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COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome

Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive

research works have been reported in recent days on the development of effective

therapeutics against this global health crisis, there is still no approved therapy against

SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs)

have been prioritized to make a review focusing on the efficacy of plant-originated

therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless

medicinal compounds, while the diversity of multidimensional chemical structures has

made them superior to treat serious diseases. Some have already been reported

as promising alternative medicines and lead compounds for drug repurposing and

discovery. The versatility of secondary metabolites may provide novel antibiotics to

tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant

metabolites that have the therapeutic potential to treat a wide range of viral pathogens.

The study includes the search of remedies belonging to plant families, susceptible viral

candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in

the collection of an enormous number of natural therapeutics that might be suggested

for the treatment of COVID-19. About 219 plants from 83 families were found to

have antiviral activity. Among them, 149 plants from 71 families were screened for the

identification of the major plant secondary metabolites (PSMs) that might be effective

for this pandemic. Our investigation revealed that the proposed plant metabolites can

serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug

development processes to combat COVID-19 and future pandemics caused by viruses.

This review will stimulate further analysis by the scientific community and boost antiviral

plant-based research followed by novel drug designing.

Keywords: medicinal plants, secondary metabolites, antiviral activities, natural therapeutics/alternative medicine,

drug discovery, COVID-19
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INTRODUCTION

Coronaviruses comprise a group of large, enveloped, positive-
sensed, single-stranded RNA viruses that damage the respiratory
tract of mammals including humans, bats, and other animals,
leading to infections in the respiratory tract (1–5). The
Coronavirus disease 2019 (COVID-19), initially called 2019
novel coronavirus (2019-nCoV), is an agile respiratory disease
caused by a novel coronavirus primarily detected in Wuhan,
China (6, 7). Now, it has spread to 216 countries and caused
the death of more than 0.5 million people worldwide and was
declared as a pandemic by the World Health Organization
(WHO) (8, 9). Seven types of human coronaviruses have been
reported so far, including HCoV-OC43, HCoV-229E, HCoV-
HKU1, HCoV-NL63, severe acute respiratory syndrome (SARS)-
CoV, Middle East respiratory syndrome (MERS-CoV), and 2019-
novel coronavirus nCoV (10). Among them, MERS-CoV, SARS-
CoV, and nCoV have taken the concern of scientists worldwide.
In 2003, the severe acute respiratory syndrome (SARS) outbreak
occurred in Guangdong (southern China) (6, 11) which infected
8,000 people and resulted in 800 deaths in 26 countries. Only
a decade later, another coronavirus has attacked the world and
caused another devastating outbreak, MERS, which infected
2,494 people and caused the deaths of 858 worldwide (12, 13).
However, the COVID-19 pandemic caused by SARS CoV-2
resulted in remarkable levels of morbidity and mortality all over
the world. Initially China, followed by the USA, Italy, France,
Iran, Spain, Russia, Turkey, and the UK became hotspots for
SARS CoV-2. The virus hotspot has nowmoved to Latin America
and, at this time, Brazil, Mexico, and Peru are the new hotspots of
SARS CoV-2. The important aspects of the pathobiology, a viral
response phase, and a hyperbolic host response phase are linked
with the morbidity and mortality in COVID-19 patients (14).
However, the increased cytokine levels (IL-6, IL-10, and TNF-α),
lymphopenia (in CD4+ and CD8+ T cells), and decreased IFN-
γ expression in CD4+ T cells are the more risky and possibly
life-threatening events related to severe COVID-19 (15–17). The
infection rate of COVID-19 is increasing gradually but scientists
have not been able to suggest any specific drug, vaccine, or any
other certified therapeutic agents against SARS-CoV-2, which
consequently leads to the significant morbidity and mortality.

On the other hand, plants have been essential to human
welfare for their uses as therapeutics since ancient times (18, 19).
According to the WHO, about 80% of the world’s population
depends on medicinal plants or herbs to fulfill their medicinal
needs (20–22). A significant amount of antiviral compounds
produced from numerous kinds of plants have been used inmany
studies (23–25). Researchers all around the world are screening
therapeutic drugs from existing antiviral plant secondary
metabolites (PSMs) and are also trying to find novel compounds
from medicinal plants [(26–159); Supplementary Table 1] to
avert this global crisis. Plant metabolites can halt the activity
of enzymes involved in the replication cycle of CoVs including
papain-like protease and 3CL protease, halt the fusion of the
S protein of coronaviruses and ACE2 of the host, and also
inhibit cellular signaling pathways (123, 144, 160). Screening
from existing PSMs, researchers have been trying to find novel

compounds frommedicinal plants to prevent numerous diseases,
including COVID-19 (Supplementary Table 1). Therefore, the
current manuscript aims to describe potential metabolites
from plant sources that have antiviral properties that might
be aligned for the alternative approach against COVID-19.
Hence, understanding the structure, life cycle, pathogenicity, cell
signaling, epidemiology of the recently emerging virus, drug
targets, and drug discovery process have become very important
issues to find specific/effective therapeutics.

EPIDEMIOLOGY, GENOMIC
ORGANIZATION, AND LIFE CYCLE OF
SARS CoV-2

In December 2019, SARS CoV-2, one of the most devastating
viral outbreaks since SARS CoV and MERS, originated from
Wuhan city seafood market in China (161–163). The virus
was found to be transmitted through close contact with
infected people or through exposure to coughing, sneezing, and
respiratory droplets (164, 165). It has already been reported to
have spread to 216 countries and caused more than 0.5 million
deaths. Brazil is now the new hotspot for SARS CoV-2 after the
USA, Russia, France, Italy, Germany, Spain, and the UK, where
more than 11 million people are infected (166, 167).

The pleomorphic or spherical shaped SARS COV-2 has a
single-stranded RNA genome of 26.4–31.7 kb in length and a
crown-like glycoproteins on its surface (168–173). It is more
similar to SARS CoV (over 80%) than MERS (174, 175).
However, the RNA genome of CoV-2 is considered as one of
the largest genomes compared to those of other RNA viruses
(176, 177). The largest open reading frame, ORF1ab, encodes
non-structural proteins while the remaining ORFs encode four
structural proteins, namely the envelope glycoprotein or spike
protein (S), envelope (E) protein, membrane (M) protein, and
nucleocapsid (N) protein. The S protein mediates attachment to
the host cell while the E protein is involved in virus assembly,
membrane permeability of the host cell, and virus-host cell
interaction. The M protein is known as a central organizer for
the coronavirus assembly and the nucleocapsid (N) protein is
usually involved in the processing of helical ribonucleocapsid
complex, including some accessory proteins (172, 178). Six types
of mutations are found in the genome of SARS CoV-2 while
threemutations have been reported in orf 1ab gene, twomutation
in S gene, and the final one in the orf 7b and orf 8 (174,
175). Proteomic analysis revealed that SARS CoV-2 is vastly
homologous to SARS CoV but two proteins, orf 8 and orf 10,
are not homologous to SARS CoV (175). To complete its life
cycle, SARS CoV-2 passes into the human body through the nose,
mouth, or eyes and then attaches itself to the receptor-binding
domain (RBD) using the surface glycoprotein (Spike-protein)
of the virion which tries to attach with the hACE2 receptor
(179, 180). The entry mechanism of SARS CoV-2 depends
on cellular transmembrane serine protease 2 (TMPRSS2) and
furin, along with viral receptor ACE2 (180–182). However, after
the fusion of the SARS CoV-2 virion particle with the host
cell membrane, the envelope and capsid part of the virus are
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removed. The virus releases its genetic material (RNA) into the
host cell cytoplasm and acts as mRNA for the translation from
ORF1a and ORF1ab to produce pp1a and pp1ab polypeptides
(169, 183). Subsequently, chymotrypsin-like protease (3CLpro)
slices these polypeptides into 16 non-structural proteins (NSPs)
that are responsible for replication and transcription (184). Then,
infected cells produce proteins when they become hijacked by
SARS CoV-2. In this situation, the immune system supports the
assembly of SARS CoV-2 into new copies of virion particles (185,
186). Freshly synthesized viral nucleic acids and proteins then
assemble into the lumen of the ERGIC (Endoplasmic Reticulum
Golgi Intermediate Compartment) and leave the cells through
exocytosis [(187, 188); Figure 1]. Infected cells release virions and
infect other human cells.

