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Abstract

Aim

Characterizing tumor heterogeneity with textural indices extracted from 18F-fluorodeoxyglu-

cose positron emission tomography (FDG PET/CT) is of growing interest in oncology. Sev-

eral series showed promising results to predict survival in patients with head and neck

squamous cell carcinoma (HNSCC), analyzing various tumor segmentation methods and

textural indices. This preliminary study aimed at assessing the inter-observer and inter-seg-

mentation method variability of textural indices in HNSCC pre-therapeutic FDG PET/CT.

Materials and methods

Consecutive patients with HNSCC referred in our department for a pre-therapeutic FDG

PET/CT from January to March 2016 were retrospectively included. Two nuclear medicine

physicians separately segmented all tumors using 3 different segmentation methods: a rela-

tive standardized uptake value (SUV) threshold (40%SUVmax), a signal-to-noise adaptive

SUV threshold (DAISNE) and an image gradient-based method (PET-EDGE). SUV and

metabolic tumor volume were recorded. Thirty-one textural indices were calculated using

LIFEx software (www.lifexsoft.org). After correlation analysis, selected indices’ inter-seg-

mentation method and inter-observer variability were calculated.

Results

Forty-three patients (mean age 63.8±9.3y) were analyzed. Due to a too small segmented

tumor volume of interest, textural analysis could not be performed in 6, 11 and 15 cases with

respectively DAISNE, 40%SUVmax and PET-EDGE segmentation methods. Five indepen-

dent textural indices were selected (Homogeneity, Correlation, Entropy, Busyness and

LZLGE). There was a high inter-contouring method variability for Homogeneity, Correlation,
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Entropy and LZLGE (p<0.0001 for each index). The inter-observer reproducibility analysis

revealed an excellent agreement for 3 indices (Homogeneity, Correlation and Entropy) with

an intraclass correlation coefficient higher than 0.90 for the 3 methods.

Conclusions

This preliminary study showed a high variability of 4 out of 5 textural indices (Homogeneity,

Correlation, Entropy and LZLGE) extracted from pre-therapeutic FDG PET/CT in HNSCC

using 3 different contouring methods. However, for each method, there was an excellent

agreement between observers for 3 of these textural indices (Homogeneity, Correlation and

Entropy).

Introduction

Solid malignancies usually show high levels of biologic heterogeneity, in terms of hypoxic and

necrotic regions, variability in cellular proliferation and intra-tumoral angiogenesis. Taking

this heterogeneity into account could help improve patients’ therapeutic management, classify-

ing patients between different risk subgroups [1][2][3].

This could be particularly useful in head and neck squamous cell carcinoma (HNSCC)

which typically presents a high biologic heterogeneity [4][5][6]. HNSCC is the sixth most com-

mon malignancy by incidence worldwide and includes cancers of the oral cavity, oropharynx,

hypopharynx and larynx [7]. Therapeutic strategies rely on usual prognostic factors, such as

the tumour size, nodal involvement and distant metastasis [8][9], the anatomic subsite, or the

human papilloma virus (HPV 16, 18) infection status [10]. Despite aggressive treatment strate-

gies, it presents a high rate of loco-regional recurrence (up to 40%) [11]. Thus predicting

tumor response to therapy remains difficult and could benefit from heterogeneity analysis.

Pre-therapeutic 18F-Fluorodeoxyglucose positron-emission tomography (FDG PET/CT) is

recommended in locally advanced HNSCC to assess remote extension and in order to search

for synchronous cancer [12]. Several studies already suggested its prognostic significance in

selecting patients at risk of recurrence using different standard quantitative parameters, such

as static (SUV = Standardized Uptake Value) or volumetric (MTV = metabolic tumor volume;

TLG = total lesion glycolysis) parameters [13][14][15]. Some tools have recently been devel-

oped to allow radiomics extraction of PET image-derived heterogeneity biomarkers [16].

Therefore, besides standard PET quantitative parameters, textural indices could also have a

prognostic value.

