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Supplementary Methods 1 

 2 

Sections 1 and 2 give a detailed account of the model and of the analytical derivations presented in the 3 

main manuscript. All the results presented in Section 1 and 2.1 are well established in the literature; we 4 

have tried to provide detailed derivations based on properties of the multivariate normal density. Readers 5 

interested on further details are referred to [1,2]. To the best of our knowledge, the results presented on 6 

section 2.2., prediction R-squared under imperfect LD between markers and genotypes at causal loci, are 7 

novel. Finally Section 3 gives a complete account of the Bayesian implementation used to fit models. 8 

 9 

1. Genomic BLUP (Best Linear Unbiased Predictor) 10 

 11 

Consider a linear regression on marker covariates of the form, 12 
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where, iy  represents a phenotypic measure taken on the i
th
 individual in the sample (i=1,…,n),  ilw  are 14 

marker covariates (l=1,…,p markers), l  are marker effects and e
i
 are model residuals. Here, we assume 15 

that phenotypes are centered, 0
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unit variance, 
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, where  2,1,0ilx counts the number of copies of one of the alleles 17 

observed at the l
th
 locus of the i

th 
individual and l  is an estimate of the frequency of the allele coded as 18 

one at the l
th
 locus. Centering and standardization are not strictly needed for the arguments we outline to 19 

hold, but the presentation is greatly facilitated. Stacking all the equations for individuals 1 to n, we have: 20 

εWβy      (S.2) 21 

where  iyy ,  lβ  and  iε  represent vectors of phenotypes, marker effects and model 22 

residuals and  ilwW  is a matrix of marker covariates. In a standard Bayesian Gaussian Regression  23 

marker effects are assumed to be IID (independent and identically distributed) draws from a normal 24 
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density  2,0~  N
IID

l , and model residuals are also assumed to be IID normal,  2,0~  N
IID

i , 25 

independent of marker effects. Here, 
2

  and 
2

  represent the prior variance of marker effects and the 26 

variance of model residuals. 27 

Model. The linear score  


p

l lili wu
1

  , the ‘genomic value’, represents the expected value of 28 

the i
th
 phenotype given marker genotypes and marker effects. Replacing this in the data equation (S.1) we 29 

arrive at the following random effects model iii uy  , or in matrix notation 30 

εuy      (S.3)
 31 

where,   nuu ,...,1u . Following standard properties of the multivariate normal density it can be shown 32 

that the joint density of u  is multivariate normal, with mean equal to zero and variance-covariance matrix 33 

proportional to WWG  1p ; therefore,  2,~ uN G0u , with 
22

 pu  . 34 

 Collecting assumptions, the joint distribution of phenotypes, genetic values and model residuals is 35 

given by: 36 
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 Best Linear Unbiased Predictor of Genomic Values. The conditional expectation (CE) is the best 38 

predictor in the mean-squared error sense, and in the model defined by (S.4) the CE of u given y is:  39 
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 40 

where 
22  u   ,   1

 IGT  is a matrix proportional to the inverse of the phenotypic variance-41 

covariance matrix of phenotypes and Tyy ~ is a vector of ‘smoothed’ phenotypes obtained by pre-42 

multiplying y with T. The expected value (over possible realizations of u  and ε ) of the CE formula of 43 
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(S.5a) equal’s the prior expectation of u,        0yGTGTyyu  EEEE ; therefore predictions 44 

derived using (S.5a) are unbiased with respect to the prior expectation. Finally, the predictor in (S.5a) is 45 

linear on y; therefore (S.5a) is the BLUP of u.  46 

 The equation corresponding to the i
th
 entry in the CE vector of (S.5) is given by  47 
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48 

where  


n

k kjkj yTy
1

~
. 49 

 Best Linear unbiased Prediction of Marker Effects. In the model above, marker effects and 50 

phenotypes follow the following MVN density: 51 
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Therefore, the expected value of marker effects given phenotypes is: 53 
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 54 

Above, pu /22   , WWG  1p and   1
 IGT .  It can be shown that predictions of marker 55 

effects given by (S.6) are equivalent to the Ridge Regression [3] estimates,   yWIWWβ 
1ˆ p . 56 