SARS-CoV-2 viral infection can be divided into three stages:
the asymptomatic period, non-severe symptomatic period, and

the severe infection stage (17, 189). SARS CoV-2 patients
are reported to have a significant amount of cytokines and
chemokines; the levels of cytokines are especially highly increased
in patients admitted to ICUs (Intensive Care Unit) (190, 191).
These significantly high levels are what results in a patient
reaching a critical stage. However, the main mediator of SARS
CoV-2, the spike glycoprotein, is found in two conformations
(192) and the enzyme 3CLpro of SARS-CoV-2 share a 99.02%
sequence identity with 3CLpro of SARS-CoV, which is also highly
similar to bat SARS CoV 3CLpro (193). SARS CoV-2 binds to
the host cell receptor with a higher affinity than SARS CoV
(194). SARS CoV-2 has shown some strategic alteration with
the substrate-binding site of bat SARS CoV-2 and 12 point-
mutations are found in SARS CoV-2 compared to SARS CoV.
Mutations disrupt the significant hydrogen bonds andmodify the
receptor binding site (RBS) of SARS-CoV-2 3CLpro. However, the

FIGURE 1 | Structure, genomic organization, life cycle, and drug targets of SARS CoV-2.
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occurrence of recurrent mutations can lead to new strains with
alterations in virulence, which one of the reasons discovering a
suitable vaccine to combat SARS CoV-2 is challenging (175, 195).

MAJOR DRUG TARGETS OF SARS CoV-2

A fundamental therapeutic approach to treat multi-viral
infections is the interruption of human host-virus interactions
(17). The major structural proteins of SARS CoV-2 can
be obvious targets for drugs designed against COVID-19.
In addition, 16 non-structural proteins (NSPs) can also be
considered (169). However, the manifestation of recurrent
recombination events is a major hindrance to develop SARS
CoV-2 specific vaccines/drugs (176). Up-to-date studies revealed
that, though SARS-CoV-2 and SARS-CoV identify a similar
receptor (ACE2) in humans (194, 196), there is a noteworthy
variation in the antigenicity between SARS-CoV and SARS-CoV-
2 which has significance on the development of therapeutic
options against this rapidly emerging virus (197). The SARS-
CoV-2 spike protein exhibits a higher affinity to the ACE2
receptor in comparison to SARS-CoV, but hACE2 showed a
lower binding affinity to RBD (Receptor Binding Domain) of
SARS COV-2 when compared to SARS CoV (194, 198). The two
most paramount enzymes of SARS CoV-2, proprotein convertase
furin- potentiates cell fusion and serine protease TMPRSS2, are
responsible for S-protein activation and are propitious drug
targets for the treatment of COVID (180, 194, 199).

SARS-CoV-2 AND SEARCHING FOR
EFFECTIVE THERAPEUTICS

Though extensive research works are being continued for the
development of effective vaccines or drug compounds against
SARS-CoV-2, efficacious therapeutics have not yet been attained
(200). Moreover, interferon therapies, monoclonal antibodies,
oligonucleotide-based therapies, peptides, small-molecule drugs,
and vaccines, are regarded as some strategic approaches for
controlling or preventing COVID-19 (201, 202). Existing
drugs can be used as the first-line treatment for coronavirus
outbreaks, but this is not the ultimate solution to eradicate
the disease (203). Therefore, the development of therapeutic
drugs for the treatment of the COVID-19 outbreak have
gathered considerable attention. Scientists from different fields
are trying to figure out the way to develop therapeutics. However,
experimental implications of drug recombination might be
both expensive and time-consuming, whereas computational
evaluation may bring about testable hypotheses for systematic
drug recombination (174).

PSMs CAN BE EFFECTIVE OVER
SYNTHETIC DRUGS AGAINST SARS CoV-2

Though there are approved, repurposed drugs currently in
clinical use, there is still an urgent need for specific antiviral
therapeutics and vaccines (199). Bioengineered and vectored
antibodies and therapies based on cytokines and nucleic

acid which target virus gene expression have been found as
promising to treat coronavirus infections (204). For example,
the repurposing drugs, including favipiravir, remdesivir,
lopinavir, ritonavir, nebulized α-interferon, chloroquine,
hydroxychloroquine, ribavirin, and interferon (IFN), have
been shown to be effective for the treatment of COVID-19.
Apart from this, some therapeutics are in clinical trials, such
as peptide vaccine (mRNA-1273) (198) and antibody therapies
(205). Recently, plasma therapy showed promising results for
COVID-19 treatment (206, 207). But, application of these
synthetic drugs are not efficient as they exhibit adverse direct or
indirect side effects [(208–220); Table 1]. In addition, scientists

TABLE 1 | Recently used synthetic drugs and their side effects.

Drug Side effects References

Arbidol Side effects in children include

sensitization to the drug

(209)

Darunavir Liver problems and severe skin reactions

or rash

(210)

Flavipir – (211)

Hydroxychloroquine One of the most serious side effects of

hydroxychloroquine is a risk of heart

rhythm problems, which can result in heart

failure and in some cases death.

Hydroxychloroquine can upset the

stomach. Severe, permanent damage to

the retina has been reported with the use

of hydroxychloroquine

(212)

Ivermectin Eye or eyelid irritation, pain, redness, or

swelling

(213)

Lopinavir Drowsiness, dizziness, a bad taste in the

mouth, and trouble sleeping

(214)

Loprazolam Paradoxical increase in aggression,

lightheadedness, blood disorders, and

jaundice

(215)

Lurasidone Drowsiness, lightheadedness, weight gain,

mask-like facial expression, and agitation

(215)

Oseltamivir Phlegm-producing cough, wheezing,

abdominal or stomach cramps or

tenderness, bloating

(216)

Remdesivir Increased liver enzyme levels that may

indicate possible liver damage

(210, 212)

Ribavirin Allergic reaction, anemia, stabbing chest

pain, wheezing

(208)

Ritonavir Diarrhea, nausea, vomiting, heartburn,

stomach pain, dizziness, tiredness

(216)

Salmeterol Hoarseness, throat irritation, rapid

heartbeat, cough, dry mouth/throat, or

upset stomach

(218)

Saquinavir Hyperglycemia, increased bleeding in

people with hemophilia, increases in the

levels of certain fats

(210)

Talampicillin – (215)

Teicoplanin Maculopapular or erythematous rash and

drug-related fever

(219)

Andrographolide

(PSM)

– (220)

Rubitecan – (215)
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all around the world are trying to find out some prominent
drug and multi-epitope vaccine candidates against this deadly
virus using various kinds of immuno-informatics approaches
(221, 222). Therefore, the urgent need for safe, effective, and
inexpensive therapies/drugs with negligible side effects against
COVID-19 is imperative.