There are some challenges to handle with textural analysis. Indeed, various parameters have

to be settled when calculating textural indices, such as the segmentation method to delineate a

tumor volume of interest, the resampling method, matrix definitions and indices formula. The

robustness of these indices towards those parameters should be evaluated [17]. The correlation

of textural indices between themselves and with standard PET quantitative parameters should

also be considered, since some indices have very similar definitions [18].

Several studies have showed promising results to predict survival in patients with HNSCC,

analyzing various cancer anatomic subsites, tumor segmentation methods and textural indices

[19][20][21]. However, as in other solid cancers, no consensus has been reached in HNSCC on

the best segmentation method to use and on the most adapted textural indices to study.

The objective of this preliminary study was to assess the reproducibility between 2 observers

and the variability between 3 contouring methods when calculating different textural indices

on HNSCC pre-therapeutic FDG PET/CT.

Robustness of 18-FDG PET textural parameters in head and neck cancer
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Materials and methods

The institutional ethics committee of Brest University hospital (Number 2017.CE25) approved

this study and all patient signed a written consent form.

Patients

Consecutive patients referred for FDG PET/CT for the assessment of a Head and Neck cancer

to the nuclear medicine department of Brest University Hospital (France) were retrospectively

analysed from January 2016 to March 2016. Inclusion criteria were a pre-treatment FDG PET/

CT (at initial staging) and a biopsy proven HNSCC. Patients were excluded if they were less

than 18 years old or if they had a history of head and neck malignancy.

Image acquisition

FDG PET/CT images were acquired on two Biograph-mCT systems (Siemens, Erlangen, Ger-

many) with the same technical features. Patients were required to fast at least 6 hours before

injection so that their serum glucose level would be appropriately low (<7mmol/L for non-

diabetic patients and<9mmol/L for diabetic patients). Images were performed 60 minutes

after injection of approximately 3 MBq/kg of FDG (IBA Molecular Imaging, Saclay, France).

CT scan was obtained first in the craniocaudal direction using a whole-body protocol, 55

seconds after injection of intravenous iodine contrast agent (1.5 mL/kg), without any bolus

tracking, unless contraindicated. CT consisted in a 64-slice multidetector-row spiral scanner

with the following standard parameters: transverse field of view = 700 mm, collimation = 16 x

1.2 mm, pitch = 1, automatic tube potential modulation (carekV), and automatic tube current

modulation (care4D).

PET images were acquired in the craniocaudal direction using a whole-body protocol (2

minutes per step) and were reconstructed using an ordered subset expectation maximization

(OSEM) algorithm (True X = point spread function + time of flight compensation ordered

subset expectation maximization-3D). The images were corrected for random coincidences,

scatter, and attenuation using the CT scan data. PET images were smoothed with a Gaussian

filter (full-width at half-maximum = 2 mm). The reconstruction transaxial matrix size was 200

x 200 voxels with voxel size = 4.07 x 4.07 x 2 mm.

Images analysis

All primary tumors were segmented using 3 different contouring methods by two nuclear

medicine physicians with oncology expertise, independently, creating volumes of interest

(VOI). The 3 different delineation methods consisted in a fixed SUV threshold method, con-

taining voxels equal or greater than 40% of SUV maximum value (40%SUVmax) [22][23], a

signal-to-noise adaptative SUV threshold method (DAISNE) [24], and an image gradient-

based method (PET-EDGE) [25] using MIM software (MIM Software Inc., Cleveland, United-

States).

No spatial discretization was used. Texture analysis was performed after applying an abso-

lute resampling method to voxels intensities with 64 discrete values and bounds set to 0 and 30

SUV, corresponding to the typical range of tumor SUVs encountered in HNSCC [26].

