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Abstract. Artemisinin-based combination therapies are the most effective drugs to treat Plasmodium falciparum
malaria. Reduced sensitivity to artemisinin monotherapy, coupled with the emergence of parasite resistance to all
partner drugs, threaten to place millions of patients at risk of inadequate treatment of malaria. Recognizing the
significance and immediacy of this possibility, the Fogarty International Center and the National Institute of Allergy
and Infectious Diseases of the U.S. National Institutes of Health convened a conference in November 2010 to bring
together the diverse array of stakeholders responding to the growing threat of artemisinin resistance, including scientists
from malarious countries in peril. This conference encouraged and enabled experts to share their recent unpublished
data from studies that may improve our understanding of artemisinin resistance. Conference sessions addressed research
priorities to forestall artemisinin resistance and fostered collaborations between field- and laboratory-based researchers
and international programs, with the aim of translating new scientific evidence into public health solutions. Inspired by
this conference, this review summarizes novel findings and perspectives on artemisinin resistance, approaches for
translating research data into relevant public health information, and opportunities for interdisciplinary collaboration
to combat artemisinin resistance.

INTRODUCTION

Communities combating malaria have new grounds for
optimism, as 40% of the world’s malaria-endemic countries
reported their cases dropping by half over the last decade.1

These recent successes, accompanied by a 15-fold increase
in funding over the last decade, have fueled global interest
in malaria and shifted the world’s focus from controlling to
eliminating this dreadful disease.1,2 Past experiences have
shown that reductions in malaria incidence can be achieved
but are difficult to sustain. Parasite resistance to antimalarial
drugs and mosquito resistance to insecticides both contrib-
uted significantly to the failure of a worldwide campaign to
eradicate malaria in the latter half of the last century3; today,
drug-resistant malaria threatens the global community’s major
recent investment in rolling out effective new drug combina-
tions to replace failed and failing older drugs.
Plasmodium falciparum, which causes the most life-

threatening malaria syndromes, has developed resistance to
almost every class of antimalarial compounds.4 Regional bur-
dens of falciparum malaria can surge dramatically when para-
sites become resistant to commonly used drugs. For instance,
child mortality from falciparum malaria increased significantly
in the 1980s as chloroquine-resistant parasites arrived in sub-
Saharan Africa and spread across the continent.5–6 After
P. falciparum developed resistance not only to chloroquine,
but also to sulfadoxine-pyrimethamine, mefloquine, and other

antimalarial drugs, the World Health Organization (WHO)
recommended artemisinin-based combination therapy (ACT)
as first-line treatment of falciparum malaria. ACT is the com-
bination of artemisinin or an artemisinin derivative (e.g.,
artesunate, artemether, dihydroartemisinin) and a partner drug
(e.g., amodiaquine, mefloquine, piperaquine, lumefantrine)
having a markedly longer half-life in the bloodstream
than artemisinin.
One rationale for ACT is that the highly potent

artemisinins have a rapid onset of action that is accompanied
by a very short half-life. Thus, although a 3-day regimen of
artemisinin precipitously reduces the parasite biomass, the
longer-acting but less potent partner drug is required to kill
any remaining parasites over 1–2 weeks. Importantly, in addi-
tion to its benefits in the treatment of uncomplicated malaria,
artesunate is also more effective than quinine in reducing the
mortality of severe falciparum malaria in Asian adults and in
sub-Saharan African children.7,8 To avoid losing the potency
and live-saving capacity of artemisinins to the development
of resistance, researchers have recommended for years that
artemisinins be used in combined regimens for uncomplicated
malaria. Unfortunately, the use of artemisinin monotherapy
for treatment of uncomplicated malaria continues to be a
common practice in malaria-endemic areas.9

In 2005, a WHO report on reduced susceptibility of
P. falciparum to antimalarial drugs warned against the possi-
bility and danger of artemisinin resistance10; in the following
year, the WHO recommended that artemisinin monotherapy
be eliminated altogether. Although some countries have
enforced the ban,9 many pharmaceutical companies continue
to produce and distribute a variety of artemisinin mono-
therapies to malarious countries with few regulatory obstacles.11

As had been feared, impaired parasite responses to artemisinin

*Address correspondence to Rick M. Fairhurst, Laboratory of
Malaria and Vector Research, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, 12735 Twinbrook
Parkway, Room 3E-10A, Rockville, MD 20852. E-mail: rfairhurst@niaid
.nih.gov

