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Abstract

Knowledge of protein structure can be used to predict the phenotypic consequence of a missense variant.
Since structural coverage of the human proteome can be roughly tripled to over 50% of the residues if
homology-predicted structures are included in addition to experimentally determined coordinates, it is
important to assess the reliability of using predicted models when analyzing missense variants. Accordingly,
we assess whether a missense variant is structurally damaging by using experimental and predicted
structures. We considered 606 experimental structures and show that 40% of the 1965 disease-associated
missense variants analyzed have a structurally damaging change in the mutant structure. Only 11% of the
2134 neutral variants are structurally damaging. Importantly, similar results are obtained when 1052
structures predicted using Phyre2 algorithm were used, even when the model shares low (b40%) sequence
identity to the template. Thus, structure-based analysis of the effects of missense variants can be effectively
applied to homology models. Our in-house pipeline, Missense3D, for structurally assessing missense variants
was made available at http://www.sbg.bio.ic.ac.uk/~missense3d

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

One the major challenges in modern genetics is
predicting the effect of the overwhelming number of
variants being revealed through sequencing projects.
This is particularly important in analyzing variants
occurring in the human population that could be
involved in the pathogenesis of disease [1,2]. It has
been noted [3] that in many studies the challenges and
costs arise more from the analysis of the data than the
actual sequencing. To help prioritize potentially dele-
terious variants, groups have developed in silico
prediction programs. Many of these methods rely
primarily or exclusively on sequence-based features,
such as amino-acid evolutionary conservation, for
example, Sorting Intolerant From Tolerant (SIFT) [4],
FATHMM [5], MutationTaster [6] and Condel [7].
Although many of these approaches provide a high
sensitivity (i.e., a high true-positive rate, or TPR), they
thors. Published by Elsevier Ltd. This is a
g/licenses/by/4.0/).
often also have a low specificity [8] (i.e., a high false
positive rate, or FPR). REVEL [9], an ensemble
method that combines features from several common-
ly used predictors, showed the best discriminatory
ability to distinguish between damaging and neutral.
A major limitation of in silico predictors is that they

often return a binary outcome (i.e., neutral or delete-
rious) and provide little or no explanation of the effect of
the substitution. Inmany applications, including clinical
genetics [1,2], a high specificity coupled with an
explanation of the phenotypic effect is of major benefit
in prioritizing further studies.
Since the structure of a protein is intimately linked to

its stability, function and interactions, many in silico
prediction methods employ knowledge of protein
structure, either exclusively or in combination with
sequence-based features, with the aim of providing
high-quality predictions (high TPR and low FPR).
Although the coordinates in the protein data bank
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(PDB) [10,11] cover only about 17% of the residues of
the human proteome, this coverage can be markedly
extended to a total of about 50% by protein structure
prediction [12]. Our recent (unpublished) analysis
using an updated version of Phyre2 yields a coverage
by confidently predictedmodels of 54%of the residues
of the human proteome. Local features, such as the
regular secondary structures, residue burial,
transmembrane-spanning regions and disorder, can
be predicted proteome-wide, for example, Ref. [13].
Models for tertiary 3D structure can be predicted from
the known coordinates of one or more structural
templates, and this approach is commonly called
homology, comparative or template-based modeling.
There are a variety of strategies to prioritize

potentially damaging amino acid substitutions that
benefit from the additional information that can be
obtained fromprotein structure, with someapproaches
only applicable when there is a PDB structure and
others that include information from structure predic-
tion, either of just local features or of a 3Dmodel or both
(reviewed in Ref. [14]). Approaches that predict local
structural features but not tertiary structure include
SNAP2 [15] and our algorithm SuSPect [16] and the
widely used PolyPhen2 [17]. Other methods assess
the free-energy change resulting from the amino-acid
substitution with algorithms using either explicit poten-
tial energy functions (e.g., FoldX [18]) or employing
knowledge-based ormachine-learning derived param-
eters, for example, PopMusic [19], mCMS [20] and
DUET [21]. Some approaches closely integrate
sequence and structural analysis, for example, INPS-
MD [22]. The machine-learning approach
ENTERPRISE [23] uses the coordinates of predicted
protein structures to assess the effect of the substitu-
tion on residue–residue interactions.
A major limitation of these structure-based ap-

