enabled a direct comparison of the performance of the K_chr model
to the traditional unifiedMLM under various levels of local LD decay.

To ensure a rigorous assessment of the impact of local LD on the
performance of the K_chr model, three genomic regions in high LD
(i.e., the chromosome 1 region containing lut1, the chromosome 4
region containing Su1, and the chromosome 5 region containing
ZmVTE1) and three genomic regions in lower LD (the chromosome
2 region containing zep1, the chromosome 5 region containing
ZmVTE4, and the chromosome 8 region containing ZCN8 and
ZmRap2.7) were assessed.

Within each of these six genomic regions, we compared the distri-
bution of P-values obtained from the K_chr model to those obtained
using the traditional unified MLM for all markers located inside the
region (Figure 3, Figure S2, Figure S3, Figure S4, Figure S5, Figure S6,
Table 7, and Table 8). For the three genomic regions in high LD,
the K_chr model appeared to yield a distribution of more significant
P-values relative to the traditional unifiedMLM (Wilcoxon signed rank
test P-values ranging from , 2.20 · 10216 to 5.29 · 1022). A similar
result was obtained for the chromosome 8 region harboring significant
associations for the flowering time- and plant height-related traits eval-
uated in the powerful NCRPIS panel. In contrast, the distribution of the
P-values from the two approaches did not differ as much for the markers
that are locatedwithin the genomic regions containing zep1 andZmVTE4
(Wilcoxon signed rank test P-value ranging from 4.29 · 1022 to 8.69 ·
1021). Thus, our findings are consistent with those presented Rincent
et al. (2014), namely that the K_chr model shows a clear advantage in
power over the traditional unified MLM in regions of high LD.

Figure 3 Distribution of P-values obtained from the
K_chr model and traditional unified mixed linear
model (MLM) at six specific genomic regions, each
of which contain at least one candidate gene. Each
graph compares the distribution of P-values from the
K_chr model (red box plot, left) to those from the
traditional unified MLM (blue box plot, right).
The 2log(10) P-values are presented on the Y-axis.
(A) Distribution of P-values from the K_chr model
andMLMwhenmarkers within the chromosome 5 re-
gion surrounding ZmVTE1 were tested for associa-
tion with d-tocotrienol/g-tocotrienol. (B) Distribution
of P-values from the K_chr model and MLM when
markers in the chromosome 1 region surrounding
lut1 were tested for association with zeinoxanthin.
(C) Distribution of P-values from the K_chr model
and MLM when markers in the chromosome 4 region
surrounding Su1 were tested for associations with
sweet vs. starchy corn. (D) Distribution of P-values
from the K_chr model and MLM when markers in
the chromosome 5 region surrounding ZmVTE4
were tested for associations with a-tocopherol. (E)
Distribution of P-values from the K_chr model and
MLM when markers in the chromosome 2 region
surrounding zep1 were tested for associations with
b-xanthophylls/a-xanthophylls. (F) Distribution of
P-values from the K_chr model and MLM when
markers in the chromosome 8 region surrounding
ZCN8 and ZmRap2.7 were tested for associations
with days to silking. For the regions with high local
linkage disequilibrium (LD; i.e., those presented in
A, B, and C), the distribution of P-values from the
K_chr model are noticeably lower than the distribu-

tion presented by the traditional unified MLM. The same trend is observed for the two regions analyzed using data from the powerful North
Central Regional Plant Introduction Station panel (presented in C and F). Finally, the distribution of P-values from the two different models are
more similar in regions of lower LD (presented in D and E) analyzed using data from the smaller Goodman diversity panel.
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DISCUSSION
We compared the performance of the K_chr model to the traditional
unified MLM by running a GWAS on a series of traits contrasting in
genetic architecture in two maize diversity panels. This study was
conducted because the K_chrmodel appears to be an effective approach
for increasing the ability to detect marker-trait associations, while still
controlling for population structure and relatedness in themixedmodel
framework originally proposed in Yu et al. (2006). We clearly demon-
strated that the K_chr model is capable of finding more statistically
significant marker-trait associations than the traditional unified MLM.
In high LD genomic regions where significant signals were found using
the traditional unified MLM (as reported in Lipka et al. 2013, Romay
et al. 2013, and Owens et al. 2014), the K_chr model generally yielded
lower P-values when fitted to the surrounding markers. This result is
exemplified by the novel detection of significant associations between
markers in a high LD genomic region containing the tocochromanol
biosynthetic pathway gene ZmVTE1 and d-tocotrienol/g-tocotrienol.
Because the traits we evaluated encompass a wide variety of fundamen-
tal characteristics of maize, our results suggest that the use of the K_chr
model to identify marker-trait associations could have important nu-
tritional and agronomical implications.