PSMs are a source of natural antiviral compounds that could
be an effective option, as most of them are safer and more
cost-effective compared to orthodox drugs (223), though some
PSMs are toxic too. The dependency on and popularity of
plant-based drugs are increasing day by day (224). Due to
the presence of multiple compounds in crude plant extracts,
it can be either beneficial or not, depending on the amounts
used each time; if properly regulated, better activity might
be shown. It was also found that crude extracts can target
multiple sites at a time in a virion particle (225). However,
this is yet to be tested against SARS-CoV-2. PSMs can affect
the disruption of cell membrane functions and structures (226),
interference with intermediary metabolisms (227), interruption
of DNA/RNA synthesis and function (228), interruption of
normal cell communication (quorum sensing) (229), and the
induction of coagulation of cytoplasmic constituents (230).
Different kinds of plant metabolites act against SARS CoV
(Supplementary Table 1). Plant-based products affect several
key events in the pathogenic process. For example, curcumin is
effective for its antineoplastic, anti-proliferative, anti-aging, anti-
inflammatory, anti-angiogenic, antiviral and anti-oxidant effects,
and can regulate redox status, protein kinases, transcription
factors, adhesion molecules, and cytokines in the human
body (231). In silico analysis revealed that anti-SARS CoV
PSMs could be one of the most valuable drug targets against
SARS CoV-2 [(232–261); Table 2]. A huge amount of plant
metabolites have remained unexplored due to the extensive
process of isolation of the target compound. Now, various types
of modern techniques have been developed for the isolation
of lead compounds from crude extracts including maceration,
percolation, decoction, reflux extraction, soxhlet extraction,
pressurized liquid extraction, supercritical fluid extraction,
ultrasound assisted extraction, microwave-assisted extraction,
pulsed electric field extraction, enzyme assisted extraction, hydro
distillation, and steam distillation (179). These techniques can
lead us to find out novel anti-SARS CoV-2 compounds earlier
than traditional techniques. In addition, plant metabolomics
are used as a tool for the discovery of novel drugs from plant
resources (262, 263).

PSMs HAVING ANTIVIRAL PROPERTIES
AS ALTERNATIVES TO SYNTHETIC DRUGS
AND HOPE FOR CoVID-19

Plants produce diversified low molecular weight PSMs to protect
them from different herbivores and microbes (264). Before the
discovery of allopathic drugs, these leading natural sources were
extensively used for treating several kinds of human diseases
(265, 266). Due to the increased resistance ofmicrobial pathogens
against allopathic drugs, researchers have now returned to

natural resources, focusing especially on plant metabolites, to
find out lead compounds to fight against human pathogens
(175). Moreover, about 35% of the global medicine market
(which accounts for 1.1 trillion US dollars) have been shared
by medicinal products prepared using natural plants or herbs
(265). Investigations are undergoing for the finding of novel
and modern drugs from numerous herbal preparations to fight
against this microbial resistance war. Many similarities have been
found between SARS CoV and SARS CoV-2 (both of them belong
to beta family, containing the same genetic material-RNA, and
using the same receptor for viral attachment-ACE2, with an
86% identity and 96% similarity of genome, with almost the
same pathogenesis). Thus, previously reported antiviral plant
metabolites for SARS CoV can be considered as emerging
drug candidates for COVID-19. Right now, the setbacks arising
from viral infection around the world have placed budget
constraints on researchers trying to discover effective antiviral
drugs. However, some PSMs have already shown anti-SARS
CoV activity where other antiviral activities are also reported
(Supplementary Table 1). These results suggest that there is a
scope to find alternative medicines and specific compounds. So,
plants could be a vital resource in the fight against COVID-
19. Our study suggests that around 76 natural metabolites from
different plant species can be efficiently active against COVID-19
(Table 3 and Supplementary Figure 1).

PLANT-BASED ANTIVIRAL COMPOUNDS:
GROUP BASIS MECHANISM OF ACTION
AND PSMs STRUCTURE

A wide variety of antiviral compounds were found from
219 medicinal plants (26–159) belonging to 83 plant families
(Supplementary Table 1). First and foremost are polyphenols,
which contain multiple phenolic rings, and are classified as
phenols, flavonoids, lignans, hydroxycinnamic acid, stilbenes,
and hydroxybenzoic acid (267). We found polyphenols in
numerous plants (Table 4) which exerted antiviral activity (269–
271) against a wide range of viruses including HIV-1, HIV-
2, HSV-1, HSV-2, Influenza virus, Dengue virus, HBV, HCV,
Infectious bronchitis virus (IBV), Murbarg virus, Ebola virus,
Newcastle disease virus (NDV), Poliomyelitis-1 virus, Lentivirus,
and Coronavirus. Polyphenols work against coronaviruses
using diverse mechanisms including actuating or inhibiting
cellular signaling pathways or halting papain-like protease
(PLpro) and 3-chymotripsin-like protease (3CLpro) enzyme
(269, 272). Some polyphenol compounds (30-(3-methylbut-2-
enyl)-30, 4-hydroxyisolonchocarpin, broussochalcone A, 4,7-
trihydroxyflavane, broussochalcone B, papyriflavonol A, kazinol
A, kazinol B, kazinol F, kazinol J, and broussoflavan A) isolated
from Broussonetia papyrifera showed promising activity against
SARS CoV. Higher efficiency against PLpro as observed by these
compounds though activity against Mpro or 3CLpro is not up
to the mark. Specially, papyriflavonol A possesses impressive
activity against SARS CoV (IC50 3.7, l M) (272). In silico
analysis revealed that polyphenols can inhibit SARS CoV-2
Mpro and RdRp effectively (273, 274). In our study, we have
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TABLE 2 | Probable drug candidates against SARS CoV-2 obtained through virtual screening.

Drug targets Major metabolites References

ANTIVIRAL PSMs THAT CAN INHIBIT SARS CoV-2 AT DIFFERENT TARGET

Spike protein Magnoflorine, tinosponone, cirsimaritin, chrysoeriol, vasicinone, quercetin, luteolin (233)

Spike protein Epigallocatechingallate (EGCG), curcumin, apigenin, chrysophanol (234)

Spike protein, main protease Spike protein, main protease (235)

Spike protein and ACE-2 Hesperidin, emodin, and chrysin (236)

Spike protein and ACE-2 Curcumin, nimbin, withaferin A, piperine, mangiferin, thebaine, berberine, and andrographolide (222)

Spike protein and ACE-2 Chebulagic acid (237)

Spike protein, MPro, and RdRp Silybin, withaferin A, cordioside, catechin, and quercetin (238)

RdRp Protopine, allocryptopine, and (±) 6-acetonyldihydrochelerythrine (239)

Main Protease (MPro) Crocin, digitoxigenin, and b–eudesmol (240)

Main Protease (MPro) Oolonghomobisflavan-A, theasinensin D, theaflavin-30-O-gallate (241)

Main Protease (MPro) Andrographolide (220)

Main Protease (MPro) Hispidin, lepidine E, and folic acid (242)

Main Protease (MPro) Ursolic acid, carvacrol, and oleanolic acid (243)

Main Protease (MPro) Hypericin, cyanidin 3-glucoside, baicalin, glabridin (244)

Main Protease (MPro) Cetylglucopetunidin, isoxanthohumol, and ellagic acid (245)

Main Protease (MPro) Benzylidenechromanones (246)

Main Protease (MPro) Carnosol, arjunglucoside-I, and rosmanol (247)

Main Protease (MPro) Leucoefdin (248)

Main Protease (MPro) (1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and

(4Z,6E)-1,5-dihydroxy-1,7-bis(4-hydroxyphenyl)hepta-4,6-dien-3-one

(249)