proaches is that they provide little or no insight into
the mechanism by which an amino-acid substitution
affects protein structure. There have been several
studies [24–30] analyzing the structural effects of
missense substitutions. It is well established that
missense variants in the core of the tertiary structure
are more often associated with disease than those on
the surface. In addition, analyses (see Ref. [31],
including from our group [32,33], have shown that
variants at protein/protein interfaces are enriched in
disease-associated missense variants compared to
those on the remainder of the surface.
Given the additional insight provided by a stereo-

chemical description of the effect of a missense
variant, computational methods such as SNPs3D
[26,27] and Hope server [34] have been developed
to report these effects. However, the inability to upload
a 3D coordinate file and the extensive time required to
return results are major limitations. SDM2 [35] predicts
changes in protein stability upon amino acid substitu-
tion by uploading a 3D coordinate file (PDB or model)
and provides a report of the stereochemical effect. A
related approach Single Amino Acid Polymorphism
pipeline (SAAPdap) [36] reports features such as
breakage of H-bonds, burying a charge and introduc-
ing a clash. However, the user cannot upload his/her
own set of coordinates such as would be obtained via
homology modeling.
Many of the structure-based approaches, particu-

larly those estimating free energy changes, have
been benchmarked solely on experimental struc-
tures, while in others, experimental and predicted
structures are pooled in the evaluation. Sometimes,
web servers can only be used to analyze a PDB
coordinate file. The problem is that when using a
predicted structure, one should ask: are the predic-
tions obtained using a 3D model similar to those that
would be obtained using an experimental structure?
And if so, to what extent does the accuracy of
models affect these results?
To address this, we have compared the stereo-

chemical effects resulting from a missense variant
using PDB coordinates and homology-predicted struc-
tures generated over a range of sequence identities
between query and template. We show that similar
TPRs and FPRs are obtained when using homology
models compared to the results on PDB structures.
Our in-house pipeline used for this analysis andnamed
Missense3D is available at http://www.sbg.bio.ic.ac.
uk/~missense3d.
Results

Overview of variants structural analysis and its
evaluation

Our data consist of 606 human protein structures,
which were obtained from the MolProbity [37] top8000
database of high-quality coordinates. Onto these
structures, we mapped 1965 disease-associated
missense variants and 2134 missense variants with
no known disease association reported to-date (which
we will from now on refer to as “neutral” variants)
obtained from Humsavar [38], ClinVar [39], and ExAC
[40] and occurring in 606 human proteins (the pipeline
for this analysis is presented in Fig. 1).
The mutant structure (MUTANT) was generated

from the wild-type coordinates using SCWRL4 [41].
The side chain of the target residue (residue to be
substituted) and the side chains of any residue within
5 Å from the target residue (defined by any pair of
inter-residue atoms closer than 5 Å) were removed
from the coordinates. The side chain of the target
residue was replaced with the mutant side chain, the
wild-type side chains of the neighboring residues
reintroduced and then repacked using SCWRL4 to
generate the coordinates of the MUTANT. Since
SCWRL4 can slightly re-adjust all side chains even if
they are labeled as fixed, the input wild-type 3D

http://www.sbg.bio.ic.ac.uk/~missense3d
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Fig. 1. Pipeline to analyze the structural impact of missense variants in experimental and predicted structures.
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coordinates in which each side chain was specified
as fixed but still subjected to minor adjustment by
SCWRL4 were also generated (WT). SCWRL4 does
not readjust the backbone.
The MUTANT and WT structures were analyzed to

identify whether the structural consequence of the
substitution is expected to be damaging in terms of the
stability of the foldedprotein. Basedonwell-established
principles of protein conformation and previous studies
on the structural consequences of disease-associated
substitutions [26–30,36], we considered 17 structural
features (see Table 1 and Methods). For the three
structural features calculatedusingadistance (disulfide
bonds, hydrogen bonds and salt bridges), 1 Å was
added to standard distances to allow for errors in the
modeling by SCWRL4 and errors in the predicted
structure. The aims were to provide an analysis
describing structurally damaging changes introduced



Table 1. Structural features evaluated in this study and used by Missense3D web server

Feature assessed as a
structural impact

Description

Disulfide bond breakage The substitution breaks a disulfide bond that was in the wild-type. The maximum S–S length for the bond is
3.3 Å.