231



monotherapy eventually emerged and are now well-
established in the Cambodia-Thailand border region, a histor-
ical epicenter for the development and spread of antimalarial
drug resistance.12,13 Reduced sensitivity to artemisinins in
turn renders the ACT partner drugs more vulnerable to the
development of resistance. This ominous development, along
with the previous emergence of parasite resistance to all
currently used partner drugs, forecasts that current ACT
regimens will begin to fail. This will lead to recurrent malaria
after treatment of initial malaria episodes, to compromised
efficacy of artemisinin-based treatment of severe malaria,
and to failure of ACTs to eradicate parasites from infected
individuals in malaria control and elimination programs.
Recognizing the significance and immediacy of these chal-

lenges, The Fogarty International Center and the National
Institute of Allergy and Infectious Diseases of the U.S.
National Institutes of Health convened a conference in
November 2010 to bring together the diverse array of stake-
holders affected by the growing threat of artemisinin resis-
tance, including scientists and public health officials who
work in malarious countries at peril. The objectives of the
conference were to 1) review the status of artemisinin resis-
tance and the implications of this finding for malaria control
and elimination efforts; 2) to identify actions and recommen-
dations to slow the spread of resistance and the emergence
of new foci for policymakers, public health officials, regula-
tory agencies and donors; 3) to highlight opportunities and
knowledge gaps where scientific discoveries can mitigate or
eliminate present challenges; and 4) to catalyze and intensify
collaborations between field- and laboratory-based researchers
and health workers, with the aim of accelerating the translation
of new scientific findings to the field in an effort to forestall the
development of artemisinin resistance and avoid its deleterious
consequences on the world’s most vulnerable populations.
Several research groups working in Southeast Asia have

played key roles in detecting the first signs of artemisinin
resistance, which threatens to compromise the efficacy of all
ACTs. These groups are now working to define the geographic
distribution and intensity of this phenomenon through in vivo,
in vitro, and molecular studies. The earliest of these joint
efforts was the “Artemisinin Resistance Confirmation, Char-
acterization and Containment” (ARC3) project, coordinated
in Southeast Asia by WHO starting in 2008, followed by a
workshop and a second round of studies to develop a strategy
for containment of artemisinin resistance, the Artemisinin
Resistance Containment (ARCE) project, also coordinated
by the WHO. More recently, the Tracking Resistance to
Artemisinins Collaboration (TRAC) was established to
better define and map parasite resistance to artemisinin-
based therapies in a series of studies across Southeast Asia
and Africa. With so many gaps in our understanding of
how artemisinin resistance has emerged in the Cambodia-
Thailand border region and how it might spread or inde-
pendently arise in other areas, including Africa, integrated
programs of basic and clinical research like ARC3, ARCE,
and TRAC will be crucial to successfully address this public
health emergency.14 Joint efforts of research groups, policy
makers, and funders will continue to be needed to forestall
widespread ACT failure and to search for new antimalarial
drugs.15 This report summarizes some of the most salient
points presented at the conference and discussed among par-
ticipants over the past year.

Defining artemisinin resistance: A work in progress. Defin-
ing artemisinin resistance is a work in progress and currently
no consensus exists on a standard definition; thus, claims of
artemisinin resistance should be considered with caution.
In vivo studies. Defining artemisinin resistance in human

populations remains a challenge for clinicians, scientists, and
policy makers. The WHO’s working definition “suspects”
or “confirms” artemisinin resistance based on clinical and
parasitological outcomes observed during routine therapeutic
efficacy studies of ACTs or clinical trials of artesunate
monotherapy, respectively.
Suspected resistance. When standard oral regimens of an

ACT are directly administered over 3 consecutive days,
artemisinin resistance is suspected when ³ 10% of patients
still have parasitemia at least 72 hours after initiation of treat-
ment (detected by examining a thick blood film for asexual-
stage P. falciparum parasites). The 72-hour threshold is
presently used because a recent meta-analysis of parasite
clearance times12,16 showed that parasites cleared in £ 72 hours
in 97% of patients if initial parasite density is between 10,000
and 100,000/mL of whole blood.16

Because this definition of suspected artemisinin resistance
is based on a single 72-hour test result, it has important limi-
tations. First, parasite clearance at 72 hours depends on the
initial parasite density. This is because each of the three doses
of artemisinin in an ACT produces a 104-fold reduction in
parasite density during each asexual-stage development cycle.
Therefore, three doses of ACT may not be sufficient to
reduce very high parasite densities (> 100,000/mL of whole
blood) to zero by 72 hours. Second, the definition may have
limited application in some areas where the levels of acquired
immunity are much higher than in Southeast Asia. In such
settings, parasite clearance may be relatively fast,16 and a delay
in parasite clearance from 24 to 48 hours over time may indi-
cate a decline in parasite susceptibility to artemisinin but not
meet the WHO definition of delayed clearance > 72 hours.
Third, because the definition relies on data obtained from a
single 72-hour time point, the microscopist’s skill in detecting
parasitemia on blood films prepared under field conditions
becomes critical. Unfortunately, this type of surveillance activ-
ity is currently not available in much of sub-Saharan Africa
and would require significant investment in establishing and
monitoring sentinel sites. Fourth, because the ACT partner
drug also contributes to parasite clearance, declining efficacy
of this drug may delay parasite clearance. In light of this,
concurrent evaluation of the partner drug’s efficacy may be
warranted in some areas. Fifth, we do not yet know whether
the various artemisinin derivatives in ACTs vary significantly
in their ability to clear parasites during the first 72 hours of
treatment. Finally, 72-hour positivity rates may be overesti-
mated if blood smears are made at more convenient time
points, rather than more accurately at 72 hours after the first
dose of artemisinin is given. In addition, other parameters,
including red cell phenotypes, drug quality, and pharmacoki-
netic profiles can differ between patients and may affect
parasite clearance.
Confirmed resistance. When standard oral regimens of