In each VOI, standard PET quantitative parameters were measured (SUVmax, MTV) and

thirty-one textural indices were calculated using LIFEx software (www.lifexsoft.org) [16]

(Table 1). Theses indices were extracted from 4 different matrices which were computed for

each VOI: the Gray-Level Cooccurence Matrix (GLCM), the Gray-Level Run Length Matrix,

the Neighborhood Gray-Level Dependence Matrix (NGLDM) and the Gray-Level Zone

Robustness of 18-FDG PET textural parameters in head and neck cancer
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Length Matrix (GLZLM). GLCM characterizes how often pairs of voxels with specific SUV val-

ues can be found at a specific distance in a specific direction and was computed using a dis-

tance of 1 voxel and 13 directions [27]. GLRLM gives the size of homogeneous runs for each

gray-level and was computed using 13 directions [28]. NGLDM corresponds to the difference

of gray-level between one voxel and its 26 neighbours in 3 directions [29]. GLZLM gives the

size of homogeneous zones for each gray-level in 3 dimensions [30]. Textural indices could

only be computed by the software for VOI equal or greater than 64 voxels, corresponding to a

minimum volume of 2.12ml (voxel size of 4.07x4.07x2mm) and containing only one cluster.

For VOI containing more than one cluster, the most representative one was manually selected

by the operator based on its uptake intensity and volume.

Statistical analysis

Correlations between textural indices and standard PET quantitative parameters were esti-

mated using Pearson coefficients. Pairs of features with a Pearson correlation coefficient

higher than 0.8 were considered very highly correlated. Groups of highly correlated parameters

were extracted with the same method as Orlhac et al. [18]. One parameter from each indepen-

dent group was selected for analysis. Bland Altman plots were used to compare VOI between

segmentation methods. Indices variability between contouring methods was analysed for each

selected textural index with Friedman and Wilcoxon tests. Inter-observer reproducibility was

assessed using an intraclass correlation test. Based on Landis and Koch scale, agreement

between operators was considered excellent if the intraclass correlation coefficient (ICC) was

superior to 0.8, great for ICC between 0.61 and 0.8, moderate for ICC between 0.41 and 0.6,

low for ICC between 0.21 and 0.4 and poor for ICC� 0.2. Significance level of p-value was

0.05. Statistics were realized with XLStat software (Addinsoft, Paris, France).

Results

Patients

Between January and March 2016, 43 patients were included. All patients had a whole-body

FDG PET/CT after injection of 3.09 ± 0.14 MBq/kg of FDG. Glucose level prior to the

Table 1. Textural indices.

Matrix Index

Gray-Level Cooccurence Matrix

(GLCM)

Homogeneity, Energy, Contrast_glcm, Correlation, Entropy, Dissimilarity

Gray-Level Run Length Matrix

(GLRLM)

SRE (Short-Run Emphasis), LRE (Long-Run Emphasis), LGRE (Low

Gray-Level Run Emphasis), HGRE (Hign Gray-Level Run Emphasis),

SRLGE (Short-Run Low Gray-Level Emphasis), SRHGE (Short-Run High

Gray-Level Emphasis), LRLGE (Long-Run Low Gray-Level Emphasis),

LRHGE (Long-Run High Gray-Level Emphasis), GLNUr (Gray-Level

Non Uniformity for run), RLNU (Run Length Non Uniformity), RP (Run

Percentage)

Neighborhood Gray-Level Dependence

Matrix (NGLDM)

Coarseness, Contrast, Busyness

Gray-Level Zone Length Matrix

(GLZLM)

SZE (Short-Zone Emphasis), LZE (Long-Zone Emphasis), LGZE (Low

Gray-Level Zone Emphasis), HGZE (High Gray-Level Zone Emphasis),

SZLGE (Short-Zone Low Gray-Level Emphasis), SZHGE (Short-Zone

High Gray-Level Emphasis), LZLGE (Long-Zone Low Gray-Level

Emphasis), LZHGE (Long-Zone High Gray-Level Emphasis), GLNUz

(Gray-Level Non Uniformity for zone), ZLNU (Zone Length Non

Uniformity), ZP (Zone Percentage)

https://doi.org/10.1371/journal.pone.0214299.t001
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acquisition was 6.4 ± 1 mmol/L and 29 patients (67%) received iodine contrast agent. Due to a

too small segmented tumor VOI (<2.12ml), textural analysis could not be performed in 6, 11

and 15 cases with respectively DAISNE, 40%SUVmax and PET-EDGE segmentation methods.