Buried Pro introduced The substitution introduces a buried proline.
Clash The mutant structure has a MolProbity clash score ≥30 and the increase in clash score is N18 compared to

the wild type.
B u r i e d h y d r o p h i l i c

introduced
The substitution replaces a buried hydrophobic residue with a hydrophilic residue.

Buried charge introduced The substitution replaces a buried uncharged residue with a charged residue.
Buried charge switch The substitution switches the charge (+/−) of the buried residue.
Secondary structure altered The substitution results in a change in the DSSP secondary structure assignment at the variant position.
Buried charge replaced The substitution replaces a buried charged residue with an uncharged residue.
Disallowed phi/psi The mutant residue is in an outlier region, while the wild-type residue in both the 3D coordinates input file

and the WT are in the favored or allowed regions.
Buried Gly replaced The substitution replaces a buried glycine.
Buried H-bond breakage The substitution breaks all side-chain/side-chain H-bond(s) and/or side-chain/main-chain bond(s) formed

by the wild-type residue which was buried. The maximum H-bond N–O length is 3.9 Å.
Buried salt bridge breakage The substitution breaks a salt bridge formed by the wild-type residue which was buried. The maximumN–O

bond length is 5.0 Å.
Cavity altered The substitution leads to an expansion or contraction of the cavity volume of ≥70Å3. Cavity also refers to a

pocket on the surface.
Buried/exposed switch The substitution results in a change between buried and exposed state of the target residue. (RSA b 9% for

buried and the difference between RSA has to be at least 5%.)
Cis Pro replaced The substitution replaces a proline, which was in cis configuration in the wild type.
Gly in a bend The substitution replaces a glycine, which is located in a bend curvature (reported “S” in DSSP).
Exposed hyd rophob i c

introduced
(evaluated but not used)

The substitution replaces an exposed hydrophilic residue with a hydrophobic residue (not employed as a
feature in Missense3D).
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by human missense variants, which can suggest that
a variant is likely to be disease causing, and to
compare results obtained using experimental and 3D
model structures. We only require a single alert to be
identified and we are not combining scores. Mis-
sense3D, the algorithm used for this analysis, is
available as a webs erver to study the structural
consequences of any missense variant from any
species.

Results on experimental structures

A disease-associated variant identified as having
a damaging structural impact is regarded as a true
positive (TP) since the features are designed to
identify a major disruption to the folded structure.
However, since a missense variant may cause
disease by affecting features, which are currently
not considered in our analysis, such as a residue
critical for function or ligand binding, our TPR could
be enhanced by a further consideration of such
features. We consider a neutral missense variant
identified as being structurally damaging by our
analysis as a false positive (FP). However, this is
likely to overestimate the FPR since damaging a
protein structurally may not result in a disease if the
corresponding gene is non-essential or haplosuffi-
cient. Moreover, some missense variants may
actually be disease associated, but this has not yet
been identified.
Overall, a structural analysis is able to distinguish
disease-associated from neutral variants. In partic-
ular, Fig. 2a shows the performance of each of the 17
structural features assessed to distinguish disease-
associated and neutral variants based on the
fraction of their rates (TPR/FPR) (see also Table
S1). The fraction is greater than 1.0 for 16 of the 17
features. Of these 16, for 15 features, the TPRs and
FPRs are significantly different (P b 0.01). These
differences remain significant (P b 0.01) after Ben-
jamini–Hochberg [42] correction for 17 multiple tests.
For completeness, we have added the results that
would be obtained by using the default cutoff
distances for disulfide bonds, salt bridges and H
bond in Table S2. Although TPR/FPR ratio for each
feature remained similar, the results obtained by
using the relaxed cutoffs allow explaining the effect
of more variants.
“Cis Pro replaced” is not significant (P = 0.3)

despite a TPR/FPR ratio of 1.9 because there are
few observations, which limits the power of the test—
proline cis peptides are not common in proteins [43]
and there were only seven disease-associated and
four neutral variants in our data set. However, as it is
well established that non-proline cis peptides are
exceptionally rare in proteins [43], this feature was
retained in the list of structural alerts. The feature
“exposed hydrophobic introduced” proved not to be
effective in identifying structural alerts for disease
variants with a TPR/FPR ratio of 0.6. This result is



