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ABSTRACT

Transcription of protein-coding genes in trypano-
somes is polycistronic and gene expression is
primarily regulated by post-transcriptional mecha-
nisms. Sequence motifs in the untranslated
regions regulate mRNA trans-splicing and RNA sta-
bility, yet where UTRs begin and end is known for
very few genes. We used high-throughput RNA-
sequencing to determine the genome-wide
steady-state mRNA levels (‘transcriptomes’) for
�90% of the genome in two stages of the
Trypanosoma brucei life cycle cultured in vitro.
Almost 6% of genes were differentially expressed
between the two life-cycle stages. We identified 50

splice-acceptor sites (SAS) and polyadenylation
sites (PAS) for 6959 and 5948 genes, respectively.
Most genes have between one and three alternative
SAS, but PAS are more dispersed. For 488 genes,
SAS were identified downstream of the originally
assigned initiator ATG, so a subsequent in-frame
ATG presumably designates the start of the true
coding sequence. In some cases, alternative SAS
would give rise to mRNAs encoding proteins with
different N-terminal sequences. We could identify
the introns in two genes known to contain them,
but found no additional genes with introns. Our
study demonstrates the usefulness of the RNA-seq
technology to study the transcriptional landscape
of an organism whose genome has not been fully
annotated.

INTRODUCTION

Trypanosoma brucei is a protozoan parasite that causes
African trypanosomiasis, commonly referred to as
Sleeping Sickness in humans and Nagana in livestock.
Sleeping Sickness is a vector-borne disease and its trans-
mission among mammalian hosts is mediated by the tsetse
(Glossina ssp.). Like other vector-transmitted parasites,
T. brucei exists in several life-cycle stages. The two
forms most commonly used in laboratory settings are
the so-called bloodstream form (BF), which proliferates
in the bloodstream of the mammalian host, and the
procyclic form (PF), to which the BF differentiates in
the midgut of the tsetse. The large environmental differ-
ences between its mammalian host and the insect vector
require the parasite to undergo extensive cellular remodel-
ing, exchanging the major surface proteins, activating
cytochrome-mediated metabolism in the mitochondrion,
attenuating endocytic activity and displaying differences
in morphology and cell-cycle checkpoints (1,2). Very
little is known about how gene expression is regulated in
trypanosomes.

Unusually for a eukaryote, genes transcribed by RNA
polymerase II (RNA pol II) are arranged in polycistronic
transcription units (3). Individual mRNAs are separated
post-transcriptionally by coupled splicing and poly-
adenylation reactions (4,5). A 39-nt leader sequence is
trans-spliced onto every mRNA (6,7). The arrangement
of functionally unrelated genes in polycistronic transcrip-
tion units has led to the assumption that there is little regu-
lation of gene expression at the level of transcription
initiation. Instead, there is ample evidence that steady-state
mRNA levels are strongly influenced by differences in the
maturation and stability of individual mRNAs (8).
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In yeast and human cells, the rate of mRNA degrad-
ation can be greatly influenced by sequence motifs in the 30

untranslated region (UTR) that are recognized by compo-
nents of the mRNA degradation machinery or factors
contributing to increased RNA stability (9,10). In
T. brucei, sequence elements of 16 nt and 26 nt in the 30

UTR stabilize procyclin mRNAs in PF (11–13).
Incorporation of these sequence motifs into the 30 UTRs
of a reporter gene conferred stage-specific regulation, with
high expression in PF and low expression in BF (12).
Additional regulatory elements have been identified in
the 30 UTRs of genes in T. brucei and related species
(14–17).

Analyses of 50 UTR sequences from several eukaryotes
indicate that highly expressed genes have short 50 UTRs
with a low GC content, and contain no ATG codons (18).
No such correlations have been described for T. brucei,
but two studies demonstrated the role of motifs upstream
of the 50 UTR in trans-splicing efficiency (19,20). In
Crithidia fasciculata, a distant relative of T. brucei, an
octamer motif in the 50 UTR regulates cell-cycle-
dependent levels of certain mRNA (21,22), and a similar
mechanism has been proposed for the cell-cycle regulation
of DOT1b in T. brucei (23).

A systematic genome-wide search for sequence motifs
in UTRs or a correlation of sequence motifs with RNA
stability, as has been done in other eukaryotes, has not
been performed in trypanosomes. The reasons for this are
2-fold: the exact UTRs have been determined for very few
genes and, with the exception of three publications since
the submission of this manuscript (24–26), genome-wide
mRNA levels have not been measured. Earlier
microarray-based analyses of gene expression in
T. brucei either focused on a subset of the genome (27)
or used microarrays generated from random genomic
clones of unknown sequence (28). In the current study,
we used high-throughput sequencing to quantify the tran-
scriptomes for BF and PF and to map 50 and 30 UTRs for
almost 7000 genes.