Mpro and ACE2 Quercetin 3-glucuronide-7-glucoside, and Quercetin 3-vicianoside (250)

Mpro, hACE-2 and RdRp d-Viniferin, myricitrin, chrysanthemin, myritilin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A,

afzelin, biorobin, hesperidin, and phyllaemblicin B

(251)

Mpro, spike protein, and

non-structural proteins (NSP-9, 15)

Arzanol, ferulic acid, genistein, resveratrol, rosmanol (252)

ACE-2 receptor Resveratrol, pterostilbene, pinosylvin, piceatannol (253)

ACE-2 receptor Isothymol, chloroquine, captopril (254)

ACE-2 receptor Resveratrol, quercetin, luteolin, naringenin, zingiberene, and gallic acid (222)

Envelope protein Belachinal, macaflavanone E, vibsanol B (249)

PLpro, 3CLpro Cryptotanshinone, quercetin, tanshinone IIa, coumaroyltyramine, N-cis-feruloyltyramine (178)

PLpro, 3CLpro, RdRp, and spike

protein

Andrographolide (AGP1), 14-deoxy 11,12-didehydro andrographolide (AGP2), neoandrographolide (AGP3), and

14-deoxy andrographolide (AGP4)

(255)

3CLpro 10-hydroxyusambarensine, cryptoquindoline, 6-oxoisoiguesterin, 22-hydroxyhopan-3-one, cryptospirolepine,

isoiguesterin, and 20-epibryonolic acid

(256)

3CLpro Flavone and coumarine (210)

3CLpro Myricitrin, methyl rosmarinat, calceolarioside B, licoleafol, amaranthin, colistin (191)

6LU7 and 6Y2E proteases Apigenin, glabridin, glycoumarin, oleanolic acid, glucobrassicin (257)

Transmembrane protease serine 2

(TMPRSS2)

Withanone and withaferin-A (258)

Membrane (M) and Envelope (E)

proteins

Nimbolin A, nimocin, and cycloartanols (259)

ANTIVIRAL PSMs THAT CAN INHIBIT SARS CoV-2 AT DIFFERENT LIFE CYCLE

Viral attachment Phytoestrogens (diadiazin, genistein, formontein, and biochanin A), chlorogenic acid, linolenic acid, palmitic acid,

caffeic acid, caffeic acid phenethyl ester, hydroxytyrosol, cis-p-Coumaric acid, cinnamaldehyde, thymoquinone,

and some physiological hormones such as estrogens, progesterone, testosterone, and cholesterol

(260)

Entry Dihydrotanshinone – 1, desmethoxyreserpine (241)

Multiplication Betulinic acid, desmethoxyreserpine, lignan, sugiol (241)

Viraus–host interaction Dithymoquinone (DTQ) (261)

found another widely distributed, low molecular weight phenolic
compound named as a flavonoid which showed strong antiviral
activity against SARS CoV, Influenza virus, HBV, HSV, HCV,

HIV, Dengue virus, Simian virus, Human rotavirus, Bovine viral
diarrhea virus, Poliomyelitis-1 virus, Vesicular stomatitis virus
(VSV), and Newcastle disease virus (NDV) (Table 4). Flavonoid
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TABLE 3 | Probable promising secondary metabolites of medicinal plants against COVID-19.

Compounds Plant source Family References

1. Diterpneoid Andrographis paniculata Acanthaceae (26)

2. Alkaloids, flavonoids, and coumarins Sambucus nigra Adoxaceae (29)

3. Alkaloids, anthraquinones, glycosides, flavonoids, saponins, phenols, terpenoids, sugar

bearing compound, protein, thiols, and inferences

Iresine herbstii Amaranthaceae (31)

4. Tannins, Flavonoids, Terpenes, and Saponins Anacardium occidentale Anacardiaceae (33)

5. Tannins, gallic acid, flavonoids like quercetin and quercitrin, phenolics, triterpenes Rhus aromatica Anacardiaceae (34)

6. Gallic acid, quercetin, kaempferol, glycosides Rhus parviflora Anacardiaceae (35)

7. Tannins and flavonoids Spondias lutea Anacardiaceae (33)

8. Flavonoids Spondias lutea L. Anacardiaceae (33)

9. Apigenin and luteolin Arisaema tortuosum Araceae (40)

10. Phenolic acids, flavonoids (apigenin, apigeninglucoside, luteolin, cirsiliol, diosmetin), lignans,

terpenic lactones, and alkamides

Achillea fragrantissima Asteraceae (47, 48)

11. Flavonoids, clerodane diterpenoids, phenolics, hydroxycinnamic acids Baccharis gaudichaudiana DC Asteraceae (49)

12. Diterpenoids Baccharis spicata (Lam.) Baill Asteraceae (49)

13. Triterpenoids, Steroids Bidens subalternans DC Asteraceae (49)

14. Flavonoid glycosides and caffeoyl quinic acids Eupatorium perfoliatum Asteraceae (50)

15. Flavonoids and terpenes Jasonia montana Asteraceae (47)

16. Phenylpropanoids, flavonoids, essential oils, polyphenols, tannins, triterpenes Pluchea sagittalis (Lam.) Cabrera Asteraceae (49)

17. Silymarin, quercetin, and kaempferol Silybum marianum Asteraceae (51)

18. terpenoids, flavonoids, essential oils Tagetes minuta L. Asteraceae (49)

19. phenolic acids (chlorogenic acids), and sesquiterpene lactones (parthenolide) Tanacetum parthenium Asteraceae (52)

20. Flavonoids, D-glucopyranoside, quercetin, luteolin Taraxacum officinale Asteraceae (53)

21. Flavonoids (apigenin, quercetin, kaempferol, falcarinol, selinene, limonene, and zerumbone) Tridax procumbens Asteraceae (55)

22. Carbohydrates, lipids, proteins, alkaloids, flavonoids, saponins, and organic acids Balanites aegyptiaca Balanitaceae (56, 57)

23. Icariin and quercetin Epimedium koreanum Nakai Berberidaceae (58)

24. Flavonoids (quercetin, isoquercetin, and rutin) Capparis sinaica Capparaceae (47, 64)

25. Tannins, flavonoids, carbohydrates and/or glycosides, resins, sterol, saponins, and alkaloids Capparis sinaica Capparaceae (47, 65)

26. Natural lupane triterpenoids Cassine xylocarpa Celastraceae (67)

27. Pentacyclic lupane-type triterpenoids Maytenus cuzcoina Celastraceae (67)

28. Flavonoids, terpenoids, alkaloids, tannins, glycosides, and saponins Combretum adenogonium Combretaceae (72)

29. Triterpenes, flavonoids, ellagitannins Terminalia mollis Combretaceae (56, 73)

30. Lignans, diterpenes, flavonoids, proanthocyanidins, and sterols Taxodium distichum Cupressaceae (75)

31. Monoterpenoids, sesquiterpenoids, triterpenoids, sterols, alkaloids, flavonoids, and phenolic

compounds

Cyperus rotundus Cyperaceae (76)

32. Protocatecuic acid, caffeic acid, epicatechin, rutin, resveratrol, quercitin, kaempferol Ephedra alata Ephedraceae (47, 77)

33. Isoflavonoid, indoles, phytosterols, polysaccharides, sesquiterpenes, alkaloids, glucans, and

tannins

Equisetum giganteum Equisetaceae (78)

34. Triterpenes and steroids Euphorbia denticulata Euphorbiaceae (79)

35. Tannins, diterpenes Euphorbia hirta Euphorbiaceae (80)

36. Diterpenoids, jatrophane-type diterpenoids, and coumarino-type lignoids, lathyrane-type

diterpenoids, multifidone, multifidanol, and multifidenol

Jatropha multifida Euphorbiaceae (82)