All patients with a too small VOI with either DAISNE or 40%SUVmax also had a too small

VOI with PET-EDGE method so that 28 patients (male = 24, female = 4, mean age ± SD =

64.8 ± 9.8 years) had large enough segmented VOI with the 3 segmentation methods to allow

all features’ calculation (31 textural indices, SUVmax and MTV). Patients’ characteristics are

shown in Table 2.

Correlation analysis

After correlation analysis of each of the 31 textural indices with all the other indices, 9 groups

of highly correlated parameters were extracted. Nine independent textural indices were

selected: Homogeneity, Correlation, Entropy, Busyness, LZLGE, LZHGE, LGZE, HGZE and

GLNUz (Table 3). After correlation analysis of these 9 textural indices with standard PET

quantitative parameters, LGZE and HGZE were significantly correlated with SUVmax (r =

-0.89, p< 0.0001 and r = 0.97, p< 0.0001 respectively) while GLNUz and LZHGE were signif-

icantly correlated with MTV (r = 0.96, p< 0.0001 and r = 0.84, p< 0.0001). Five textural indi-

ces were finally selected: Homogeneity, Correlation, Entropy, Busyness and LZLGE.

Correlation coefficients are shown in Table 4.

Inter-contouring method reproducibility

VOI were significantly different between the 3 segmentation methods. VOI were always higher

with PET-EDGE or DAISNE when compared to 40%SUVmax (bias = 11.0 ± 11.7 and

bias = 6.4 ±, 4.4 respectively for PET-EDGE versus 40%SUVmax and DAISNE versus 40%

SUVmax) (Figs 1 and 2). The difference was less pronounced between PET-EDGE and

DAISNE methods (bias = 4.6 ± 9.0) (Fig 3). An example depicting the VOI segmented with the

3 methods is shown in Fig 4.

Table 2. Characteristics of patients.

Characteristics Patients (n = 28)

Age, y, mean ± SD 64.8 ± 9.8

Sex, M/F 24/4

Tumor location, no. of patients (%)

Oral cavity 8 (28)

Oropharynx 10 (36)

Hypopharynx 6 (21)

Larynx 1 (4)

Extended (� 2 subsites) 3 (11)

AJCC stage, no. of patients (%)

I 0 (0)

II 3 (11)

III 2 (7)

IV 23 (82)

T classification, no. of patients (%)

T1 0 (0)

T2 7 (25)

T3 5 (18)

T4 16 (57)

https://doi.org/10.1371/journal.pone.0214299.t002
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Four of the 5 textural indices, Homogeneity, Correlation, Entropy and LZLGE, were signifi-

cantly different between the 3 contouring methods (p< 0.0001 for each index). Busyness was

not significantly different between the 3 contouring methods (p = 0.52) (Table 5).

The same results were found when comparing separately 40%SUVmax with PET-EDGE

and 40%SUVmax with DAISNE. Concerning PET-EDGE with DAISNE comparison, Homo-

geneity was not significantly different between the 2 contouring methods; the results remained

the same for the 4 other indices (Table 5).

Inter-observer reproducibility

Homogeneity, Entropy and Correlation had an excellent inter-observer reproducibility for the

3 contouring methods with an intraclass correlation coefficient higher than 0.92, 0.90, 0.98

when considering respectively 40%SUVmax, PET-EDGE and DAISNE methods. LZLGE

inter-observer reproducibility was excellent when using 40%SUVmax and DAISNE

(ICC = 0.99 for both methods) and poor when using PET-EDGE (ICC = 0.04). Busyness inter-

observer reproducibility was poor with the 3 methods (ICC = 0.10, ICC = -0.09 and ICC =

-0.003, with respectively 40%SUVmax, PET-EDGE and DAISNE) (Table 6).

Discussion

Evaluating intra-tumoral heterogeneity with textural indices may help thoroughly classifying

patients between different risk subgroups. It would be particularly useful in HNSCC, con-

jointly with usual prognostic factors, to select patients with poor prognosis who would require

intensified therapy [31].

Table 3. Groups of highly correlated indices.