MATERIALS AND METHODS

Cell lines and culture conditions

PF of T. brucei strain Lister 427 were cultured in SDM-79
(29) containing 10% fetal bovine serum and hemin
(7.5mg/l). Wild-type BF of Lister 427 (MITat 1.2, clone
221a) and a derivative ‘single marker’ line, which expresses
T7 RNA polymerase and the Tet repressor (30), were
grown in HMI-9 medium (31).

RNA isolation, mRNA enrichment and synthesis of
double-stranded cDNA

For each cDNA library, RNA was isolated from �6–
10� 108 BF or PF. Exponentially growing cells were har-
vested (PF at �10 � 106 and BF at �1.0 � 106/ml),
washed with phosphate-buffered saline (PBS) (PF) or
trypanosome dilution buffer (5mM KCl, 80mM NaCl,
1mM MgSO4, 20mM Na2HPO4, 2mM NaH2PO4,
20mM glucose, pH 7.4) (BF) and total RNA was
isolated using an RNeasy Mini Kit (Qiagen). Typically,

we used one RNeasy mini column per �108 cells.
Genomic DNA was removed by an on-column DNase
treatment according to the manufacturer’s instructions.
mRNA enrichment was performed using an Oligotex
mRNA Mini Kit (Qiagen). The enriched mRNA was
ethanol precipitated and resuspended at a concentration
of �1 mg/ml. Double-stranded cDNA was generated from
�9 mg mRNA using a SuperScript� Double-Stranded
cDNA Synthesis Kit (Invitrogen) according to the manu-
facturer’s instructions except that SuperScript III reverse
transcriptase (RT) was used instead of SuperScript II RT.

cDNA fragmentation

cDNA samples were processed using the gDNA sample
preparation kit from Illumina. The cDNA libraries were
sheared by nebulization at 35 psi for 6min, followed by
cleanup with QIAquick PCR purification columns
(Qiagen). This resulted in a distribution of fragments
from �100–1000 bp. End repair of the resultant fragments
was performed with T4 DNA polymerase, Klenow poly-
merase, T4 PNK and dNTP’s in T4 ligase buffer for
30min at 20�C; cleanup of the reactions was performed
with QIAquick PCR purification columns (Qiagen).
A-tailing of the blunt-ended products was performed
using Klenow exo- (30–50 exo minus) and dATP in
Klenow buffer for 30min at 37�C; cleanup was performed
with QIAquick MinElute columns (Qiagen). Standard
gDNA adapters were ligated to the A-tailed fragments
with the supplied ligase and buffer for 15min at 20�C.
Cleanup with QIAquick PCR purification column
(Qiagen) followed. After ligation, fragments were
purified using BioRad Certified Low Range Agarose gel
in 1X TAE. A 150- to 200-bp gel band was excised and
DNA was extracted with the MinElute Gel Extraction Kit
(Qiagen). Eighteen cycles of PCR were performed on the
size-selected templates using Phusion DNA polymerase
(Finnzymes) and supplied PCR primers with initial de-
naturation at 98�C for 30 s, subsequent denaturation at
98�C for 10 s, annealing at 65�C for 30 s, elongation at
72�C for 30 s and a final 5min at 72�C. PCR products
were purified using QIAquick PCR purification columns
(Qiagen) quantified, and sequenced in accordance with the
manufacturer’s protocols.

Alignment of sequence tags and determination of
transcript levels

Fragmented and processed cDNA was sequenced using an
Ilumina (Solexa) sequencer. The sequenced DNA tags (32,
36 or 76 bp in length) were aligned to the T. brucei genome
(version 4) (32) with all members of a gene group masked
except one (Supplementary Table S1). Gene groups were
generated based on sequence homology and open reading
frames (ORFs) within a gene group are �90% identical.
Tag alignment was performed using the Blast Like
Alignment Tool (BLAT) (33) allowing �2 mismatches.
Default parameters were used except for tileSize (the size
of match that triggers an alignment) = 10 bp, stepSize
(spacing between tiles) = 5, minScore (sets the minimum
score and consists of matches minusmismatches minus a
gap penalty) = 30 for 32-bp tags and 34 for 36-bp tags.
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The number of hits per ORF was determined using custom
MATLAB (The MathWorks) scripts.