Fig. 2. Performance of structural analysis on experimental structures. For each feature, the TPR on disease-associated
(Disease) and the FPR on neutral (Neutral) variants are plotted as bars. The ratios of the true-positive to false-positive
rates (TPR/FPR) are given, and for ease of viewing, these are connected by a line. The overall TPR and FPR on the entire
data set are also reported. Significance at P b 0.01 (denoted by **) is evaluated in a one-tailed test of the difference of two
proportions. Panel a are the results from the set of high-quality X-ray structures (resolution b2.0 Å) from MolProbity's
Top8000 database [37]. Panel b are the results on a second independent data set of 855 structures with lower resolution
(b2.5 Å) from the PDB.
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consistent with the observation that a large part of
the protein surface is formed from hydrophobic
residues [24,44].
Breaking a disulfide bond was the most discrim-

inating structural alert with a TPR/FPR ratio of 25.3.
There were only three variants classified as neutral
where a wild-type disulfide bridge was identified as
broken. These variants were in C-type lectin domain
family 4 member (CLC4A, UniProt ID:Q9H2X3, p.
Cys381Arg, residue Cys 381 in PDB ID:1XPH),
beta-2 glycoprotein 1 (APOH, UniProt ID:P02749, p.
Cys325Gly, Cys 306 in PDB ID:3OP8) and E-selectin
(SELE, UniProt ID: P16581, p.Cys130Trp, Cys 109 in
PDB ID:1G1T). These are all structures from the high-
quality MolProbity top 8000 database, and manual
inspection confirmed a disulfide bond in the wild type.

uniprotkb:Q9H2X3
uniprotkb:P02749
uniprotkb:P16581
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One expects breaking a disulfide bond will markedly
reduce protein stability, and hence, the variant should
be disease associated. One possibility is that
the assignment of these variants as neural is incorrect,
and Missense3D correctly identified these as disease
associated. Indeed, p.Cys381Arg in CLC4A (dbSNP:
rs184828145) and p.Cys130Trp in SELE (dbSNP:
rs5360) are extremely rare variants (ExAC allele
frequency of 0.00007414 and unknown, respectively).
Moreover, p.Cys325Gly inAPOH (dbSNP:rs1801689),
although reported as “polymorphism” in UniProt, has
been shown to affect APOH binding to phosphatidyl-
serine when present in compound heterozygous
patients, and it has been suggested to impair APOH
binding to phospholipid in homozygous patients [45].
Thus, the breakage of the disulfide bond identified by
our structural analysis could suggest that thesevariants
may have an impact on these proteins.
The next most discriminating feature was introducing

a proline in a buried residue. The allowed backbone phi
and psi torsion angles are substantially reduced for
proline compared to any other residue, and thus,
introducing a proline can disrupt the structure [46]. In a
buried location, it is harder for the backbone to
rearrange toaccommodate the introductionof aproline.
Four of the next five most discriminating features relate
to the introduction or alteration of a hydrophilic or
charged side chain into the protein core, consistentwith
the principle that an unpaired charged or polar group in
the core nearly always destabilize the protein [47].
As thebackbone is not altered bySCWRL4, changes

to the secondary structure as defined byDSSP [48] can
only result from the introduction or removal of a proline,
which alters the backbone hydrogen-bonding pattern.
There were 22 disease-associated (1.12%) and 5
neutral substitutions (0.23%) that altered the secondary
structure determined by DSSP.
Onemight expect that replacing a buried glycinewith

any residue would generate clashes. However, we
found that not all buried glycine substitutions resulted in
clashes: 87 out of the 115 disease-associated variants
(75.7%) and 30 out of the 33 neutral variants (90.9%)
did not result in high clash scores.
The TPR values in Fig. 2a indicate the relative

frequencies of observing particular damaging structural
effects in the disease-associated variants. Our results
are broadly in agreement with analyses by others
[24,26–30,36]. In our data set, the most common
disruptive feature is introducing a buried charge, with
8.7% of disease-associated variants affected. The
other common effects (TPR N 5%) are as follows:
breakage of a buried H-bond, replacing a buried
charge, replacing a buried glycine, introducing a
disallowed phi/psi, altering a cavity, and introducing a
clash. In addition, introducing a hydrophobic residue
onto the surface has a TPR of over 5, but this feature
occurred more often in neutral variants.
Overall, 40.1% (788) of the disease-associated and