The discrepancy in the ability of the two panels to detect significant
marker-trait associations is best illustrated by comparing the results for
the flowering time-related traits (Table 3 and Table 4). Because of its
complex genetic architecture inmaize (Buckler et al. 2009), detection of
the weak genomic signals underlying flowering time is inherently dif-
ficult. This issue is potentially exacerbated in the Goodman diversity
panel because of its relatively small sample size. Furthermore, the den-
sity of the marker sets we analyzed was most likely insufficient to cover
the LD patterns of the entire genome, especially given the rapid LD
decay in maize (Remington et al. 2001). All of these factors are likely to
have contributed to our inability to discover statistically significant
associations for the flowering time-related traits in the Goodman di-
versity panel. In contrast, both GWAS models identified tens of thou-
sands of statistically significant marker-trait associations for the two
flowering time-related traits evaluated in the NCRPIS panel (i.e., days
to silking and days to anthesis; Table 4). The aspect that most likely
contributed to this result was the increased statistical power available in
the 2815-member NCRPIS panel. Indeed, we were also able to identify
significant associations for another two complex traits (plant height and
ear height), as well as a Mendelian trait (sweet vs. starchy corn) in this
panel. Thus, the most important ramification of the GWAS conducted
in the NCRPIS panel was that it demonstrated the potential of the

K_chr model to provide further elucidation of the genomic sources
of complex and Mendelian traits.

Using specific genomic regions identified in previous studies to have
peak associations with sweet vs. starchy corn, carotenoid traits, and
tocochromanol traits (Lipka et al. 2013; Owens et al. 2014; Romay
et al. 2013), we were able to show that the K_chr model can find more
significant marker-trait associations than the traditional unified MLM
in high-LD genomic regions. In agreement with the findings of Rincent
et al. (2014), our results suggest that the K_chr model should be con-
sidered to be a fundamental approach that could provide the resolution
needed to go after elusive sources of genomic variation located in
pericentromeric and other regions of recombination suppression. Ad-
ditionally, our analysis of the flowering time- and plant height-related
results in the chromosome 8 region containing ZCN8 and ZmRap2.7
suggest that the K_chr model can further refine genomic signals in
lower LD regions if the sample size is sufficiently large. Thus, we rec-
ommend using the K_chr model as a starting point for any association
analysis: after a genomic signal in a high-LD region is identified with
the K_chr model, a chromosome-wide stepwise multi-locus mixed
model (MLMM; Segura et al. 2012) should be conducted on the chro-
mosome where the signal was identified using the same kinship matrix
that was implemented in the K_chrmodel. By using this kinshipmatrix
(instead of the genome-wide kinship matrix typically employed in the
MLMM), it is likely that theMLMMwill have greater power to conduct
a more exhaustive search for multiple loci underlying the signal orig-
inally detected by the K_chr model.

n Table 8 For each genomic region surrounding the indicated a
priori candidate gene or regulatory element that was assessed
using results from the North Central Regional Plant Introduction
Station panel, the Wilcoxon signed rank test is used to compare
the distribution of P-values obtained from the K_chr model to
those from the traditional unified mixed linear model