Statistical analysis

Data from eight sequencing runs were used to compare
BF and PF cells. Counts in each data set were scaled uni-
formly to give the data set a median of 100 counts for a
gene. This number is arbitrary and does not affect the
outcome of the analysis (raw median counts ranged
from 13 to 150). That is, for gene g in biological
replicate i and technical replicate j, the scaled count ~Xij

is given by:

~Xij gð Þ ¼ aij � Xij gð Þ ð1Þ

where aij is the scaling coefficient ensuring median Xij over
genes in a data set is 100. The gene index will be dropped
in the remainder of the description for clarity.
We first established that Poisson statistics accurately

describe variation between technical replicates (34). This
is shown for four technical replicates of PF mRNA in
Supplementary Figure S1. We estimate mean and
variance over technical replicates as:

~X ¼

P
j

~Xij=aijP
j 1=aij

and

Varð ~XtÞ ¼

P
j

~Xij=aij
P

j 1=aij

h i2 ð2Þ

The estimate of the mean is equivalent to weighting
each count by itself, i.e. adding the raw counts, which is
optimal for Poisson-distributed samples. In addition, we
use the fact that the variance of a Poisson distribution
equals its mean. For measurements with 0 count, the
variance was estimated based on a single count to
prevent underestimation of the variance.
Variation between biological replicates is larger than

expected for Poisson noise, with variation between repli-
cates for BF �3� larger than expected from counting
noise alone and �1.15� for PF cells (Supplementary
Figure S2). Overdispersion was assumed to affect all
genes equally. Excess ‘biological’ variance for each obser-
vation was assumed to be additive to counting noise and
distributed accordingly over each data set. For example,
comparing two biological replicates with technical
variance

�2T,i ¼ Var ~Xi

� �
above:

Var ~X1 � ~X2

� �
¼ �12 � �

2
T,1+�

2
T,2

� �
¼ 2 � �2B+�

2
T,1+�

2
T,2

) �2B ¼
�12 � 1ð Þ

2
�2T,1+�

2
T,2

� �

with the observed over-dispersion coefficient, and �2B bio-
logical variance (in contrast to technical noise).
To arrive at mean counts for BF and PF, respectively,

biological replicates were averaged using weights

proportional to 1= �2T+�
2
B

� �
. Finally, statistical significance

of differences in counts between PF and BF was assessed
using a Student’s t-test with the number of degrees of
freedom estimated as

dof ¼
1P

iw
2
i ,wi

¼ ��2i =
X
k

��2k ,

with �2k the effective variance for biological replicate k.
Because the underlying distributions are Poisson, the
variance has the same number of degrees of freedom as
the mean.

Identification of splice-acceptor sites and
polyadenylation sites

The last 14 nt (TCTGTACTATATTG) of the spliced
leader (SL) sequence (AACTAACGCTATTATTAGAA
CAGTTTCTGTACTATATTG) are unique. cDNA
sequence tags (32, 36 or 76 bp) that contained the 14-nt
terminal SL sequence were extracted from the Solexa
output of Lister 427 PF and BF samples described
earlier, and from one random-primed cDNA sample
prepared from PF of strain TREU 927. The SL
sequence was found in a minority of the sequenced tags
and almost exclusively in the sense direction, because of
constraints imposed by the cDNA size-fractionation and
sequencing protocols. All of the SL-matching nucleotides
were stripped from the sequence tags and the di-nucleotide
AG was added to the 50-end of each tag. All of the
genomic matches of 987 777 tag sequences >13-nt long
were identified by BLAT analysis against the T. brucei
genome sequence. Genes annotated ‘hypothetical
protein, unlikely’ were masked; visual inspection sug-
gested most could not encode proteins, as subsequently
confirmed for many (35). For short tags, no mismatches
were allowed [allowing even one mismatch in these short
sequences generated few additional splice-acceptor sites
(SAS) and many false hits]. Two mismatches were
allowed when aligning the 408 305 tags derived from
76-bp sequences. The BLAT output from a total of 15
sequencing runs of the three datasets were cleaned up
using Perl scripts, then imported into FileMakerPro data-
bases that were configured to allow various filters and
calculations to be applied for initial curation of the
matched sequences, with the ultimate aim of identifying
a highly curated set of high-confidence major SAS for
each gene. All imperfect matches, or matches to the
wrong strand in relation to the relevant adjacent gene,
or tags that did not match any relevant gene, probably
because we were analyzing mostly Lister 427 strain data
against the TREU 927 genome sequence, were deleted, as
were all hits linked to RNA genes, retrotransposon hot
spot proteins, pseudogenes and non-chromosome-internal
expression-site-associated genes. Certain features of the
data were more easily assessed in spreadsheet format,
which was performed by exchanging data between
FileMakerPro and Excel. The three different datasets
were merged during curation, but their individual
source-identifier information and data were retained.
This allows any differences between SASs used for the
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same gene in PF versus BF trypanosomes to be evaluated,
although none was identified.

Potential polyadenylation site (PAS)-spanning tags
were extracted from the raw sequence data from 15
Solexa runs, of which six were from cDNA samples spe-
cifically primed with oligo(dT), including four 76-bp
sequence runs. For the same reasons described for the
SAS tag sequences, the vast majority of sequences corres-
ponding to the mRNA 30-end were in the antisense direc-
tion. Sequences that started with at least eight consecutive
Ts were identified, of which 80% came from the oligo(dT)-
primed samples. After removing all of the terminal T
residues, 392 095 tag sequences >15-nt long (30 UTR se-
quences are much less distinct than 50 UTRs, so a longer
minimum aligned length was used) were aligned by BLAT
against the T. brucei genome. As with the SAS data, the
PAS BLAT output was evaluated by applying various
filters to generate a curated set of high-confidence PAS.
After deleting records where the number of hits per tag
was >14 (the maximum copy number of any reiterated
gene) and where the predicted UTR length was
>5000 nt, the number of records was further reduced by
manual curation, which principally involved deleting tags
that did not yield unique genome hits.