37. Flavonoid and polyphenol Acacia arabica Fabaceae (83)

38. Luteolin and vitexin Aspalathus linearis Fabaceae (85)

39. Saponins and flavonoids Vachellia nilotica Fabaceae (87)

40. Catechin, kaempferol, quercetin, 3,4
′
,7-trihydroxyl-3

′
,5-dimethoxyflavone, rutin, isorhamnetin,

epicatechin, afzelechin, epiafzelechin, mesquitol, ophioglonin, aromadendrin, and phenol

Acacia catechu Fabaceae (88)

41. Flavonoids, phenolics, and tannins Quercus persica Fagaceae (90)

42. Phenolic, flavonoid, and flavonol compounds Quercus persica Fagaceae (90)

43. Gallic acid, protocatechuic acid, corilagin, geraniin, ellagic acid, kaempferitrin, kaempferol

7-O-rhamnoside, quercetin, kaempferol

Geranium thunbergii Geraniaceae (91)

44. Flavonoids (orientin and vicenin) Ocimum sanctum Lamiaceae (26, 99)

45. Terpenoid and polyphenol Ocimum sanctum Lamiaceae (83)

(Continued)
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TABLE 3 | Continued

Compounds Plant source Family References

46. Baicalin, flavonoids Scutellaria baicalensis Lamiaceae (104)

47. Opuntin B, triterpene saponin, seroids, and phenylethanoids Lindernia crustacea Linderniaceae (107)

48. Quercetin 3-O-methyl ether (3MQ) and strychnobiflavone (SBF) Strychnos pseudoquina Loganiaceae (108)

49. Alkaloids, flavonoids, tannins, volatile oils, and glycosides Cissampelos pareira Linn Menispermaceae (113)

50. Flavonoids, tannins, terpenes, saponins, and nitrogenous compounds Artocarpus integrifolia Moraceae (33)

51. Flavonoids, rutin, kaempferol 3-O-rutinoside, and kaempferol 3-O-robinobioside Ficus benjamina Moraceae (114)

52. N-arginine, luteolin, caffeic acid Ficus carica Moraceae (115)

53. Flavonoids, tannins, saponins, alkaloids, and steroids/triterpenoids Ficus religiosa Moraceae (116)

54. Tannins, flavonoid, saponin, glycoside Ficus sycomorus Moraceae (56, 118)

55. Alkaloids, tannins, phenolics, and saponins Moringa peregrina Moringaceae (47)

56. Flavonoids Myristica fragrans Myristicaceae (33)

57. Tannins and flavonoids Psidium guajava Myrtaceae (33)

58. Sesquiterpenes, monoterpenes, hydrocarbon, and phenolic compounds, eugenyl acetate,

eugenol, and β-caryophyllene

Syzygium aromaticum L. Myrtaceae (119)

59. Paeoniflorin, monoterpene glycosides, albiflorin, benzoylpaeoniflorin, gallic acid, ethyl gallate Paeonia delavayi Paeoniaceae (121)

60. Flavonoids, tomentin A, B, C, D, and E Paulownia tomentosa Paulowniaceae (123)

61. Highly oxygenated norbisabolane sesquiterpenoids, phyllanthacidoid acid, methyl ester Phyllanthus acidus Phyllanthaceae (124)

62. Alkaloids, flavonoids, lignans, phenols, and terpenes Phyllanthus amarus Phyllanthaceae (125)

63. Geraniin, rutin, gallic acid, caffeolquinic acid, corilagen, galloylglucopyronoside,

digalloylglucopyronoside, and quercetin glucoside

Phyllanthus amarus Phyllanthaceae (126)

64. Geraniin, rutin, gallic acid, caffeolquinic acid, corilagen, galloylglucopyronoside,

digalloylglucopyronoside, and quercetin glucoside

Phyllanthus niruri Phyllanthaceae (126)

65. Trigalloylglucopyronoside, quercetin rhamnoside, geraniin, rutin, gallic acid, caffeolquinic acid,

corilagen, galloylglucopyronoside, digalloylglucopyronoside, and quercetin glucoside

Phyllanthus urinaria Phyllanthaceae (126)

66. Quercetin rhamnoside, geraniin, rutin, gallic acid, caffeolquinic acid, corilagen,

galloylglucopyronoside, digalloylglucopyronoside, and quercetin glucoside

Phyllanthus watsonii Phyllanthaceae (126)

67. Plumbagin, allicin, carbohydrates, flavonoids, proteins, saponins, fats and oils, alkaloids,

steroids, phenols, and tannins

Plumbago indica Plumbaginaceae (129)

68. Flavonoids (catechin, hyperoside, quercitrin, quercetin, and rutin), tannins, and triterpenoids Agrimonia pilosa Rosaceae (135)

69. Hydroxycinnamic acids, eriodictyol, isorhamnetin, quercetin, kaempferol, isorhamnetin,

epicatechin, catechin

Prunus dulcis Rosaceae (136)

70. Saponins, flavonoids, and alkaloids Pavetta tomentosa Rubiaceae (138)

71. Saponins, flavonoids, and alkaloids Tarenna asiatica Rubiaceae (138)

72. Triterpenes, tannins, flavonoids, and carbohydrates Dimocarpus longan Sapindaceae (140)

73. Organic acids, terpenoids, and flavonoids Illicium verum Hook. f. Schisandraceae (142)

74. Nilocitin, ellagic acid, gallic acid, flavonoids Tamarix nilotica Tamaricaceae (47, 143)

75. Diterpenoids, biflavonoids (biflavone amentoflavone, apigenin, luteolin, and quercetin) Torreya nucifera Taxaceae (144)

76. Friedelolactones, 2β-hydroxy-3, 4-seco-friedelolactone-27-oic acid flavonoids, coumarins,

terpenoids, sterols, polypeptides

Viola diffusa Violaceae (147)

type compounds, such as apigenin and quercetin, showed activity
against SARS CoV virion particles through the inhibition of
Mpro enzymes with an IC50 of 38.4 ± 2.4µM and 23.8µM,
respectively (144, 150, 275). According to in silico analysis,
flavonoid compounds can terminate the activity of Mpro of SARS
CoV-2 (276, 277).

Alkaloids are another class of natural organic compounds
which are classified into several groups based on their
heterocyclic ring, such as tropanes, pyrrolidines, isoquinoline
purines, imidazoles, quinolizidines, indoles, piperidines, and
pyrrolizidines (278). Alkaloids are very promising against
HIV-1, HSV-1, HSV-2, DNV, VSV, Influenza virus, and
Newcastle disease virus (NDV) (Table 4). Different kinds

of alkaloids showed anti-SARS activity including emetine,
Ipecac, Macetaxime, tylophorine, and 7-methoxy cryptopleurine,
through the inhibition of protease enzyme, RNA synthesis, and
protein synthesis (244, 279). In addition, some alkaloids act
against SARS CoV as a nucleic acid intercalating agent such as
tetrandrine, fangchinoline, cepharanthine, and lycorine through
degrading nucleic acids and inhibiting spike and nucleocapsid
proteins (280). Virtual screening analysis revealed that 10-
Hydroxyusambarensine and Cryptoquindoline—two alkaloid
compound isolated from African medicinal plants showed anti-
SARS CoV and anti-SARS CoV-2 activity through inhibition
of their Mpro (256). Chloroquine, a derivative of alkaloid,
is found to be active against anti-SARS CoV-2 (281). So,
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TABLE 4 | Major group basis antiviral PSMs obtained from medicinal plants.