Note. In the derivation of the BLUPs in (S.5) and (S.6) we have assumed that variance 57 

components are known. When variance components are unknown these can be estimated from data using 58 

various methods (e.g., Maximum Likelihood, Restricted Maximum Likelihood or Bayesian Methods, see 59 

Section 2 of this document). However, when variance components are estimated from the data, the CE 60 
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function does not have a closed form and predictions are not linear functions of the data; therefore, 61 

predictions derived when variance components are estimated from the data are not strictly BLUP 62 

anymore. 63 

 Predictions of Yet-to-be Observed Phenotypes. Consider a partition of the vectors in eq. (S.3) 64 

into two disjoint sets  111 ,, εuy  and 222 ,, εuy , pertaining to the training (TRN) and testing (TST) data 65 

sets, respectively, so that:  66 
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The joint density of phenotypes in TRN and TST data sets is then given by the following MVN density: 68 
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 70 

where 11G  and 22G  represent matrices describing genomic relationships among individuals of the TRN 71 

and TST data sets, respectively, and 1221 GG   is a matrix describing genomic relationships between 72 

individuals in the TST and those in the TRN data set.  From equation (S.8) the expected value of 73 

phenotypes in the TST data set given the phenotypes in the TRN data set is, 74 
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 75 

Above,   1

111


 IGT is a matrix proportional to the inverse of the (co)variance matrix of phenotypes 76 

in the TRN data set. A scalar version of (S.9a) is given by the following linear score (hereinafter, we 77 

assume that the TRN data set includes n individuals and, without loss of generality, we present prediction 78 

equations and other expression pertaining genetic values or phenotypes in the TST data set using sub-79 

index n+1 to stress that such expression pertains to observations not included in the TRN data set): 80 
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81 

Therefore, predictions in G-BLUP are simply weighted sums of (pre-smoohted) phenotypes of the 82 

individuals in the TRN data set, with weights given by the realized genomic relationships between 83 

individuals in TRN and TST data sets  n

iinG
1,1  . 84 

 85 

2. Measures of Prediction Accuracy in G-BLUP 86 

 87 

The variance of prediction errors, or prediction error variance (PEV), is commonly used in prediction 88 

problems to assess the predictive power of an entertained model. In case of prediction of yet-to-be-89 

observed phenotypes, variance-covariance matrices of prediction errors of genetic values and of 90 

phenotypes are given by  91 
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, respectively. The next sub-section presents expressions for prediction error variances and co-variances 

95 

under the assumptions of the model.
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2.1. Case 1: when genotypes at causal loci are known (i.e., perfect LD between markers and QTL) 99 

 
100 

We begin by assuming that genomic relationship matrices are computed using realized genotypes at 
101 

causal loci. In this case, the model holds, and closed-form formulas for PEV and R
2
 can be derived. The 

102 

results that follow use (S.8) as starting point and standard properties of the multivariate normal density. A 
103 

list of useful results that will be used later is given in Table S1.   
104 

 
105 

Table S1. Useful Results: variances, (co)variances and prediction error variances of genetic values and of 
106 

phenotypes of individuals in the testing data set.
 107 

 Genetic Values Phenotypes 
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Conditional Variances     (S10.c)   122122

2

12 TGGGyu  uVar       (S10.d)   2
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Variance of Cond.  Expectation       (S10.e)     1221
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The first element on the right hand side of (S.10d), is the variance-covariance matrix of prediction errors 109 

of genetic values,     122122

2

122 TGGGyuu  uEVar  ; this is simply the prior variance-110 

covariance matrix of genetic values, 22

2
Gu  minus a quadratic form, given by 1221

2
TGGu , that 111 

quantifies reduction in uncertainty about genetic values of individuals in the TST data set attained by 112 

observing phenotypes of the individuals in the TRN data set. If individuals in TRN and TST data sets, are 113 

independent, i.e., when 0G 21 , the (co)variance of prediction errors of genetic values equals the prior 114 

variance (i.e., there is no statistical learning). The second term in the right-hand-side of (S.10d), 
2