artemisinin monotherapy (2–4 mg/kg/day) are administered
over 7 consecutive days, and adequate levels of drug are
documented in plasma, the WHO confirms resistance if para-
sites are still present on Day 7 (i.e., at 168 hours), or if para-
sites are present at 72 hours and then recrudesce (i.e., initially
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clear but then reappear as late as day 42).17 In most settings,
it is not practical to hospitalize patients in mosquito-free
environments for 42 days; therefore, parasites that reappear
after initially clearing must be genotyped to confirm that any
recrudescent clone was present at the time of initial treat-
ment. Furthermore, recrudescent infections are not uncom-
mon after 7 days of treatment with artemisinin monotherapy,
even in the absence of artemisinin resistance, with recrudes-
cence rates around 11% at Day 42.18

The WHO recommends that containment activities begin
even when resistance is only suspected, whereas more inten-
sive studies are conducted to confirm artemisinin resistance.
These confirmatory studies are centered on estimating the
parasite clearance rate19,20 while a patient completes a 7-day
regimen of artemisinin alone, or a staggered 5- to 6-day regi-
men of ACT in which the artemisinin component is taken for
the first 3 days (Days 0, 1, and 2), followed by the partner
drug for the next 2 or 3 days or, as more recently used in the
TRAC studies, a full ACT regimen starting on Day 3 (i.e., at
72 hours). These dosing regimens enable investigators to
attribute the parasite clearance rate over the first 72 hours to
artemisinin itself and not the partner drug. Because, in the
absence of resistance, artemisinin results in rapid parasite
clearance, the assessment of a patient’s blood parasite density
every 6 hours until undetectable is an adequately sensitive
measurement. From the loge-linear portion of the parasite
clearance curve, a slope can be calculated. Although there is
presently no slope cutoff for defining artemisinin resistance, a
slowing of the parasite clearance rate over time in any given
region would be highly suggestive.
A potential problem with this approach to defining

artemisinin resistance is that the parasite clearance rate may
be affected by factors other than the intrinsic susceptibility of
a parasite isolate to artemisinin in vivo, or splenic function.21

Other host factors have been postulated to affect the parasite
clearance rate. The effect of hemoglobin E, a hemoglobin
variant carried by up to 50% of Khmer individuals living
in Western Cambodia, on parasite clearance has not been
established. Innate and adaptive immune responses likely
promote parasite clearance, but their contribution to parasite
clearance rates in Southeast Asia is difficult to quantify. This
is because age is not an adequate surrogate for levels of
adaptive immunity (unlike in Sub-Saharan Africa) and robust
in vitro correlates of innate and adaptive immunity have not
yet been identified in Southeast Asian study populations. One
tool to investigate the relative contributions of host and para-
site factors in clearance dynamics is the genotyping of para-
site isolates showing a variety of clearance rates13; in low
transmission settings, genotyping results may reveal that
highly-related parasite clones are present in different patients.
The degree of clustering of parasite clearance rates (fast or
slow) in patients infected with highly-related parasite clones is
a measure of the parasite “heritability” of the clearance phe-
notype. The “heritability” not attributed to parasite genetics
may be caused by host genetics or other factors that have not
yet been identified.
The potential to use measures of post-treatment gameto-

cytemia as in vivo correlates of early-stage artemisinin resis-
tance is presently under investigation. The rationale for
this approach comes from multiple studies of treatment with
older antimalarials, in particular chloroquine and sulfadoxine-
pyrimethamine, which showed higher prevalence and density

of gametocytes with resistant genotypes after treatment.
Of importance, the association was measurable before clin-
ical efficacy had waned22–24; one potential mechanism for
this phenomenon is that partially effective drugs are unable
to clear minor populations of resistant asexual-stage para-
sites and immature gametocytes. Seven to 10 days after
treatment, the pool of circulating mature gametocytes is
then enriched by those that survived drug treatment at an
earlier developmental stage. Where membrane-feeding
assays have been carried out, it was also found that
increased post-treatment gametocytemia translated into
enhanced transmission of drug-resistant parasites from
patients to mosquitoes.25,26