Groups of highly correlated indices Absolute correlation coefficients

mean ± SD

Homogeneity, Contrast_glcm, Dissimilarity, SRE, LRE, RP, Contrast,

SZE, ZP

0.89 ± 0.08

LGZE, SZLGE, LGRE, SRLGE, LRLGE, Energy 0.93 ± 0.08

HGZE, SZHGE, HGRE, SRHGE, LRHGE 0.99 ± 0.01

GLNUz, GLNUr, RLNU 0.94 ± 0.03

Entropy, Coarseness, ZLNU 0.78 ± 0.08

LZHGE, LZE 0.85

Correlation -

Busyness -

LZLGE -

https://doi.org/10.1371/journal.pone.0214299.t003

Table 4. Textural indices correlation coefficient between themselves and with PET standard quantitative parameters (Pearson test).

Parameters SUVmax MTV Homogeneity Correlation Entropy Busyness LZLGE

SUVmax 1 -0.25 -0.69 -0.22 0.33 0.23 -0.48

MTV 1 0.69 0.69 0.55 0.17 0.73

Homogeneity 1 0.67 0.24 -0.15 0.69

Correlation 1 0.52 0.07 0.58

Entropy 1 0.21 0.07

Busyness 1 0.03

LZLGE 1

https://doi.org/10.1371/journal.pone.0214299.t004
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The calculation of textural indices depends on the definition of several parameters. These

parameters include the contouring method and the resampling method. Before analysing the

prognostic significance of textural indices, their variability with regard to these parameters

needs to be assessed. Indeed in HNSCC, no consensus has been reached on the most appropri-

ate indices and parameters to use. The correlation between textural indices and with standard

PET quantitative parameters should also be taken into account [26]. In our study, to limit the

variability to these quantitative parameters, we chose to focus on only one type of tumors,

HNSCC. Then, after correlation analysis, we evaluated the variability of textural indices

between three segmentation methods and their reproducibility between two observers.

We chose to evaluate 3 segmentation methods, 40%SUVmax, DAISNE and PET-EDGE to

contour tumors. VOI segmented with 40%SUVmax were always lower than VOI segmented

with PET-EDGE and DAISNE methods, all the more since the tumor lesion was larger. Fixed

threshold methods such as 40%SUVmax tend to underestimate the tumor volume and there-

fore may not capture regions of extremely low uptake such as necrotic regions. However a

fixed threshold method may also prevent the selection of non-tumor regions close to the

tumor. For textural analysis purpose, a more anatomical segmentation method, such as man-

ual segmentation on CT, could be more appropriate to include the heterogeneity of the tumor

microenvironment. Yet such a method would be less reproducible and much more time-con-

suming. Moreover, we retrospectively calculated the signal to background ratio (SBR). In this

Fig 1. Variability between PET-EDGE and 40%SUVmax method. Bland-Altman plot. (Solid blue line) Bias. (Dashed

blue lines) Bias 95% confidence interval. (Dashed red lines) Difference 95% confidence interval.

https://doi.org/10.1371/journal.pone.0214299.g001
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series, SBR was 23.5 ± 7.4 confirming that tumors were very well distinguishable from the

background.

In our study, no spatial discretization was needed since all the images were acquired with

exactly the same technical features, including the voxel size. We chose an absolute resampling

method to discretize voxels intensities because it was shown to be more appropriate for inter

and intra-patients comparison [32] and to allow both more intuitive indices’ variations to be

observed and better tumor discrimination [26].

Our results showed that most textural indices extracted from pre-therapeutic FDG PET/CT

were very highly correlated between themselves and with standard PET quantitative parame-

ters. After correlation analysis of 33 parameters (31 textural indices, SUVmax and MTV), we

identified 5 independent textural indices: Homogeneity, Entropy, Correlation, Busyness and

LZLGE. This high correlation between textural parameters and standard PET quantitative

parameters was in agreement with previous studies [18]. The high correlation between textural

parameters is partly due to their definition. For example GLRLM and GLZLM are constructed

based on the same principle taking into account either identical voxels in a given axis

(GLRLM) and calculated an average over every axes or identical voxels in a given volume

(GLZLM) [28][30]. The indices extracted from both matrices have identical definitions and

therefore a high probability of being highly correlated. Since textural analysis consists in ana-

lysing the spatial distribution of voxels intensities in a given volume, there is also a possible

correlation of these indices with SUVmax and MTV.