11.4% (244) of the neutral variants were identified as
having at least 1 of the 16 structural damaging changes
[TPR/FPR 3.51, P b 0.01; Matthews Correlation
Coefficient (MCC) = 0.33]. We compared these results
with those obtained using mutant structures generated
using FoldX [18]. Although the overall TPR remained
the same at 40.0%, the FPR for FoldX-generated
mutants was higher (16.0%) yielding a poorer TPR/
FPR of 2.5 (P b 0.001, McNemar test; Tables S3–S5).
Overall, 91% of variants (3749/4099) were predicted to
have a similar effect regardless of the tool used
(SCWRL4 or FoldX). In particular, at disease variant
level, the predictions were identical in 70% (636
variants), different in 3% (25 variants) and similar (in
cases were multiple features were triggered, at least
one featurewas the same in bothmutants) in 27% (242
variants). When results for individual features were
analyzed (Table S6), the TPRs and TPR/FPR ratios
remained similar for all features with the exception of
clash, which was lower for FoldX generated mutants.
This difference may be explained by the fact that this
parameter is mutant structure dependent and was
developed for SCWRL4-generated structures.
The TPR of the structural analysis was confirmed on

an independent data set of 855 structures with lower
resolution (b2.5 Å) corresponding to 565 unique
human proteins. A total of 3718 disease-causing and
2516 neutral variants (extracted and classified accord-
ing to UniProt, Humsavar database) were mapped and
structurally analyzed. The TPR on this independent
data set was 38% (number of true positives 1424 out of
3718, P = 0.18 on a comparison of proportions test;
MCC = 0.25). Moreover, we confirmed that for 15 out
16 features analyzed, the TPRs and FPRs were
significantly different (Fig. 2b, P b 0.01 after Benja-
mini–Hochberg correction and Table S7). Interestingly,
in this data set of 3D structures with a lower resolution,
we observed a higher FPR (15%, no. of false positives
386 out of 2516; P b 0.01 on a comparison of
proportions test), whichmay be due to the lower quality
of the structures analyzed.

Analysis of rare, common and unknown neutral
missense variants

We analyzed the structural consequences of three
subsets of neutral variants based on their minor
allele frequency (MAF): 273 common (MAF ≥ 0.01),
1550 rare (MAF b 0.01) and 311 unknown (no MAF
available). The FPRs for common, rare and un-
known neutral variants from the structural analysis
were 5.9%, 11.6% and 15.8%, respectively. Inter-
estingly, when using the SIFT algorithm, which
assess the deleterious effect of a variant purely by
sequence conservation, the FPRs for the same sets
were 29.3%, 48.2% and 51.1%. It has been
suggested [49,50] that several rare variants currently
assigned as neutral may subsequently prove to be
disease associated. Moreover, several variants,
which are currently considered of uncertain clinical
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significance, may be associated with disease [51].
We observe that roughly double the number of rare
variants generated structural alerts compared to
common variants, suggesting that several rare
variants may be damaging. Similarly, several of the
variants in the unknown MAF subset that raised a
structural alert may be disease associated.

Results on homology models

A total of 1052 Phyre2-predicted homology models
(median length, 247 residues; range, 52–1183
residues) were obtained for 471 experimental PDB
structures over a range of sequence identities
between the query and template. Figure 3 shows
the distribution of RMSDs of equivalenced Cα atoms
between the predicted and corresponding experi-
mental structures. As expected, the median RMSD
increases with decreasing sequence identity be-
tween query and template. The RMSD median was
0.86 Å for models in the sequence identity range
90%–95% and the median increased to 2.79 Å for
the lowest identity range (30%–39%).
Figure 4 shows the results of the structural