At present, it is not known whether slow clearance of
artemisinin-treated parasites is associated with increases in
gametocyte prevalence, density, or infectivity to mosquitoes.
Recently, however, one study from the Thailand-Myanmar
border has reported that in patients treated with artesunate-
mefloquine, delayed parasite clearance was associated with
increased risk of developing gametocytemia.27 If such increases
are found to be attributable to the artemisinin component
of ACTs, then post-treatment quantification of gametocytes
could be useful in surveillance for artemisinin resistance
and would suggest increased transmissibility of artemisinin-
resistant parasites. Initial screening studies may only require
thick blood smears on Days 7 and 14 after treatment. This
could enable investigators to determine whether sequestered
immature gametocytes (which can be detected on Day 7 as
circulating mature gametocytes) or very early ring forms
(which take 14 days to commit and develop into circulating
mature gametocytes) are developing tolerance to artemisinins.
In vitro studies. A variety of conventional in vitro tests

provide a quantitative measure of the intrinsic susceptibility
of P. falciparum parasites to antimalarial drugs. This is usu-
ally expressed as the IC50, the concentration of drug that
inhibits parasite growth by 50% (as determined by quantify-
ing parasite DNA replication by radioisotopic methods, mon-
itoring the maturation of ring to schizont stage parasites by
microscopy or flow cytometry, counting new ring-stage para-
sites after one cycle of parasite growth and re-invasion, or
quantifying the levels of parasite-specific proteins).28–30 Some
of these standard in vitro assays have produced IC50 values
showing weak or no correlations with the in vivo phenotype
of parasite clearance rate,12,14 suggesting the need for a dif-
ferent type of in vitro test. Research to develop new in vitro
assays to distinguish fast- from slow-clearing P. falciparum

isolates is underway. Modeling methods suggest that the
artemisinin resistance phenotype is associated with the imma-
ture ring stages of parasite development, as opposed to the
mature trophozoite and schizont stages.31 In vitro tests that
focus on the inhibition of ring-stage parasite growth, support
this finding.32–34 If validated as a correlate of delayed clear-
ance in vivo, standardized, high-throughput in vitro methods
for measuring refractoriness of ring forms to artemisinin
could be a valuable surveillance tool.
The mechanism by which artemisinins kill P. falciparum

has not been firmly established. Identifying the mecha-
nism of drug action will likely improve our understanding
of how parasites are becoming more tolerant to artemisinins
and enable us to develop an in vitro assay that effectively
measures artemisinin resistance. There is a growing body
of published and unpublished data on the response of
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P. falciparum parasites to artemisinin.34 When P. falciparum
is exposed to artemisinin in vitro, a fraction of ring-stage
parasites seems to enter a dormant state.32 This has been
demonstrated by pulsing P. falciparum with artemisinin at
doses that seemingly kill all parasites (only pyknotic forms
remain), washing away the drug, and then cultivating the
parasites for up to several weeks. At particular doses and
durations of artemisinin exposure, a fraction of parasites sur-
vive and eventually replicate to levels that can be detected in
blood smears or by flow cytometric methods. P. falciparum
lines that resist artemisinin exposure may therefore include a
higher fraction of slow-clearing parasites that revive from
dormancy compared with fast-clearing parasites.
Molecular marker studies. Molecular markers are particu-

larly useful for large-scale surveillance studies, as they can be
more easily standardized and rapidly deployed than in vivo
and in vitro methods for monitoring resistance.35 In addition,
identification of molecular markers will reveal insights into
the mechanisms of artemisinin drug action and resistance.
Much of the research to identify markers of artemisinin resis-
tance has followed a candidate gene approach, focusing on
genes known to play a role in parasite resistance to other
drugs or genes involved with mechanisms of drug action
(Table 1). Other research efforts have investigated changes
in the expression of parasite genes on exposure to high doses
of artesunate. By this approach, for example, one study has
implicated increased expression in P-Art, a novel protein
of unknown function, in decreased parasite susceptibility to
artesunate in vitro.52,53 Although in vitro evidence has sug-
gested that some candidate gene variants may play a mod-
ulatory role in parasite susceptibility to artemisinins, no
correlations between the presence of these variants and para-
site clearance in vivo was observed in Western Cambodia.54

A comprehensive genome-wide search, as a comple-
mentary approach to other strategies, may help to identify
the parasite genetic determinants of artemisinin resistance.
Although genome-wide association (GWA) studies iden-
tified genetic loci associated with in vitro susceptibility of