Identification of introns

The 76-bp sequence tags were aligned to the genome using
BLAT and allowing three mismatches. Gapped hits within
genes were retrieved using a Perl script and imported into
a Filemaker Pro database. Alignments that spanned
<90 bp, representing <15-bp insertions or deletions
between the sample and genome sequence strains, were
deleted. An apparent anomaly in the BLAT algorithm
was encountered that occasionally assigned erroneous
start or end positions to an alignment, suggesting the
presence of a long gap (potential intron) that was incor-
rect. In some cases, the incorrect alignments were attrib-
utable to repeats within a gene. To refine the identification
of true intron-spanning tag sequences, all of the tags that
BLAT had aligned to supposedly discontinuous regions
were re-aligned with the genome using the non-gapping
Bowtie algorithm (36) and spurious gapped BLAT
matches were thereby identified and eliminated, leaving a
small set of potential intron-spanning alignments for
further evaluation.

RESULTS

Genome-wide analysis of RNA transcript levels
by RNA-seq

Traditional microarray-based transcriptome analyses have
several disadvantages, including the high initial cost of
high-quality genome-wide tiled microarrays for a novel
organism and the lack of precision required for the iden-
tification of 50 SAS and 30 PAS. Other problems
commonly associated with hybridization-based
approaches include cross-hybridization artifacts (37) and
a limited dynamic range (38). We decided, therefore, to
adopt high-throughput cDNA sequencing (RNA-seq),
which has several advantages. RNA-seq can be used for

the genome-wide analysis of RNA levels and for identify-
ing 50 SAS and 30 PAS, it has low background noise, and it
has a large dynamic range that appears to be limited only
by the depth of the sequencing (39).
Total RNA was isolated from PF or BF cells and

enriched for polyA-tailed mRNA. A �20-fold decrease
in 18s rRNA transcript levels compared to b-tubulin
RNA, measured by real time PCR, was typically
achieved after one round of enrichment. mRNA was
transcribed into double-stranded cDNA, which was frag-
mented to a narrow size range, adapters were ligated to
both ends, and the processed cDNA was amplified and
sequenced. The 32- or 36-bp sequence ‘tags’ were
mapped to the genome and the number of tags aligned
to each gene was summed, yielding relative transcript
levels for individual genes. We prepared four cDNA
libraries for PF and three for BF, two from wild-type
and one from ‘single-marker’ (SM) BF cells (30) that
express T7 polymerase and a Tet repressor. Two of the
PF libraries were generated using oligo(dT) primers, but
all other cDNA libraries were primed with random
hexamers and only these were used for expression
analyses. The two cDNA libraries primed with oligo(dT)
over-represented the 30-ends of transcripts by up to
10-fold, and were mainly used to identify 30 PAS. Most
of the libraries were sequenced multiple times for a total of
16 sequence runs (5 BF and 11 PF) (Table 1).
Sequence tags were aligned to the published T. brucei

genome using the BLAT alignment tool, a BLAST-like
alignment algorithm well suited for the alignment of
short tags to genomes of small and intermediate size
(33). To evaluate reproducibility of the RNA-seq technol-
ogy for transcriptome analysis, we determined the number
of sequenced cDNA tags for each ORF in each technical
and biological replicate and compared the values. The
scatter plots and Pearson coefficients of >0.97 indicate a
high degree of reproducibility (Figure 1A and B).
Differences between SM and wild-type BF were not
larger on average than between the two wild-type BF bio-
logical replicates (Figure 1B). Therefore, sequence tags
from BF wild-type and SM cells were combined for the
transcript analysis.
Because uniform sequence coverage is important for

accurate quantification of transcript levels and detection
of low-abundance transcripts, we calculated the average
distribution of sequence tags along all ORFs (Figure 1C)
and for a selection of representative individual genes

Table 1. Enumeration of sequenced tags

Bloodstream form Procyclic form

Biological replicates 3 4
Technical replicates 5 11
Total bases sequenced 727 822 044 5 816 182 540
Tag length 36 bp 32, 36 or 76 bp
Unique tags 11 108 029 12 661 997*
Tags used for expression analyses 5 592 775 7 334 554*

*Excluding the 65 691 627 76-bp tags. Although the majority of these
were unique, because of their length, they were poly(A)-primed and not
used for expression analysis.
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(Figure 1D). These analyses suggested a uniform distribu-
tion of sequence tags throughout the transcript, except for
an �2-fold drop at the 50- and 30-ends. The reason for the
drop is that only unidirectional 32- to 36-bp tag sequences
will be obtained from the ends of the transcripts. Close to
the 50-end of the RNA transcript, only the forward direc-
tion of a 150- to 200-bp cDNA fragment will be repre-
sented in the sequence tags; close to the 30-end of the RNA
transcript, only the reverse direction of a cDNA fragment
will be represented in the sequence tags.