analysis on Phyre2 homology models (see also
Table S8). In each sequence identity bin, the results
for the models and the experimental structures
corresponding to the models in that bin are reported.
The relatively low numbers of proteins in the 70%
and 80% bins are due to the lack of templates in
these sequence ranges leading to far larger confi-
dence intervals for the TPR and FPR, which hinders
comparisons. In general, similar TPRs and FPRs are
observed for models and experimental structures.
Despite some fluctuation in the TPRs at different
sequence identities, the percentages of the FPRs in
all bins remained broadly stable between 11% and
13%. Moreover, there was on average 88% (range,
86%–92%) agreement at variant level between the
predictions obtained from models in different se-
quence identity bins compared to those obtained
from the corresponding experimental structures
(Table S9). Since some of the features are depen-
dent on the quality of the model, we re-analyzed the
data using only the 10 wild-type dependent features.
The results showed that new TPR/FPR ratio obtained
using experimental structures remained overall similar
to that obtained using models (Table S10). These
results show that overall the performance of the
structural analysis does not deteriorate substantially
even when the structural model is based on a low-
sequence identity template. The successful extension
of these results from experimental to predicted
structures is, in part, the result of using relaxed cutoffs
(addition of 1 Å to distance calculation) in the
identification of the structural alerts.
Supplementary Figure 1 presents the TPR and

FPR for each of the 16 features for the models within
each sequence identity bin and compares them to
the results for the corresponding experimental
structures. We assessed the results on whether the
ratios of TPR to FPR for the predicted structures are
similar to those for the corresponding experimental
structures within that bin. By inspection, the 16
features can be separated into two groups based on
whether they still maintain good performance (ratio
of TPR/FPR) even when there is a low-sequence
identity of the model to template. Features that tend
to maintain good performance even at low-sequence
identity rely on the buried or exposed state of the
wild-type or mutant residue, on the backbone
conformation, changes involving glycine or proline,
and on the cavity volume. This is because homol-
ogous structures, even with low-sequence identity,
tend to preserve the backbone conformation more
than the side-chain positions [52] and residues tend
to maintain their buried or exposed status [48].
In contrast, the performance of the features

requiring the measurement of a distance (i.e., the
disruption of hydrogen bonds, salt bridges and
disulfide bonds) drops when the sequence identity
is low largely the consequence of poor modeling of
the side-chain position. There is also a drop in the
discriminating power of the clash feature coupled
with a marked reduction in both the TPR and FPR at
low-sequence identity. However, this does not mean
that there were fewer clashes in the low-sequence
identity homology models. As expected, these
models had more clashes than the crystal structures,
but our criterion for clash requires a marked
difference (N18) in the scores between the wild-
type and the mutant structures.
Figure 5 shows the distributions of the relative

frequencies of the RMSDs of the predicted models
for the TP and FP assignments. A one-tailed Mann–
Whitney U-test confirms that the distribution of
RMSDs for the TP predictions is significantly lower
(P b 10−4) than for the FP predictions (performed on
the total frequencies). However, as there remains a
large overlap in RMSDs, the overall quality of the
model does not provide a reliable guide as to
whether the structural analysis will yield a correct
identification of a damaging effect.

Case studies

We present two case studies to illustrate the
modeling of the structural impact of missense variants
and the consequences of examining predicted models
rather than the experimental structures.
Carbonic anhydrase II (UniProt ID: P00918), code by

CA2, is involved in physiological processes associated
with CO2. The pathogenic missense variant p.His107-
Tyr destabilizes the folding of the protein [53]. This and
other variants in this gene are associated with
osteopetrosis with renal tubular acidosis (MIM
259730) [53], a rare condition causing severe mental
and physical impairment. In the 1.1-Å wild-type