P. falciparum to artemisinins,55–57 these loci have not yet
been implicated in slow parasite clearance in patients with
malaria. A recent study found that highly related parasite
clones in multiple patients in Western Cambodia share cor-
respondingly fast or slow parasite clearance rates, suggesting
a parasite genetic contribution to artemisinin resistance.13

These data suggest that the parasite clearance rate is a suit-
able phenotype for GWA and other genomic studies, which
may eventually identify candidate resistance markers to be
validated and used in future surveillance efforts. These
include standard and exploratory bioinformatics analyses
of whole parasite genome sequences.
Mechanisms of artemisinin drug action, and the need for

new antimalarial drugs effective against artemisinin-resistant
P. falciparum. Considerable evidence suggests that the
pharmacophoric peroxide bond in artemisinin undergoes
reductive activation by heme released by hemoglobin diges-
tion in the parasite digestive vacuole.58–60 This irreversible
redox reaction produces carbon-centered radicals or car-
bocations that alkylate heme61 leading to oxidation reactions
that damage parasite membranes.62 Indeed, the activity of
artemisinin is dependent upon hemoglobin digestion,63 con-
sistent with the specificity and efficacy of this drug against
hemoglobin-degrading pathogens.64 Alternatively, it has
been postulated that artemisinin oxidizes parasite FADH2

and parasite redox-active flavoenzymes65 or undergoes reduc-
tive activation in parasite mitochondria,66 both of which are
thought to cause parasite death by an increase in reactive
oxygen species. Yet another possible mechanism is that
artemisinin inhibits PfATP6, a P. falciparum sarcoendo-
plasmic reticulum Ca2+-ATPase (SERCA) homolog.67 While
one study found a correlation between PfATP6 polymor-
phism and reduced in vitro susceptibility to artemisinins of
P. falciparum isolates from French Guiana,68 this correlation
was not observed in another study.62 Artemisinin metabolites
have also been found to alkylate-specific P. falciparum pro-
teins, including a translationally controlled tumor protein
homolog.69 Although these studies have investigated different

Table 1

Summary of genetic polymorphisms that are candidate molecular markers for P. falciparum resistance to artemisinins or ACT partner drugs

Gene ID Chromosome Protein type Polymorphism Associated with resistance to: References

pfcrt
MAL7P1.27

7 Transmembrane
transporter

K76T most important
72, 74, 75,
variant > 6 other SNPs
Splicing variants?

Chloroquine
Amodiaquine
Quinine
Lumefantrine
Artemisinins

36–41

pfmdr1
PFE1150w

5 P-glycoprotein
homologue
(ABC transporter)

5 SNPs (86, 184, 1034, 1042, 1246)
Gene amplification

Chloroquine
Amodiaquine
Mefloquine
Lumefantrine
Quinine
Artemisinins

42–47

pfatp6
PFA0310c

1 Sarco/endoplasmic
reticulum
calcium-dependent
(SERCA) ATPase

2 SNPs L263E (engineered)
S769N (found in field samples
in French Guiana)

Artemisinins 41

G7
PF13_0271

13 ABC transporter Trinucleotide insertion
(found in Thailand)

Artemisinins 48,49

pfmrp1
PFA0590w

1 ABC transporter SNPs Artemisinins
Lumefantrine
Sulphadoxine-pyrimethamine

50,47

pfubp1
PFA0220w

1 Ubiquitin carboxyl
terminal hydrolase

SNPs, indels Artemisinins (in P. chabaudi) 51

pfap2-mu
PFL0885w

12 Clathrin adaptor
protein mu subunit

SNPs Artemisinins (in P. chabaudi) (Hunt and others,
unpublished data)
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mechanisms of artemisinin action, it will be important to pro-
vide conclusive evidence for them and to synthesize the avail-
able data into a model of drug action that operates in vivo.
Elucidating the mechanism of artemisinin action with

greater clarity may improve our understanding of artemisinin
resistance. The key role of hemoglobin digestion in the
mechanism of action of artemisinin63 is consistent with one
hypothesis that the artemisinin resistance phenotype is asso-
ciated with the developmental arrest of immature or early
ring stages of the parasite in which hemoglobin digestion has
only just begun in pre-digestive vacuole compartments.70,71