Major

compounds

Plant source Family Target pathogen References

Polyphenols Avicennia marina Acanthaceae Human immunodeficiency virus (HIV) and herpes simplex virus (HSV) (27)

Sambucus nigra Adoxaceae Dengue virus serotype-2 (DENV-2) (29)

Sambucus nigra Adoxaceae Infectious bronchitis virus (IBV)—chicken coronavirus (30)

Iresine Herbstii Amaranthaceae Newcastle disease virus (NDV) (31)

Anacardium occidentale Anacardiaceae Simian (SA-11) virus (33)

Artocarpus integrifolia Moraceae (SA-11) and human (HCR3) rotaviruses (33)

Myristica fragrans Myristicaceae Human (HCR3) rotaviruses (33)

Psidium guajava Myrtaceae Simian (SA-11) virus (33)

Spondias lutea Anacardiaceae Human (HCR3) rotaviruses (33)

Spondias lutea L. Anacardiaceae Simian (SA-11) and human (HCR3) rotaviruses (33)

Rhus aromatica Anacardiaceae HSV-1 and HSV-2 (34)

Rhus aromatica Anacardiaceae HSV-1 and HSV-2 (34)

Rhus parviflora Anacardiaceae HIV-1 (35)

Schinus terebinthifolia Anacardiaceae HSV-1 (36)

Arisaema Tortuosum Araceae Acyclovir-resistant HSV-2 and HSV-1 (40)

Jasonia montana Asteraceae Poliomyelitis-1 virus (47)

Baccharis gaudichaudiana DC Asteraceae Bovine viral diarrhea virus, HSV-1, Poliovirus type 2 (PV-2), and vesicular

stomatitis virus (VSV)

(49)

Pluchea sagittalis (Lam.) Cabrera Asteraceae Bovine viral diarrhea virus (BVDV) (HSV-1), poliovirus type 2 (PV-2), and

vesicular stomatitis virus (VSV)

(49)

Tagetes minuta L Asteraceae Bovine viral diarrhea virus, HSV-1, poliovirus type 2 (PV-2), and vesicular

stomatitis virus

(49)

Eupatorium perfoliatum Asteraceae Influenza A virus (IAV) H1N1 (50)

Silybum marianum Asteraceae Chikungunya virus (CHIKV), hepatitis C virus (HCV) (51)

Tanacetum parthenium Asteraceae HSV-1 (52)

Taraxacum officinale Asteraceae HCV (53)

Senna angustifolia Fabaceae Dengue virus serotype-2 (DENV-2) (55)

Tridax procumbers Asteraceae Dengue virus serotype-2 (DENV-2) (55)

Vernonia cinerea Asteraceae Dengue virus serotype-2 (DENV-2) (55)

Epimedium koreanum Nakai Berberidaceae Porcine epidermic diarrhea virus (PEDV) (58)

Canarium album (Lour.) Burseraceae Influenza A virus (IAV) (62)

Polyphenols Cistus incanus Cistaceae HIV (clinical HIV-1 and HIV-2) and Filoviruses, Ebola, and Marburg virus (69)

Combretum adenogonium Combretaceae HIV-1 (72)

Cornus canadensis Cornaceae HSV-1 (74)

Taxodium distichum Cupressaceae Influenza A and B viruses (75)

Cyperus rotundus Cyperaceae HSV-1, HBV (76)

Equisetum giganteum Equisetaceae HSV-2 (78)

Euphorbia hirta Euphorbiaceae HIV-1, HIV-2, SIV mac 251 (80)

Euphorbia sikkimensis Euphorbiaceae HIV-1 (81)

Acacia arabica Fabaceae Influenza A virus H9N2 (83)

Aspalathus linearis Fabaceae Rhesus rotavirus (RRV), simian rotavirus (SA-11) infection (85)

Vachellia nilotica Fabaceae HSV-2 (87)

Acacia catechu Fabaceae HIV-1 (88)

Acacia catechu Fabaceae HIV-1 (88)

Quercus persica Fagaceae HSV-I (90)

Geranium thunbergii Geraniaceae Influenza virus, H1N1, H3N2, influenza type B (91)

Pelargonium sidoides Geraniaceae HIV-1 (92)

Ribes nigrum Grossulariaceae Influenza A virus (94)

Hamamelis virginiana Hamamelidaceae Influenza A virus and human papillomavirus (95)

Prunella vulgaris Lamiaceae Lentivirus (101)

Scutellaria baicalensis Lamiaceae RSV, HIV, Influenza, and Dengue viruses (104)

(Continued)
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TABLE 4 | Continued

Major

compounds

Plant source Family Target pathogen References

Strychnos pseudoquina Loganiaceae HSV-1 (KOS strain) and HSV-2 (333 strain) (108)

Punica granatum Lythraceae HSV-2 (109)

Magnolia officinalis Magnoliaceae Dengue virus type 2 (111)

Cissampelos pareira Linn Menispermaceae Dengue virus types 1-4 (DENV-1-4) (113)

Ficus benjamina Moraceae HSV-1 and HSV-2), varicella zoster virus (VZV (114)

Ficus carica Moraceae HSV-1, HSV-1, ECV-11, and ADV, influenza virus (115)

Ficus religiosa Moraceae HSV-2 (116)

Syzygium aromaticum L. Myrtaceae HSV and HCV (119)

Paulownia tomentosa Paulowniaceae SARS-CoV papain-like protease (PLpro) (123)

Phyllanthus amarus Phyllanthaceae Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV, and HIV (126)

Polyphenols Phyllanthus niruri Phyllanthaceae Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV, HIV (126)

Phyllanthus urinaria Phyllanthaceae Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV and HIV (126)

Phyllanthus watsonii Phyllanthaceae Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV, and HIV (126)

Limonium sinense Plumbaginaceae HCV (128)

Plumbago indica Plumbaginaceae Influenza A (H1N1) (129)

Agrimonia pilosa Rosaceae Influenza viruses (H1N1 and H3N2) (135)

Prunus dulcis Rosaceae HSV-1 (136)

Pavetta tomentosa Rubiaceae Dengue virus (DENV) (138)

Aegle marmelos Rutaceae Human coxsackieviruses B1-B6, rotavirus SA-11 (139)

Dimocarpus longan Sapindaceae HCV (genotype 2a strain JFH1) (140)

Torreya nucifera Taxaceae SARS-CoV 3CLpro (144)

Viola diffusa Violaceae Hepatitis B virus (147)

Alpinia katsumadai Zingiberaceae influenza virus type A (148)

Illicium verum Hook. f. Schisandraceae Grouper iridovirus infection (GIV) (190)

Camellia sinensis Theaceae HIV, HTLV-1, HCV, influenza, and HBV (145, 146)

Ocimum sanctum Lamiaceae Dengue virus serotype-1 (DENV-1) (26, 99)

Achillea fragrantissima Asteraceae Poliomyelitis-1 virus (47, 48)

Ephedra alata Ephedraceae HSV (47, 77)

Tamarix nilotica Tamaricaceae HSV (47, 143)

Moringa peregrina Moringaceae HSV (47, 189)

Capparis sinaica Capparaceae Avian influenza strain H5N1 (47, 64)

Ficus sycomorus Moraceae HSV-1 (56, 118)

Balanites aegyptiaca Balanitaceae VSV (56, 57)

Terminalia mollis Combretaceae HSV-0 (56, 73)

Tuberaria lignosa Cistaceae HIV (70, 71)

Anthemis hyaline Asreraceae SARS-CoV (152)

Alnus japonica Betulaceae SARS-CoV (59)

Cassia tora Fabaceae SARS-CoV (156)