Comparing transcript levels among genes within each life-
cycle stage and between life-cycle stages

Eukaryotic genomes typically contain large regions of re-
petitive elements and numerous families of paralogous
genes. Such situations present a challenge when aligning
short sequence tags to the genome. We will refer to tags
that align to multiple sites in the genome as non-unique
sequence tags. In the past, this problem has been dealt
with by either disregarding genes that contribute to
non-unique sequence tags (38) or by specifically analyzing
the unique regions of those genes (40). Even though the
T. brucei genome is only �30Mb, it contains �100 gene
families. For example, there are 14 copies of histone H2A
and at least 10 for a-tubulin. Because many of the
non-unique sequence tags align to different members of
multi-gene families, we grouped genes based on
homology and then determined the total number of
sequence tags for these different groups of genes. ‘Gene
groups’ were generated by BLAST alignments of ORFs
against each other and then grouping ORFs with >90%
homology together into a gene group (for a list of grouped
genes see Supplementary Table S1). For each gene group,
all but one member was masked, thus allowing sequence
tags only to align to the unmasked member of a gene
group. This approach significantly reduced the problem
of non-unique sequence tags. All remaining non-unique
sequence tags and all corresponding genes were excluded
from the transcript analyses.

To compare transcript levels among genes within a
life-cycle stage, we calculated the number of sequence
tags per kilobase of ORF. For genes with UTRs longer
than 150–200 bp (the average length of the cDNA frag-
ments) the drop in sequence coverage (see above) will fall
into the UTR and will have no effect on the sequence
coverage across the ORF. Because a drop in sequence
coverage would disproportionally affect short genes and
genes with short UTRs, we excluded sequence tags that
aligned to the first or last 150 bp of each ORF and did not
analyze RNA transcript levels of genes shorter than
400 bp (1058 genes). When comparing transcript levels
between BF and PF, where reduced sequence coverage
at the termini of the ORF will have the same effect in
both life cycle stages, we included all genes regardless of
their length.

When comparing RNA abundance among genes within
one life-cycle stage, we were able to determine RNA
transcript levels for 6798 (BF) or 6840 (PF) ORFs.
These numbers exclude masked paralogous ORFs,
ORFs containing repetitive elements, or ORFs shorter

than 400 bp. The distribution of highly expressed and
weakly expressed ORFs was similar between BF and
PF (Figure 2A and B). One drawback of hybridization-
based DNA techniques, like microarrays, is the limited
dynamic range—usually 10- to 100-fold. For the
current RNA-seq experiments, the dynamic range was
almost 106 (Figure 2B). There were many regions where
we detected no transcripts, including at divergent
strand-switch regions, which are sites of probable tran-
scription initiation (41).
Based on analyses of selections of genes, previous

studies estimated the number of life-cycle-regulated
genes at 1–14% of the genome (27,28,42). We compared
transcript levels from BF and PF for 7571 genes
(excluding paralogous ORFs and ORFs for which the
number of non-unique sequence tags was >20% of the
number of unique sequence tags). For P � 0.01 (per
gene, one-sided t-test), we found 221 genes upregulated
>2-fold in BF and 204 upregulated more than 2-fold in
PF (Figure 3A and Supplementary Table S2). Thus, 425
genes (5.6% of all genes) are life-cycle regulated by 2-fold
or more (P � 0.01), which falls within the range reported
previously.
A detailed comparison of our data with previously pub-

lished microarray-based transcription data is not possible
for a lack of a quantitative analysis of fold-regulation (43)
or for a lack of genome-wide analysis (27). However,
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comparing our data to a set of 113 genes that were found
to be stage-specifically regulated in a microarray analysis
(43), we observed striking similarities. There were only
nine genes where our results appeared to differ, in the

degree of regulation, but these differences were not statis-
tically significant (Supplementary Table S3).

Next, we compared our RNA-seq data with microarray
and real-time PCR data previously obtained for a
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selection of genes involved in the ‘strongly regulated
membrane trafficking system’ (27). The RNA-seq data
correlated weakly with the microarray data (n = 92,
R2 = 0.43) but showed good correspondence with
the real-time PCR data (n = 26, R2 = 0.68)
(Supplementary Figure S3).