2 I , 115 

represents uncertainty about future phenotypes due to error terms; since these are uncorrelated with the 116 

phenotypes in the TRN data set there is no learning about this component.  117 
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 The diagonal elements of expressions S.10c and S.10d give the PEV of individual genetic values 118 

and of individual phenotypes, respectively, 119 

     (S.10e)                               
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Since T is positive definite 0
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with equality holding only when all the genomic 122 

relationships between individual n+1 and individuals in the TRN data set are equal to zero. 123 

R-squared. The proportional reduction of variance of genetic values accounted for by predictions 124 

is given by the following R-squared (genetic values):  125 
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 A similar R-squared for prediction of phenotypes is: 127 
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The ratio
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(S.12)                              
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Suppose now that all the off-diagonal elements of G11 (i.e., all the ijG such that132 

jinji   ; ),...,1(, ) are zero. In this case T is diagonal and the R-squared formula reduces to133 
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of G11 are expected to be small, but not exactly equal to zero. Relative to the case where the TRN data set 135 

comprise independent TRN phenotypes, the use of correlated TRN phenotypes yields smaller R-squared. 136 

This happens because, other things being equal, the amount of information provided by the TRN data set 137 
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bound to the R-squared; specifically, 139 
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 141 

2.2. Case 2: when genomic relationships are computed using markers (i.e., imperfect LD between 142 

markers and QTL) 143 

In practice, genomic relationships are computed from marker genotypes that are in imperfect LD 144 

with genotypes at causal loci. Further, since the patterns of realized genomic relationships at different sets 145 

of loci (e.g., markers and causal loci) vary across the genome [4], realized genomic relationships at 146 

markers ( inG ,1 ) should be regarded as proxies for the realized genomic relationships at causal loci (147 

inG ,1 ).  148 

When marker-derived genomic relationships are used in place of realized genomic relationships 149 

at causal loci, the assumptions of model (S.8) do not hold. Therefore it is not possible to derive closed-150 

form expressions for prediction R-squared. This problem can be circumvented by deriving a closed form 151 

expression for an upper bound to prediction R-squared. To arrive at this closed form we assume that 152 

genomic relationships realized at causal loci among pairs of individuals in the TRN data set are known. 153 

Essentially, this has the effect of treating matrix T as a known constant. Therefore, we consider only the 154 
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impacts of imperfect LD between markers and QTL that occurs through misspecification of genomic 155 

relationships between individuals in the TST and those in the TRN data set. Predictions in G-BLUP are 156 

given by   

n

i iin yG
1 ,1

~
. Because of the assumption that genomic relationships at causal loci among 157 

individuals in the TRN data set are known, inferences about the iy~ 's, the entries of the vector 158 

  yIGy
1~ 

  , are not affected by imperfect LD between markers and QTL.  159 

Assume that the realized genomic relationships at markers between an individual in the TST data 160 

set (n+1) and all individuals in the TRN data set,  nnn GG ,11,1 ,...,  , can be described using a linear 161 

regression on genomic relationships realized at causal loci,  nnn GG ,11,1 ,...,  , that is 162 

ininnin GbG ,1,11,1    , (i=1,…,n)   163 

whereb
n+1

represents the regression of marker-derived genomic relationships  nnn GG ,11,1 ,...,   on 164 

realized genomic relationships at causal loci  nnn GG ,11,1 ,...,  and x
n+1.i

 represents an error term which 165 

accounts for differences in realized genomic relationships at markers and QTL.  A similar approach was 166 

used before by Yang and co-authors [5]. However, the regression used by these author applied to all the 167 

entries of the relationship matrix, including diagonal and off-diagonal terms. In our case, we focus on 168 

quantifying the effects of imperfect LD that occur through miss-specification of TRN-TST relationships; 169 

therefore the regression is based on the off-diagonal terms only. 170 

Using ininnin GbG ,1,11,1     in (S.9b) we get: 171 
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The term in ,1  is, by construction, orthogonal to the realized genomic relationships at causal loci; 173 

therefore, for large n it is safe to assume that   

n

i iin y
1 ,1

~  approaches zero. Using    
n

i iin y
1 ,1 0~  in 174 

the above expression,      ~
1111 ,1111 yy     nn

n

i iinnn uEbyGbuE . Therefore, the variance of 175 

prediction errors is now given by 176 
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It can be shown (see expression (S10.e) in Table S1) that the variance of the conditional expectation, 178 