Other mechanisms that enable parasites to better tolerate the
effects of artemisinin could involve mutations, amplifications,
or altered expression of genes encoding drug targets, drug
transporters, or enzymes and metabolites involved in antago-
nizing drug action. Identifying these molecules could facili-
tate the discovery of new antimalarial drugs that target these
same molecules or other constituents of the biochemical
pathways involved. Promising new compounds may be able
to prevent P. falciparum from entering a quiescent stage
altogether, or greatly prolong the time at which parasites
recrudesce in vitro after artemisinin exposure. A recent study
showed that simply increasing the daily dose of artemisinin
to 6 or 8 mg/kg from 4 mg/kg is not an effective treatment
option, because this dose range does not accelerate parasite
clearance and is associated with transient neutropenia.72 This
finding highlights the importance of identifying antimalarial
compounds with novel mechanisms of action that can effect
similarly dramatic reductions in parasite densities.
The identification of new artemisinin partner drugs for next

generation ACTs is similarly critical, not only to counter
emerging resistance to existing partner drugs but also to pro-
tect the efficacy of artemisinin where resistance to partner
drugs has not arisen. In this respect, new partner drugs with
pharmacokinetic profiles closer to those of the artemisinins
may be useful. Additionally, combinations of new drugs with
longer half-lives may constitute future “single encounter”
therapies. Currently, over 50 projects to develop new antima-
larial drugs are underway73; the next generation of antimalar-
ial compounds is likely to emerge from whole cell screening
and medicinal chemistry based on structure-activity relation-
ships. Novel antimalarial drugs and drug combinations will
require years of safety and efficacy trials, regulatory reviews
and post-marketing surveillance studies before they are
widely available for use in human populations. To prevent or
delay the future emergence of antimalarial drug resistance,
the case for building sustainable approaches for developing
these drugs is compelling. To meet these goals, new antima-
larial drug regimens are likely to include non-artemisinin
drug combinations and may involve triple rather than double
combinations, in which the partner drugs should ideally have
matching pharmacokinetic and pharmacodynamic properties.
Evidence of possible spread or emergence of new foci

of artemisinin-resistant P. falciparum, and current efforts
to contain them. The first well-documented evidence of
artemisinin resistance in patients was only recently reported
from studies conducted along the Cambodia-Thailand border
(Figure 1).12,74 The true origin and present extent of
artemisinin-resistant P. falciparum is unknown and studies
to map its current distribution are underway.75 We do
have some indication, however, that parasite responses to
artemisinin vary across the Greater Mekong Subregion and

may be worsening in some areas. For example, the proportion
of patients in Pailin, Cambodia, who were still parasitemic
after 3 days of dihydroartemisinin–piperaquine treatment
increased from 26% in 2008 to 45% in 2010.14 In another
study, over 40% of patients in Pailin and Tasanh, Cambodia,
were parasitemic after 3 days of artesunate monotherapy.14

Recent studies from the Thai-Myanmar border show a signif-
icant slowing of parasite clearance rates. A small proportion
of the parasite population there has a similar phenotype and
degree of heritability of the slow clearance phenotype as that
in Western Cambodia.76 It is unclear at present whether this
represents spread of artemisinin-resistant parasites from the
original focus to the Thai-Myanmar border or the emergence
of a new focus.
Studies in the Greater Mekong Subregion indicate that

the slowing of parasite clearance rates can be attributed in
part to changes in parasite genetics.13 Although this finding
suggests that mutations conferring artemisinin resistance could
spread to parasite populations in contiguous geographic areas,
this possibility would depend on the fitness cost of the muta-
tions as well as parasite population structure and gene flow.
Indeed, we have no information at present to suggest that
artemisinin-resistant parasitemia is associated with increased
carriage of gametocytes, or whether such gametocytes are
transmissible. The Cambodia-Thailand border region previ-
ously hosted an early population of chloroquine-resistant
P. falciparum parasites, which then spread to sub-Saharan
Africa; parasite resistance to both sulfadoxine and pyrimeth-
amine also arose in Asia and spread to Africa.77,78 Because
artemisinins are used in combination with effective partner
drugs, and their mechanism of action likely differs from those
partner drugs, it is difficult to predict whether the spread of
artemisinin-resistant P. falciparum will follow a similar course.
In collaboration with a wide range of stakeholders, the

WHO recently launched the Global Plan for Artemisinin
Resistance Containment (GPARC). The GPARC is an
ambitious effort to protect ACTs as effective treatments for
P. falciparum malaria. The four pillars of GPARC are 1) stop
the spread of drug-resistant parasites, 2) increase monitoring
and surveillance of antimalarial drug resistance, 3) improve
access to malaria diagnostic testing and rational treatment
with ACTs, and 4) invest in artemisinin-related research.
The proposed containment strategies that comprise pillar 1
of GPARC depend strongly on whether artemisinin resistance
is confined to this region and has not independently emerged
outside of it. The ARCE project, launched in 2008, has tar-
geted its activities to two geographic zones. Zone 1 includes
areas where artemisinin-tolerance has already been detected in
P. falciparum. In Cambodia, these areas comprise the provinces
of Pailin, Battambang, Pursat, and Kampot (population 268,000);
in Thailand, they comprise select areas in the provinces of
Trat (Bo Rai District) and Chanthaburi (Pong Nam Ron and
Soi Dao Districts) that border Western Cambodia (population
112,000). Zone 2, defined as the provinces neighboring Zone 1,
currently comprise an area supporting a population of 11 mil-
lion people where the risk of emerging artemisinin resistance
runs high because of its proximity to Zone 1.
To begin containing artemisinin-resistant P. falciparum,