Fig 2. Variability between DAISNE and 40%SUVmax method. Bland-Altman plot. (Solid blue line) Bias. (Dashed

blue lines) Bias 95% confidence interval. (Dashed red lines) Difference 95% confidence interval.

https://doi.org/10.1371/journal.pone.0214299.g002
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Orlhac et al. showed a high correlation within textural indices and with standard PET quan-

titative parameters in patients with metastatic colorectal cancers, small cell lung cancers and

breast cancers [18]. They selected 6 independent textural indices (Homogeneity, Entropy,

SRE, LRE, LGZE and HGZE). Using the same methodology, we also constructed subgroups of

highly correlated parameters and selected 5 independent textural indices of which 2 were iden-

tical, Homogeneity and Entropy. We found a high correlation between SRE, LRE and Homo-

geneity, and between LGZE, HGZE and SUVmax. These results may be explained by the

chosen resampling method [26].

We studied the variability of textural indices between 3 contouring methods, a fixed thresh-

old method (40% of SUVmax), an adaptive threshold method (Daisne) and a method based on

gradients (PET-EDGE). Indeed in PET characterisation of HSNCC, no contouring method

has reached consensus yet [14][33]. In our series, among the 5 selected textural indices, 4

(Homogeneity, Correlation, Entropy and LZLGE) showed a high inter-contouring method

variability, with a significant difference (p<0.0001). Only one index, Busyness, was reproduc-

ible between contouring methods (p = 0.52). Previous studies concerning other types of solid

cancer showed various behaviours of textural indices with regard to contouring methods,

some of them varying greatly. In locally advanced oesophageal cancers, comparing a fixed

threshold (42% of SUVmax) with an adaptive threshold method (FLAB), Entropy showed a

low to intermediate variability and Homogeneity an intermediate to very high variability [34].

In metastatic colorectal, small cell lung and breast cancers, comparing a fixed threshold (40%

Fig 3. Variability between PET-EDGE and DAISNE method. Bland-Altman plot. (Solid blue line) Bias. (Dashed blue

lines) Bias 95% confidence interval. (Dashed red lines) Difference 95% confidence interval.

https://doi.org/10.1371/journal.pone.0214299.g003
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of SUVmax) with an adaptive threshold method (Nestle), Entropy was reproducible, Homoge-

neity varied moderately and Correlation, Busyness and LZLGE varied a lot between the meth-

ods [35][18]. In our study, we found a high variability of 4 out of the 5 selected textural

indices, Homogeneity, Correlation, Entropy, and LZLGE, whereas Busyness was reproducible

between the 3 contouring methods studied. The divergent result for Entropy could be

explained by the chosen resampling method [26]. Regarding Busyness, our different result

may be explained by its orders of magnitude, varying between 1012 and 1015.

Fig 4. Example of VOI delineating a tumor with the 3 segmentation methods. (Turquoise blue) PET-EDGE

segmentation method. (Sky blue) DAISNE segmentation method. (Dark blue) 40%SUVmax segmentation method. (Top

left) FDG PET sagittal slice. (Top right) FDG PET transverse slice. (Bottom left) FDG PET frontal slice. (Bottom right)

SUV histograms. With LIFEx software.

https://doi.org/10.1371/journal.pone.0214299.g004

Table 5. Inter-segmentation method variability (Friedman and Wilcoxon test p-values).

Friedman test

p-value

Wilcoxon test p-value

Parameters 40%SUVmax vs PET-EDGE vs DAISNE 40%SUVmax vs PET-EDGE 40%SUVmax vs DAISNE PET-EDGE vs DAISNE

SUVmax 1 1 1 1

Volume (mL) p<0.0001 p<0.0001 p<0.0001 0.0004

Homogeneity p<0.0001 0.0003 p<0.0001 0.20

Correlation p<0.0001 p<0.0001 p<0.0001 p<0.0001

Entropy p<0.0001 p<0.0001 p<0.0001 0.0002

Busyness 0.52 0.52 0.43 0.78

LZLGE p<0.0001 p<0.0001 0.016 p<0.0001

https://doi.org/10.1371/journal.pone.0214299.t005
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We found an excellent inter-observer reproducibility for 3 selected indices (Homogeneity,

Correlation and Entropy) with the 3 contouring methods (ICC>0.9), and for LZLGE

(ICC = 0.99) with only 2 contouring methods (40%SUVmax and DAISNE). On the contrary,

Busyness was poorly reproducible (-0.09<ICC<0.1) regardless of the contouring method.