Su1 ZCN8 and ZmRap2.7

Trait
Analyzed P-Value Trait Analyzed P-Value

Sweet vs.
starchy

, 2.20 · 10216 Days to anthesis , 2.20 · 10216

Days to silking , 2.20 · 10216

Plant height , 2.20 · 10216

Ear height , 2.20 · 10216

For each indicated trait, P-values from the Wilcoxon signed rank test are report-
ed. The genomic region surrounding Su1 is in high linkage disequilibrium (LD),
while the genomic region surrounding ZCN8 and ZmRap2.7 is in lower LD.

n Table 7 For each genomic region surrounding the indicated a priori candidate gene that was assessed using results from the Goodman
diversity panel, the Wilcoxon signed rank test was used to compare the distribution of P-values obtained from the K_chr model to those
from the traditional unified mixed linear model

ZmVTE1 lut1 ZmVTE4 zep1

Trait Analyzed P-Value Trait Analyzed P-Value Trait Analyzed P-Value Trait Analyzed P-Value

d-Tocotrienol , 2.20 · 10216 Zeinoxanthin 5.29 · 1022 a-Tocopherol 8.69 · 1021 Zeaxanthin 2.17 · 1021

d-Tocotrienol/
(g-tocotrienol
+ a-tocotrienol)

, 2.20 · 10216 a-Carotene/
zeinoxanthin

1.25 · 1023 d-Tocopherol/
a-tocopherol

4.29 · 1022 b-Xanthophylls/
a-xanthophylls

1.16 · 1021

d-Tocotrienol/
g-tocotrienol

, 2.20 · 10216 Zeinoxanthin/lutein 4.45 · 1023 g-Tocopherol/
(g-tocopherol
+ a-tocopherol)

7.30 · 1021

a-Tocopherol/
g-tocopherol

2.5 · 1021

For each indicated trait, P-values from the Wilcoxon signed rank test are reported. The genomic regions surrounding ZmVTE1 and lut1 are in high linkage
disequilibrium (LD), while the genomic regions surrounding ZmVTE4 and zep1 are in lower LD.
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Interestingly, a sizeable proportion of the signals detected by the
K_chr model were not in the vicinity of those found by the traditional
unified MLM (Figure 1, Figure 2, Table 3, and Table 4). Although the
criterion we used to determine which signals identified using the K_chr
model were located in novel genomic regions was based on those from
previous maize studies (Salvi et al. 2007; Lipka et al. 2013; Owens et al.
2014), other equally biologically valid criteria could be used to deter-
mine which signals are in novel genomic regions. Furthermore, these
other criteria could result in different conclusions about the proportion
of K_chr signals that reside in novel genomic regions. Coupled with the
fact that long-range LD between markers and ungenotyped causal
mutations could lead to false conclusions about the location of true
genomic signals (Platt et al. 2010; Dickson et al. 2010), our criterion
should only be interpreted as a rough approximation of the amount of
novel genomic regions detected by the K_chr model. As such, we rec-
ommend interpreting our results on the proportion of significant
K_chr associations in novel genomic regions within the context of
the total number of additional significant signals identified using the
K_chr approach. Nevertheless, we were able to use the K_chr model to
detect novel genomic signals on chromosome 5 that were significantly
associated with d-tocotrienol/g-tocotrienol. Because these signals en-
compass the tocochromanol biosynthetic pathway gene ZmVTE1, the
identification of significant marker-trait associations in this region
makes sense from a biochemical perspective. If these novel associations
detected using the K_chr approach can be biologically validated,
then our findings could lead to a more complete understanding of
tocotrienol biosynthesis in maize grain.

The more widespread implementation of the K_chr model in
association studies could have a profound impact on the ability to detect
biologically significant marker-trait associations, especially those that
reside inhighLDregions.Compared to the traditional unifiedMLM, the
K_chr model is likely to find more intricate sources of variation un-
derlyingagenomic signal,whichcouldpave theway toward identifyinga
greater number of causal mutations and haplotypes responsible for the
peak marker-trait associations. Because of this, the use of the K_chr
model could lead to thediscoveryofnovel sourcesof allelic variation that
could both enhance our understanding of the genetic architecture of
important traits and lead to the elucidation of novel targets for marker-
assisted selection.
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