Psoralea corylifolia Fabaceae SARS-CoV (150)

Taxillus chinensis Loranthaceae SARS-CoV (268)

Polyphenols Citrus sinensis Rutaceae SARS-CoV (152)

Polygonum multiflorum Polygonaceae SARS-CoV (158)

Rheum officinale Polygonaceae SARS-CoV (158)

Rheum palmatum Polygonaceae SARS-CoV (159)

Citrus sinensis Rutaceae SARS-CoV (152)

Alkaloids Sambucus nigra Adoxaceae Dengue virus serotype-2 (DENV-2) (29)

Iresine Herbstii Amaranthaceae Newcastle disease virus (NDV) (31)

Combretum adenogonium Combretaceae HIV-1 (72)

Cyperus rotundus Cyperaceae HSV-1, HBV (76)

(Continued)
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TABLE 4 | Continued

Major

compounds

Plant source Family Target pathogen References

Equisetum giganteum Equisetaceae HSV-2 (78)

Cissampelos pareira Linn Menispermaceae Dengue virus types 1-4 (DENV-1-4) (113)

Ficus religiosa Moraceae HSV-2 (116)

Phyllanthus amarus Phyllanthaceae HCV (125)

Plumbago indica Plumbaginaceae Influenza A (H1N1) (129)

Pavetta tomentosa Rubiaceae Dengue virus (DENV) (138)

Tarenna asiatica Rubiaceae Dengue virus (DENV) (138)

Moringa peregrina Moringaceae HSV (47, 189)

Capparis sinaica Capparaceae HSV (47, 65)

Balanites aegyptiaca Balanitaceae VSV (56, 57)

Lycoris radiata Amaryllis SARS-CoV (151)

Acanthopanacis cortex Araliaceae SARS-CoV (134)

Saponins Iresine Herbstii Amaranthaceae Newcastle disease virus (NDV) (31)

Anacardium occidentale Anacardiaceae Simian (SA-11) virus (33)

Panax ginseng Araliaceae RSV (41)

Panax ginseng Araliaceae Murine norovirus (MNV) and feline calicivirus (FCV) (42)

Balanites aegyptiaca Balanitaceae VSV (56, 57)

Capparis sinaica Capparaceae HSV (47, 65)

Combretum adenogonium Combretaceae HIV-1 (72)

Vachellia nilotica Fabaceae HSV-2 (87)

Lindernia crustacea Linderniaceae Epstein–Barr virus (EBV) (107)

Artocarpus integrifolia Moraceae (SA-11) and human (HCR3) rotaviruses (33)

Ficus religiosa Moraceae HSV-2 (116)

Saponins Ficus sycomorus Moraceae HSV-1 (56, 118)

Moringa peregrina Moringaceae HSV (47, 189)

Plumbago indica Plumbaginaceae Influenza A (H1N1) (129)

Pavetta tomentosa Rubiaceae Dengue virus (DENV) (138)

Tarenna asiatica Rubiaceae Dengue virus (DENV) (138)

Terpenoids Andrographis paniculata Acanthaceae Dengue virus serotype-1 (DENV-1) (26)

Baccharis gaudichaudiana DC Asteraceae Bovine viral diarrhea virus, HSV-1, Poliovirus type 2 (PV-2), and vesicular

stomatitis virus (VSV)

(49)

Baccharis spicata (Lam.) Baill Asteraceae Bovine viral diarrhea virus (BVD), HSV-1, poliovirus type 2 (PV-2), and

vesicular stomatitis virus (VSV)

(49)

Taxodium distichum Cupressaceae Influenza A and B viruses (75)

Euphorbia hirta Euphorbiaceae HIV-1, HIV-2, SIV mac 251 (80)

Jatropha multifida Euphorbiaceae Influenza A H1N1 virus (82)

Torreya nucifera Taxaceae SARS-CoV 3CLpro (144)

Agrimonia pilosa Rosaceae Influenza viruses (H1N1 and H3N2) (135)

Tripterygium regelii Celastraceae SARS-CoV (144)

Gentiana scabra Gentianaceae SARS-CoV (156)

Carbohydra-

tes

Panax ginseng Araliaceae Human rotavirus (33)

Panax notoginseng Araliaceae Influenza A H1N1 virus (43)

Equisetum giganteum Equisetaceae HSV-2 (78)

Prunella vulgaris Lamiaceae HSV-1 and HSV-2 antigens virus antigen in Vero cells (100)

Prunellae Spica Lamiaceae Herpes simplex virus (HSV) (102)

Laminaria japonica Laminariaceae RSV (105)

Plumbago indica Plumbaginaceae Influenza A (H1N1) (129)

Ardisia chinensis Benth Primulaceae Coxsackie B3 Virus (131)

Capparis sinaica Capparaceae HSV (47, 65)

Balanites aegyptiaca Balanitaceae VSV (56, 57)

Carissa edulis Apocynaceae herpes simplex virus, chickenpox, and shingles (38)
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some PSMs as alkaloids can be alternative drug targets for
COVID-19 (280).

Another class of PSMs, saponins (amphipathic glycosides), are
found ubiquitously in plants which showed antiviral activities
against Newcastle disease virus (NDV), Simian (SA-11) virus,
Murine norovirus (MNV) and Feline calicivirus (FCV), RSV,
VSV, HSV-1,HSv-2, HIV-1, Epstein–Barr virus (EBV), (SA-11)
and human (HCR3) rotaviruses, Influenza virus, and Dengue
virus (Table 4). Plants produce five carbon isoprene derived
terpenes which are the largest and most diverse group of PSM.
They are classified by monoterpenes, diterpenes, triterpenes,
sesterterpenes, hemi terpenes, and sesquiterpenes (282). They
exhibited antiviral activity against Bovine viral diarrhea virus,
HSV-1, Poliovirus type 2 (PV-2) and vesicular stomatitis virus
(VSV), Dengue virus serotype-1 (DENV-1), Influenza A and B
viruses, HIV-1, HIV-2, SIV mac 251, and SARS-CoV (Table 4).
Ten diterpenes, two sesquiterpenes, and two triterpenes showed
anti-SARS activity with IC50 of 3–10µM (283). In silico analysis
also revealed that terpene Ginkgolide A can strongly inhibit
SARS CoV-2 protease enzyme (284). Carbohydrates, mainly
classified as monosaccharides, disaccharides, polysaccharides,
and oligosaccharides (282), are found as antiviral agent against
Human rotavirus, Influenza A virus, HSV-1, HSV-2, Herpes
simplex virus (HSV), RSV, Coxsackie B3 Virus, and VSV [(285);
Table 4]. Acyclovir is an FDA (Food and Drug Administration)
approved antiviral drug which is obtained from Carissa edulis
(Supplementary Table 1). It is mainly used for herpes simplex
virus, chickenpox, and shingles. The group basis structure of
some major compounds can be found in Table 5.