the ARCE has adopted a multidisciplinary effort involving
1) large-scale distribution of long-lasting, insecticide-treated
nets; 2) free diagnosis and treatment of malaria at the village
level; 3) 24-hour health care facilities to diagnose and treat
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FIGURE 1. Percentages of patients with Plasmodium falciparum parasitemia on Day 3 after treatment with an ACT (2006–2010).
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malaria; 4) intensive post-treatment surveillance for recru-
descent parasites in patients treated for malaria; 5) behavior
change education programs led by “Village Malaria Workers”
to reduce transmission and increase awareness about the
importance of taking drugs correctly; 6) innovative means to
reach mobile populations; 7) concerted efforts to stop the
supply and use of fake and substandard drugs; 8) stringent
measures to stop the supply and use of single drug treatments
(e.g., artemisinin monotherapy); 9) focused screening and
treatment of asymptomatic parasitemic individuals in most
malarious border villages using highly sensitive molecular
diagnostic methods; 10) basic scientific research to develop
new and longer lasting drugs; and 11) operational research to
better mobilize resources for containment.79 All these efforts
have been integrated into an online system that enables the
real-time mapping of P. falciparum-infected individuals at the
village- and, in some cases, house-level.80 Since 2009, the inci-
dence of falciparum malaria has decreased in the target zone
on the Cambodia-Thailand border, suggesting these contain-
ment efforts are having their expected impact.81 However, the
proportion of patients with P. falciparum malaria who are
parasitemic on Day 3 after treatment with an ACT has con-
tinued to rise, suggesting that only the complete elimination
of this pool of parasites is likely to stop the spread of
artemisinin-resistant parasites which is also suggested by
mathematical modelling.82

Although there is no standard formula for malaria elimina-
tion, the focused screening and treatment of parasitemic indi-
viduals will play an essential role, and the use of interventions
other than the standard malaria control measures will cer-
tainly be necessary. Many combinations of interventions have
been proposed, but testing all of them under field conditions
is not feasible. Mathematical modeling can help guide the
selection of malaria control and elimination strategies. Models
have already informed malaria policies and programs; for
instance, the strategy of GPARC to drive malaria incidence
down to elimination levels along the Cambodia-Thailand bor-
der was informed by a mathematical model as the only way to
contain artemisinin-resistant P. falciparum.82

The use of drugs that kill P. falciparum gametocytes
can amplify the impact of other interventions by block-
ing transmission of artemisinin-resistant parasites from
humans to mosquitoes. Primaquine, tafenoquine, and other
8-aminoquinolines effectively kill mature gametocytes.83

Rapid and effective malaria control in Cambodia through
mass administration of artemisinin-piperaquine with low
doses of primaquine has been reported to be effective.84 How-
ever, primaquine, the only licensed transmission-blocking
antimalarial drug, causes intravascular hemolysis in patients
with glucose-6-phosphate dehydrogenase (G6PD) deficiency.
A risk-benefit analysis of the use of primaquine as a mass
drug treatment, based on the prevalence of G6PD deficiency
in the Greater Mekong Subregion, remains incomplete and
is thus a priority for elimination efforts. The occupational
migration of human populations along the Cambodia-
Thailand border is likely to contribute substantially to the
spread of artemisinin resistance. Studies to describe the
movement and health-seeking behaviors of these populations
are essential to reduce the prevalence of P. falciparum infec-
tion in this region and are currently underway.
Another issue jeopardizing efforts to contain artemisinin

resistance is the high prevalence of substandard and coun-

terfeit antimalarial drugs in Southeast Asia, along with the
continued illegal sale of monotherapies.85 Counterfeit and
substandard antimalarial drugs can contain inadequate levels
of active pharmaceutical ingredients.85 Exposure to sub-
therapeutic levels of drugs can drive the selection of drug-
resistant parasite strains.86,87 To prevent this scenario, the
relevant authorities will need to strengthen their efforts at
ensuring drug quality, regulating drug supply, and educating
communities about the hazards of substandard drugs. Tradi-
tionally under-emphasized, the problem of counterfeit and
substandard drugs has come to the forefront of international
health agendas with the emergence of artemisinin resistance.
Collaborations between national drug regulatory authorities,
INTERPOL, the WHO’s International Medical Products
Anti-Counterfeiting Taskforce, the Counterfeit Drug Forensic
Investigation Network, and the U.S. Pharmacopeia are
actively tackling this issue.
Resources for the future. Resources available to manage