Transcription in T. brucei is polycistronic, so
life-cycle-dependent differences in RNA abundance
could be due to differences in transcription of individual
PCUs or to differences in post-transcriptional processing
and RNA stability. The former mechanism would presum-
ably lead to a uniform regulation of genes within a given
PCU while the latter would allow regulation of individual
genes. To identify the predominant type of gene regula-
tion, we plotted RNA transcript levels from BF and PF
for individual PCUs (Figure 3B). This revealed a large
degree of variability in terms of life-cycle-dependent regu-
lation for genes within the same PCU, suggesting that
gene expression is indeed predominantly regulated by
post-transcriptional mechanisms.

Identification of trans-splicing sites

Although the majority of inter-transcript regions are
characterized by a sharp reduction in RNA-seq tags,

and mapping these ‘boundary regions’ was used to
define transcript boundaries to a precision of �50 nt for
many genes in yeast (38), the trans-splicing of all trypano-
some mRNAs offered the possibility of precisely mapping
the 50 UTRs and quantifying the use of alternative splice
sites. From all of the sequencing runs, we retrieved 987 800
sequence tags (497 427 unique) that spanned the trans-
splicing junction and retained at least 14 nt of gene-specific
sequence after the SL sequence was removed. The main
criteria used to filter the genome alignment results from
these 50 UTR-defining tag sequences were that they gave
unique (in the sense that the number of hits matched the
appropriate number of genes) perfect matches (or allowing
two mismatches for the 76-bp-derived sequences), on the
correct strand, with at least two hits per SAS. Pseudogenes
were ignored, as were hits that led to UTRs longer than
1999 nt—an arbitrary cutoff, but longer predicted 50 UTRs
probably represent persistent splicing intermediates, or, in
some cases, they could indicate that an unidentified ORF
was present between the SAS and the downstream gene to
which it was assigned. Minor SAS of very abundant tran-
scripts were omitted from the curated dataset.
Using this approach, we were able to identify 10 857

SAS for 6959 genes (Supplementary Table S4). The
average number of significant SAS per gene was 1.6 (2.6
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before very minor hits were edited out of the curated set).
The average 50 UTR length, based on the predominant
SAS when more than one SAS was identified, was
184 bp (median 89 bp), and 80% of 50 UTRs were
shorter than 248 bp (Figure 4A). For most genes, it was
impossible to determine whether any SAS were used dif-
ferentially between life-cycle stages due to limited data for
minor SAS sites and for bloodstream-stage cells. In the
single TREU 927 sample, 298 SAS were identified for
288 genes that were not represented in the Lister 427
samples, which was presumably due to sequence poly-
morphisms or to different patterns of gene expression
between the two strains. It would have been preferable
to be able to analyze data only or mainly from TREU
927, but this was not possible for technical reasons. It
would have been ideal for the Lister 427 genome
sequence to be available, as this is the most widely used
and conveniently manipulated laboratory strain of
T. brucei, but we do not yet have that option.
There were 587 SAS that predicted 50 UTRs <10 nt

in length. The 39-nt SL was not included in the UTR
length calculation, but it is still possible that translation
does not start at the first ATG in these transcripts. There
is no way of predicting this, without a body of experimen-
tal data.
Although an SAS must obviously precede the start of

an ORF, the tagging of a splice site downstream of the
originally predicted ATG indicated that a downstream
in-frame ATG must form the N-terminus of the protein.
There are 488 genes for which 609 SAS predict ORF
start sites internal to the originally predicted ORF. Of
these 488, there are 321 genes where >95% of the pre-
dicted SAS (2–1986 sequence hits per gene) predict
the same in-frame ATG inside the originally predicted
ORF. There are another 167 genes where between
5 and 95% of the SAS tags (5–642 hits per gene)
align downstream of the originally predicted ATG,
indicating that alternative proteins can be produced
from the same gene, one with the originally predicted
(first in-frame) ATG and one that presumably starts at
the next in-frame (or a further-downstream) ATG
(Supplementary Table S5).
In addition, proteomics data (35) suggested that some

trypanosome genes have in-frame ATG codons upstream
of the ones that were assigned during genome annotation.
The existence of an upstream in-frame ATG that was
downstream of at least 90% of the predicted SAS for
178 genes for which we have SAS data suggests that the
ORF for these genes should be revised (Supplementary
Table S5). For the 12 genes where proteomics data were
available, the upstream ATG predicted by the SAS
location was consistent with the proteomics data. There
were another 23 genes where multiple SAS predict the
existence of two alternative forms of the encoded
protein: one as originally predicted and one longer.
Examination of 1768 genes for which we had no SAS
data identified a further 47 genes where the ATG that
would give the longest ORF was upstream of the origin-
ally predicted one. Nine of these are very unlikely to
encode protein extensions because clear polyY tracts

that are probably splicing signals were apparent by
visual inspection of the predicted extension sequences.