DRUG DISCOVERY FROM PSMs:
ADDRESSING THE MAJOR CHALLENGES
TOWARD FUTURE INSIGHTS

Drug discovery from plant metabolites refers to the extraction
and purification of active ingredients from conventional
cures. Natural plant products comprise complicated chemical
structures which differ according to their numerous species.
There are several classes of PSMs which are responsible for
the biological activities of herbal medicines. PSMs exert their
actions on molecular targets that differ from one case to the
other. These targets may be enzymes, mediators, transcription
factors, or even nucleic acids (286). Good knowledge of the
chemical composition of plants leads to a better understanding
of their possible and specific medicinal value. Drug discovery
and development have become a wide interdisciplinary field
over recent decades and many factors are involved in the
successful evolution from a bioactive compound into a potential
drug [(287, 288); Figure 2]. When existing methods with
advanced technologies are applied, it can lead to a modern
revelation of drugs, benefitting medicinal purposes (223, 289).
The development of modern technologies has streamlined
the screening of natural products in discovering new drugs.
Research for drug discovery must create robust and prudent
lead molecules, which is progressed from a screening hit to
a drug candidate through structural elucidation and structure

recognizable proof available from high throughput technology
like GC–MS, NMR, IR, HPLC, and HPTLC. Utilizing these
advanced technologies gives us an opportunity to perform
research in screening novel molecules employing a computer
program and database to set up common items as a major source
for drug discovery. It finally leads to lead structure discovery.
Powerful new technologies are revolutionizing natural herbal
drug discovery (223). Steps associated with the drug discovery
process from natural resources is illustrated (Figure 3).

However, several factors involving the conversion of a
desirable compound into a valuable drug candidate include
availability, bioavailability, intellectual property, and the strong
pharmacokinetic profile of the compound (268, 290). Sometimes
researchers find great bioactivity of a plant-derived compound
in in vitro analysis but unfortunately, the desired compound
becomes ineffectual under in vivo conditions (291). In vivo is a
very crucial step to move to animal trials or subsequent clinical
trials. Even if the compound shows promising activity in in vivo
assay but it can still become ineffective in animal model trials due
to a poor pharmacokinetic profile (292). Under in vivo condition,
the target compound remains in direct contact with cells, while
in animal models the compound moves to various stages where it
might lose its bioactivity (292). For example, despite curcumin
having promising antioxidant, anticancer, anti-inflammatory,
and antimicrobial activities, it has not been released as
a drug yet due to its poor bioavailability (292). Another
propitious drug candidate, epigallocatechin gallate (EGCG),
showed antioxidant, antihypertensive, anticancer, antimicrobial,
and anti-inflammatory activity (293, 294) but unfortunately, it
has also failed to obtain drug designation due to the same reason
mentioned for curcumin (292).

To remedy these problems, researchers around the world
are working to develop new approaches. Changing the
administration route might increase the bioavailability of
a compound. For example, the bioavailability of an anti-
inflammatory compound, andrographolide, is increased
when it is administered intravenously instead of through
oral administration (295). Other methods to enhance the
bioavailability of target compound include using drug delivery
systems, the nano-formulation of a drug, using adjuvant
systems, or altering structural analogs (208, 296). Furthermore,
the modification of pharmacokinetic profiles of compounds
like absorption, distribution, metabolism, and excretion can
escalate its probability as drug candidate (268). Indeed, there
is an urgent need for specific protocols for invention of novel
bioactive compounds and for this purpose it is very crucial
for related organizations, companies, and agencies, including
the World Health Organization (WHO), Food and Drug
Administration (FDA), European Medicines Agency (EMA),
World Trade Organization (WTO), International Conference on
Harmonization (ICH), World Intellectual Property Organization
(WIPO), biotech companies, pharmaceutical pharmaceuticals
companies, and several other companies and agencies, to work
together. However, plant-originated therapeutics need to be
taken under consideration against SARS-CoV-2 as they have
already shown promising hopes for different critical conditions
caused by deadly pathogens.
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TABLE 5 | Structures of some major PSMs and Drugs used against SARS CoV-2.

ALKALOIDS

Buchapine Colchicine Acronine

Citrusinine Rohitukine

POLYPHENOLS

Aescuflavoside Diphyllin Galangin

Isoscutellarein Justicidin Ternatin

(Continued)
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TABLE 5 | Continued

α-Peltatin Podophyllotoxin

TERPENOIDS

Betulinic acid Ursolic acid

OTHERS

-(-)Calanolide Inophyllum B

SYNTHETIC DRUGS

Andrographolide Arbidol Darunavir

(Continued)
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TABLE 5 | Continued

Hydroxychloroquine Ivermectin Lopanovir

Loprazolam Lurasidone Oseltamivir

Remdivisir Ribavirin Ritonavir

Rubitecan Salmeterol Saquinavir

(Continued)
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TABLE 5 | Continued

Talampicillin Teicoplanin

FIGURE 2 | Scientific teams (A) to overcome various hurdles for successful novel drug discovery (B) from PSMs.

The seven major drug targets of SARS CoV-2 were described
before (176). Similarly, screening of PSMs for drug establishment
by molecular docking is efficient in terms of time and cost. Even
the development of vaccines through computational biology was
found to be effective for previous severe viruses like MERS
using animal models, target antigens, and probable vaccine
candidates (181). But still, there exists a lack of a complete
review for PSMs as alternative drug therapeutics. Our review
aims at establishing PSMs as a strong and safe candidate for
the treatment of SARS CoV-2. Through suggesting probable
antiviral plant metabolites or screening, druggability analysis of
plant metabolites against SARS-CoV-2 has become a time-saving
practice (280, 297). Without establishing a drug development
pipeline that includes clinical trials, these suggested candidate
PSMs will end up only in journal publications or be shelved
as herbal formulations on a supermarket store as a traditional
medicine and will never be a modern drug. Undoubtedly, the
plant an underutilized source of novel bioactive compounds
and is one of the hotspots to fight against this microbial
resistance war. The decrypting of PSMs is not increasing so
much in comparison to the number of metabolites produced

from plants. A biotechnological approach can offer a desired
amount of secondary metabolites in a rapid and eco-friendly
way against SARS-CoV-2 (298). In addition, plant metabolomics
are now used as a tool for discovery of novel drugs from
plant resources (299). Characterization of genes and proteins
involved in secondary metabolic pathways are also very crucial
to understand. Therefore, omics approaches (transcriptomics,
proteomics, and metabolomics) have paramount importance in
food research and drug discovery (300, 301) for human welfare.
Genetic modifications for engineering plant metabolites can be
helpful for reaching a specific drug. Quality control of natural
products is also very important. So, laboratory support, skilled
manpower, and funding is also very important for drug discovery
from natural resources.

CONCLUSIONS

Scientists all around the world are trying to discover the
most effective antiviral drug to combat SARS CoV-2. In
this situation, our study accentuated some plant secondary
metabolites that showed prominent antiviral activity against
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FIGURE 3 | Various steps involved in the tedious drug discovery process from plant sources.
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coronaviruses through impeding the main machinery used in
their pathogenesis and replication cycle. The in vitro, in vivo,
and in silico investigations revealed numerous plant-derived
compounds with promising anti- SARS CoV and anti- SARS
CoV-2 activity [Table 2; (179, 220, 222, 233–261, 297)]. Plants
are a dramatically underutilized source of bioactive compounds
with a broad spectrum of antiviral activities. Some Chinese
traditional plant formulations have been reported as being anti-
SARS CoV-2 and this formulation is also provided in COVID
patients (302, 303). We reported here on 219 plants which act
against a wide range of DNA/RNA viruses, but the plant PSMs
that showed promising activity against SARS CoV and MERS
might be a desired drug candidate against SARS CoV-2. So,
this review gathered all antiviral plants in a single platform
to facilitate laboratory-based research for the development of
novel drug/molecular therapeutics to overcome this and future
pandemic situations. The world is facing a serious health crisis,
and it needs an effective solution to combat the burning flame
of COVID-19. Researchers are trying to find an effective way
to overcome this situation, and the present study could help
them to think with a new dimension by using the knowledge
from the databases based on the plant metabolites (304, 305).
Finally, advanced and rapid acting extraction, purification, and
characterization techniques used for plant metabolites as well
as multidisciplinary expertise and funding are very essential for
novel drug discovery.
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