and control artemisinin resistance include government public
health offices, academia, research institutions, policy programs,
philanthropic organizations, and the pharmaceutical industry.
With strategic guidance from the Global Malaria Program at
WHO, governments of affected countries are leading imple-
mentation efforts to contain artemisinin resistance. Arte-
misinin resistance research, control, and elimination activities
receive financial contributions from endemic country govern-
ments, Bill & Melinda Gates Foundation, U.K. Department
for International Development, U.S. National Institutes of
Health, U.S. Agency for International Development, Wellcome
Trust of Great Britain, Institute Pasteur, and Global Fund to
Fight AIDS, Tuberculosis, and Malaria, among others.
Surveillance efforts are led by the national malaria control

programs, and the WHO is the entity tracking progress with
surveillance of artemisinin resistance worldwide. Available
surveillance data are being made publicly available on a global
web-based database by the Worldwide Antimalarial Resis-
tance Network (WWARN, http://www.wwarn.org), which has
developed a strong networking and data-sharing agenda. More
specifically, TRAC aims to map the artemisinin resistance
phenotype across Southeast Asia and at sentinel sites in Africa
using clinical research and in vitro experimental protocols that
have been harmonized across sites. This multi-site study is
centered in four provinces in Cambodia and includes sites in the
neighboring countries of Vietnam, Laos, Thailand, Myanmar,
India, and Bangladesh. Numerous groups and institutes are
involved in collaborative research efforts to identify molecular
markers of artemisinin resistance. WWARN (in collaboration
with TRAC) has opened a specimenmanagement center that will
collect valuable clinical samples from surveillance studies and
clinical trial sites, and disseminate them for studies aiming to
identify resistance markers that can serve as tools for surveillance.
The Coordination, Rationalization, and Integration of

Antimalarial Drug Discovery and Development Initiatives
(CRIMALDDI) coordinates malaria research initiatives
in antimalarial drug discovery and development, aligns the
European efforts with international initiatives, engages indus-
try, and provides technical guidance on standardization of
core requirements of regulatory drug development. Opera-
tional research for delivery of subsidized ACTs is being
conducted by the Affordable Medicines for Malaria (AFMm)
group in partnership with Population Services International.
Drug discovery efforts are global, with notable efforts from
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the Medicines for Malaria Venture as they support the
discovery, development, and delivery of new, effective, and
affordable antimalarial drugs. Vector control efforts, includ-
ing large-scale insecticide-treated bed nets and indoor
residual spraying, are being carried out by endemic country
governments. Modeling efforts to guide containment strate-
gies have increased, and collaboration between groups can
harness the synergistic value of different approaches. Because
little is known about the mechanism of artemisinin resistance
and no estimates exist on related morbidity and mortality
if this phenotype spreads, modeling efforts are particularly
useful to guide future planning. This is not a comprehensive
list of resources; many other players are directly and indi-
rectly supporting containment efforts in the Greater Mekong
Subregion. As the risks of this public health problem escalate,
the need for a secure common platform to compile sensitive
data, harmonize data sets, and build a coordinated global
effort to mobilize the malaria community also grows.
Emergent issues and the way forward. Emerging arte-

misinin resistance on the Cambodia-Thailand border and the
risks it poses to global efforts to eliminate malaria are
widely recognized. A containment strategy spearheaded by
WHO/GPARC is in place, but a targeted response will
require that many unknowns be addressed first. The research
agenda for artemisinin resistance outlines the urgent need for
success in conducting in vivo parasite clearance rate studies,
developing new ex vivo and in vitro antimalarial drug response
assays, discovering molecular markers for resistance, creating
rapid tests to measure drug quality, and discovering treatments
that kill artemisinin-resistant parasites and block their trans-
mission to mosquitoes (Table 1).
Responding to these needs involves raising awareness,

being proactive, screening for early evidence of artemisinin
resistance outside Southeast Asia, and building research and
implementation networks within and outside the malaria

community (Table 2). Challenges exist in establishing high-
functioning collaborations, and coordinating and publicizing
research, surveillance, and operational efforts. In addition,
translation of research findings still suffers a large lag time
between initially capturing data in the field and subsequently
gaining access to relevant public health information. Identify-
ing information gaps and opportunities for collaboration is
imperative. In some instances, the public health value of data
sharing is not enough; building incentives for investigators
with publication privileges and/or other built-in professional
opportunities can help facilitate the transfer of information.
The strength of any network model for collaboration

depends on the depth and reach of the partnership (Table 3).
The sharing of protocols to standardize the collection and
analysis of data and samples is one way to better align the
various diverse research efforts addressing artemisinin resis-
tance. Such a partnership can also improve the quality control
and quality assurance of research methods to avoid false
alarms of artemisinin resistance. Finally, advocacy efforts to
improve awareness and funding are needed to support the
long- and short-term goals of malaria elimination so that this
vital enterprise can continue unabated.
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