Identification of introns

Two T. brucei genes have been reported to contain
introns: Tb927.3.3160, a poly(A) polymerase (44), and
Tb927.8.1510, a DNA/RNA helicase (32).The 35 76-bp
tags that gave gapped alignments for these two genes
(13 for Tb927.3.3160 and 22 for Tb927.8.1510) exactly
spanned their introns (Supplementary Figure S4). There
were 12 additional tags that identified the trans-splicing
site of the first exon and 3 that represented trans-splicing
to the second exon of Tb927.3.3160. There were 18 tags
that defined the correct trans-splicing site and none that
indicated trans-splicing of the second exon of
Tb927.8.1510.

All of the potential intron sequences in other genes were
retrieved and three criteria were applied to identify true
introns: they must terminate in the consensus dinucleo-
tides GT/AG (CT/AC for tags matching the antisense
strand), the majority of tags must accurately predict the
same intron sequence, and the length of the predicted
protein (with the intron removed) must be an integer.
These criteria were only satisfied for Tb927.3.3160 and
Tb927.8.1510.

Although we could accurately identify the introns in the
two genes known to contain them, we did not identify new
examples of cis-splicing in T. brucei. The RNA-seq data
displayed a significant but incomplete fall-off in the intron
region of Tb927.8.1510, but not for Tb927.3.3160, so this
method does not provide a reliable way to identify introns.
Tb927.3.3160 and Tb927.8.1510 are not abundantly ex-
pressed but, by comparing their RNA-seq tag abundance
to the tag abundance for all 6979 genes for which we
identified the trans-splicing site, we calculated that we
should have been able to identify any introns occurring
in 85% of the tagged genes. We would not have identified
introns within the 50 regions of ORFs longer than 3000 bp,
where the signal from the poly-A-primed cDNA used for
the 76-bp runs fell off rapidly, or in genes that are only
expressed in the three life-cycle stages that we could not
examine.

Identification of polyadenylation sites

Alternative polyadenylation sites (PAS) are common in
Leishmania major (4) but contradictory data exist for
T. brucei (3,45). To identify PAS, we identified 392 095
sequence tags (366 829 unique sequences) abutting
polyA8 tails. Using short sequence tags, we were able
to assign PAS sites with high confidence for only 429
abundantly expressed genes, because of the low complex-
ity of 30 UTR sequences. We therefore performed four add-
itional sequencing runs to obtain 76-bp tag sequences.
These allowed us to identify a total of 16 863 PAS for
5948 genes (Supplementary Table S6). For genes that
had >20 PAS tag hits, the average number of PAS was
�10 per gene, indicating the promiscuity of
polyadenylation, although the PAS were generally
grouped in one or more clusters. All sequence tags pre-
dicting 30 UTRs longer than 5000 bp were disregarded, as
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they probably represent stable intergenic transcripts or the
existence of unpredicted intergenic ORFs. The average
predominant 30 UTR length is 604 bp (median: 400 bp)
(Figure 4A). The alternative PAS used by the highly ex-
pressed tubulin genes are quantified in Figure 4B.

DISCUSSION

In this study, we present a genome-wide analysis of RNA
transcript levels in T. brucei. Our data were highly repro-
ducible over a large dynamic range and sensitive enough
to detect RNA transcripts (�5 sequence tags) from over
7282 genes or gene groups, representing �90% of the
T. brucei genome. Based on estimates that a single BF
trypanosome contains �20 000 mRNA molecules (46), de-
tection of five sequence tags per ORF means that the
RNA transcript for that particular ORF is present for
�10% of the BF cell cycle or in 1 of 10 cells.
Furthermore, we compared BF and PF transcript
datasets and found 425 to be regulated by 2-fold or
more. However, a potential problem associated with com-
parative genome-wide analyses of transcript levels is the
lack of a reference point—a gene known to be expressed at
equal levels in both life-cycle stages. For this analysis we
scaled the BF and PF data sets such that the median of
counts per gene is the same in both life cycle stages. A
second challenge is that we do not know the natural vari-
ability of biological replicates, although, as shown in
Supplementary Figure S2, our assumption that biological
variance is proportional to average gene expression level
(as is technical noise) appears reasonable. Seventy-two
genes are common to the top 100 genes expressed in
either the BF or PF life-cycle stages (Supplementary
Table S7).

Since our manuscript was submitted, three
microarray-based analyses of the T. brucei transcriptome
were published (24–26), yielding additional insights into
gene regulation throughout the parasite’s life cycle. Two
of these studies focus on changes in gene expression during
differentiation between slender (dividing) BF, stumpy
(cell-cycle arrested) BF and PF (25,26). The third study
(24) is the most relevant to ours, and reports that 10–25%
of genes are regulated among life-cycle stages. Our lower
estimate of genes expressed differentially can be attributed
to the higher fold-change used as criterion for regulation
and the lower P-value chosen as threshold for significant
regulation in our study. Of the 50 most highly expressed
genes listed (24), 29 were derived from life-cycle stages or
growth states (stationary-phase cultures) that we did not
examine. A total of 12 of the other 21 that were highly
expressed either in BF or PF were in the top 100 genes
expressed in one or both of the life-cycle stages in our
study. None of the microarray-based analyses could
provide UTR or intron information.