This result could also be explained by its orders of magnitude. Selecting a robust textural index

in terms of inter-observer reproducibility is fundamental before assessing its prognostic value

in further studies.

There are several limitations to our study.

Firstly, our study concerned a small number of patients. Indeed, this was a preliminary

study to evaluate the robustness of textural indices extracted from FDG PET/CT in HSNCC.

Our results should be confirmed on larger cohorts of patients.

Secondly, small tumours were an issue in textural analysis as showed in previous studies

[36]. Textural indices could not be calculated in 11 (25%), 15 (34%), and 6 (14%) patients with

respectively 40%SUVmax, PET-EDGE and DAISNE contouring method, because of too small

delineated VOI. Textural analysis was performed with the 3 methods by the 2 observers in 28

patients (65%). The required minimum volume for analysis was 2.12ml in our study. This is

consistent with previous reports focusing on several types of cancers that also fixed a mini-

mum volume, varying from 3 to 5ml [37][36][38], thus only slightly higher than ours. Increas-

ing the number of voxels contained in a VOI would require the acquisition of high definition

images, but this would be more time-consuming and difficult to use in routine.

Thirdly, delineated contours could consist of more than one cluster, when using fixed or

adaptive threshold contouring methods. Since texture calculation requires a closed delineated

contour, with only one cluster, a manual intervention was then needed, either to close the con-

tour with topologic operators or to select the most representative cluster considering its uptake

intensity and volume. Thus, with the most heterogeneous tumours, the risk was greater to

obtain more than one cluster, resulting in a loss of this heterogeneity information by having to

adjust manually the VOI [26]. Gradient-based methods could therefore be preferred in so far

as they result in a single contour. Manual segmentation on CT would also eliminate the prob-

lems of clusters. However, it would be less reproducible between observers and much more

time-consuming. In our study, the inter-observer reproducibility was excellent for 3 out of the

5 selected indices with the 3 contouring methods and the reproducibility was always inferior

with PET-EDGE when compared with 40%SUVmax and DAISNE.

Another limitation in our study was the possible influence of dental artifacts on textural

analysis. Indeed dental artifacts or hardware were present and in the field of view of the tumor

in 8 out of 43 patients (18%). Further studies would need to evaluate this influence specifically.

Finally, in this study, a Gaussian smoothing filter was applied in post-processing. Such

post-processing may alter the results of textural analysis. Nevertheless, we wanted to use the

Table 6. Inter-observer reproducibility (intra-class correlation coefficient).

Parameters 40%SUVmax ICC PET-EDGE

ICC

DAISNE

ICC

SUVmax 1 1 1

MTV 0.99 0.88 0.99

Homogeneity 0.99 0.95 0.99

Correlation 0.92 0.90 0.99

Entropy 0.99 0.92 0.98

Busyness 0.10 -0.09 -0.003

LZLGE 0.99 0.04 0.99

https://doi.org/10.1371/journal.pone.0214299.t006
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same post-processing generally applied in clinical routine by the majority of centres. However,

our results would have to be confirmed with other acquisition protocols and reconstruction

tools.

Conclusion

This preliminary study showed a high variability of 4 out of 5 textural indices (Homogeneity,

Correlation, Entropy and LZLGE) extracted from pre-therapeutic FDG PET/CT in HNSCC

between 3 contouring methods (40%SUVmax, DAISNE, PET-EDGE). However there was an

excellent agreement between observers in calculating Homogeneity, Correlation and Entropy

indices.

Before integrating texture analysis in overall risk stratification in HNSCC, a consensus

should be reached stating which parameters to choose for calculations, particularly the seg-

mentation method to apply. Meanwhile, comparing studies with different segmentation meth-

ods will remain difficult.
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