  11 ynuEVar , equals the covariance between the true genetic values and the BLUP, 179 

  111, y nn uEuCov . Specifically, from (S10.e) we have: 180 
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, where g
n+1n+1

= G
n+1,1
,...,G

n+1,n{ }¢ is a vector containing the genomic relationships realized at causal loci 182 

between individual n+1 and every individual in the TRN data set. This is simply a scalar version of 183 

(S10.e). Therefore, 184 
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Using   2

1

2

11 )1(12
111   nnn bbb the prediction R

2
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And for prediction of phenotypes we have: 188 
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Therefore, the coefficient 
2

11 )1(
1  nn b , can be regarded as a minimum shrinkage factor on R-191 

squared due to use of marker-derived genomic relationships, as opposed to those realized at causal loci. 192 

This is a minimum shrinkage factor because in its derivation we have assumed that genomic relationships 193 

at causal loci were known for individuals at the TRN data set. Hence, we have 194 

Case 2 (imperfect LD):         2

,1

2

1

2

1

2

,1 )1(1
1 unnnyn RbhR  

                    
(S.14) 195 

Under perfect LD and with infinite sample size, R
n+1,u

2
reaches one. Therefore, the term 196 

 2

1

2

1 )1(1
1  nn bh  can be interpreted as an ‘optimistic’ upper bound on R-squared of predictions of 197 

phenotypes that be attained using G-BLUP type methods. 198 

The term  
2

11 )1(
1  nn b  plays a central role in upper-bounds on R-squared. This coefficient has a 199 

maximum at b
n+1

=1, a case that would occur if markers and causal loci and in perfect LD. Values of 200 

b
n+1

 smaller or larger than one yield   1)1(1 2

11
 nb  , reducing the maximum R-squared that can be 201 

attained.  202 

In practice, the set of causal loci is unknown; however,  an approximation tob
n+1

 can be obtained 203 

by computing realized genomic relationships,  nnn GG ,11,1 ,...,   and G
n+1,1
,...,G

n+1,n{ }, at disjoints sets of 204 

loci and regressing G
n+1,1
,...,G

n+1,n{ } on G
n+1,1
,...,G

n+1,n{ }. We present estimates of these coefficients in 205 

the article and discuss the impact of linkage on this regression by comparing estimates of these 206 

regressions derived using data with related and unrelated individuals. 207 

 208 

1. Bayesian Implementation 209 

 210 

The model described by expression S.4 was implemented with two modifications: (a) the model was 211 

extended by inclusion of an intercept, and (b) variance parameters were treated as unknown and were 212 

estimated from the training data sets. The model was implemented in a Bayesian setting; this requires 213 

assigning prior distributions to the unknown intercept and variance components. The intercept was 214 

assigned a flat prior and variance components were assigned independent Scaled-Inverse Chi-square 215 

densities. Therefore, the joint posterior density of the unknowns was 216 
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       
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where,  .2

.

2 , Sdf 
 denotes an Inverted-Scaled Chi-Squared density for the random variable 

2

.  and 218 

with degree of freedom and scale parameters df and S., respectively. The degree of freedom parameter 219 

was set equal to 5 and the scale was chosen so that the prior expected values of the variance parameters 220 

equals the phenotypic variance (1 in the simulated data and approximately 40 in the real data) times 0.8 221 

for the genomic variance and times 0.2 in case of the residual variance.   222 

 Samples from the posterior density were obtained with a Gibbs sampler that uses an orthogonal 223 

representation of the model (i.e., a random regression on the eigenvectors of G). The algorithm is fully 224 

described in [6,7]. A total of 18,000 samples per run were drawn. Of these, the first 3,000 were discarded 225 

as burn-in. The remaining 15,000 samples were thinned with a thinning interval of 3, yielding total of 226 

5,000 samples to compute Monte Carlo estimates of the unknowns. The software used to carry out 227 

analyses is available upon request to the corresponding author. 228 

 229 
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