mRNA maturation in T. brucei is accompanied by
coupled trans splicing and polyadenylation reactions that
add a SL RNA and a polyA tail to the ends of the 50 UTR
and 30 UTR, respectively. Because UTRs contain import-
ant regulatory motifs, delineating UTRs will be pivotal for
understanding post-transcriptional gene regulation in

T. brucei. So far, SAS and PAS have been determined
only for a relatively small number of genes, in scattered
studies of gene structure and function, and not in any
large-scale systematic study.
In yeast and human cells, high-throughput sequencing

of cDNA has proven to be a powerful tool not only to
determine transcript levels but also to identify novel splice
junctions or to confirm known splice sites (38–40). In the
current study, we mapped sequence tags spanning splice
sites, which enabled us to identify potential SAS for
almost 7000 genes. SAS analysis revealed 321 genes in
which essentially all of the SAS mapped downstream of
the previously assigned initiator ATG, indicating that the
original assignment of the coding sequence to the first
in-frame ATG of the ORF was erroneous for those
genes, which could not have been known without having
identified the SAS. There were about 167 genes where the
identification of alternative SAS would predict the synthe-
sis of varying amounts of the originally annotated proteins
and to alternative versions truncated or extended at the
amino terminus.
Life-cycle-specific alternative SAS used by a reporter

gene expressed from an rRNA locus has been reported
(47), but our SAS data, although not sufficiently extensive
to be conclusive on this point, suggest that
life-cycle-dependent alternative splicing is not a wide-
spread phenomenon in T. brucei. However, we did
observe extensive usage of alternative SAS. It remains to
be seen if the use of alternative SAS simply results from
sloppiness of the splicing machinery or if it contributes to
gene regulation.
ATG codons in the 50 UTR, creating so-called upstream

ORFs, decrease mRNA translation efficiency in many or-
ganisms including T. brucei (20,48,49). The fraction of 50

UTRs containing upstream ATGs ranges from 26% in
Saccharomyces sp. (average length of 50 UTR: 136 bp)
and 37% in humans (160 bp), to 52% in Drosophila sp.
(288 bp) (50), yet we found an upstream ATG in only
19.5% of T. brucei 50 UTRs (average length 232 bp,
median 104, range 0–2000 bp). This is much less than
would occur by chance (almost four per average-length
UTR), suggesting that there is strong active selection
against ATGs in the UTR.
Identification of PAS was more challenging because the

abundance of low-complexity sequences in the 30 UTR
initially made it difficult to identify unique sequence tags
spanning potential PAS. Longer (76 bp) sequencing tags
allowed us to determine potential PAS for almost 6000
transcripts. The data indicate widespread use of alterna-
tive PAS (Figure 4B and Supplementary Table S6). For
histone H3, our PAS data indicate a 30 UTR of 972 bp
(�2.5 times the length of the ORF). This means that tran-
scripts attributed to the gene annotated as ‘hypothetical
protein, unlikely’ (Tb927.1.2540) in a recent study (24)
most likely stem from the 30 UTR of histone H3, as we
have experimentally confirmed by RT-PCR (J. Wright and
G.A.M. Cross, unpublished data). By visual inspection of
their sequences, it seems very probable that few if any of
the genes annotated as ‘hypothetical protein, unlikely’ are
real, which is why we masked them in assigning SAS and
PAS to adjacent genes.
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The SAS and PAS data are publicly available in three
formats. Genome browser tracks indicating the
co-ordinates of all curated SASs and PASs can be
viewed on the TriTrypDB component of EuPathDB
(http://tritrypdb.org/tritrypdb). The alignments of all
987 777 SAS-associated and all 392 095 PAS-associated
sequence tags are mapped on parallel tracks, so minor
SAS, unexplored potential SAS, and alignments that
were excluded during the curation described above can
be compared and could lead to novel discoveries.
High-confidence SAS and PAS data are being used to
reannotate and redefine genes via the TrypDB component
of GeneDB (http://www.genedb.org/genedb/tryp/index.
jsp). Files containing original data, formatted curated
data, and interpretative notes, are available at
http://tryps.rockefeller.edu/trypsru2_genome_analyses.
html.
In the current study, we explored several possibilities of

RNA-seq with respect to transcriptome analysis and
generated genome-wide data on transcript levels and
splice sites. Although RNA-seq data should be able to
identify cases of cis-splicing in trypanosomes (44), we
could independently identify introns only in the two
genes in which they had previously been reported. These
two examples were clear, which leads us to the conclusion
that introns are rare in trypanosome genes, unless they
are over-represented in genes expressed at very low abun-
dance or in life-cycle stages that were not accessible
for the current study. We hope that our data will encour-
age others to perform comprehensive searches for
regulatory motifs in UTRs, and will help to elucidate
the secrets of post-transcriptional regulation of gene ex-
pression in T. brucei.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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