uniprotkb:P00918


Fig. 3. The distribution of the
RMSD (Å) between the Phyre2-pre-
dicted models and the true experi-
mental coordinates binned according
to the % sequence identity between
query and template. The central line in
a box is the median RMSD with its
value reported. The upper and lower
box boundaries are the upper and
lower quartiles. The whiskers extend
up an additional 1.5× the difference
between the median and the upper
quartile and down an additional 1.5×
the difference between the median
and the lower quartile.
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structure (PDB ID: 2FOS), there are two salt bridges
between His 107 and Glu 117 with N–O distances of
2.6 and 3.8 Å (Fig. 6a). The variant p.His107Tyr results
in the abolition of these salt bridges (Fig. 6b). The
Phyre2-predicted structure had 36% sequence identity
to the template (PDB ID: 1JD0) and resulted in amodel
withRMSD to theexperimental structure of 2.6 Å. In the
predicted structure, the His–Glu salt bridge remains
identified with the N–O distances being 2.8 and 3.9 Å
(Fig. 6c). Thus, despite the predicted model having a
Fig. 4. Performance of structural analysis on predicted mo
identity bin, the fractions of positive predictions for the diseas
predicted and the corresponding experimental structures. 95%
lines.
low percent identity to the template, the predicted
structure remained sufficiently accurate in this region to
identify that there is a salt bridge in the wild type, which
is not present in the mutant structure (Fig. 6d).Alpha-
galactosidase (UniProt ID: P06280), coded by GLA, is
an enzyme responsible for hydrolysing terminal, non-
reducing alpha-D-galactose residues in alpha-D-galac-
tosides. Mutations in GLA cause Fabry disease
(MIM:301500), a rare genetic condition [55]. The
mutation p.Cys52Arg causes the loss of expression
dels at different sequence identities. For each sequence
e-associated and neutral variants are shown for both the
Confidence intervals on the positive rates are shown as

uniprotkb:P06280


Fig. 5. Histogram of the relative
frequencies of RMSD (Å) of predicted
models groupedaccording towhether
the variant was a TP and FP. The bin
labeling shows the upper bound; for
example, 0.5 denotes the range
0.0 Å ≤ RMSD b0.5 Å. The last bin
is RMSD ≥6 Å. The relative percent-
age displayed on the Y axis is the
fraction of true positives and similarly
the fraction of false positives in each
bin range.
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and activity of the protein [55]. In our structural analysis
based on the 1.9-Å resolution PDB structure 3HG3,
Cys 52 (corresponding to Cys52 in PBD ID: 3HG3)
forms a disulfide bond with Cys94 with an S–S bond
distance of 2.08 Å (Fig. 7a). The modeling of the
substitution of Cys 52 by Arg then results in breaking
the disulfide bond (Fig. 7b). Our more-accurately
Phyre2-predicted wild-type structure has 54% identity
to the template (PDB ID: 1KTB) and has anRMSDwith
the experimental structure of 1.4 Å. The wild-type
disulfide remains identified with an S–S distance of
2.00 Å (Fig. 7c), and therefore, the Cys to Arg
substitution is correctly identified as structurally dam-
aging in the mutant structure. In contrast, in the less-
Fig. 6. Structural analysis of p.
His107Tyr in the experimental and
predicted structures of carbonic anhy-
drase (CA2). (a) His 107 in the wild-
type (WT) (PDB ID: 2FOS), (b) Tyr
107 in the mutant (MUTANT) mod-
eled from the WT, (c) Phyre2-predict-
ed structure of the wild type with His
107 (PREDICTED WILD TYPE) and
(d) predicted structure of the Tyr 107
mutant based on the Phyre2-predict-
ed wild-type structure (PREDICTED
MUTANT). In all four panels, the Cα
traces of the structures analyzed by
Missense3D are shown in gray. In the
predicted structures (c and d), the Cα
trace and side-chain positions shown
in panels a and b are shown in pink.
The side chains of the His 107, Tyr
107 and Glu 117 are show by
chemical type (green for non-polar,
blue for positive and red for negative).
Figures were generated using
PyMOL [54].



Fig. 7. Structural analysis of vari-
ant p.Cys52Arg in the crystal and
predicted structures of alpha-galacto-
sidase. (a) Cys 52 in the wild type, (b)
Arg 52 in themutantmodeled from the
wild type, (c) Phyre2 wild-type pre-
dicted structure of the Cys 52 using a
model with RMSD to the crystal
structure of 1.4 Å (PREDICTED
WILD TYPE) and (d) Phyre2-predict-
ed wild-type structure of the Cys 52
using a model with RMSD to the
crystal structure of 2.8 Å (PREDICT-
ED WILD TYPE (2)). Color scheme
for the four panels as in Fig. 7. In
addition, the SG atoms are shown in
yellow.
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accurately Phyre2-predicted wild-type structure that is
based on a model with 35% identity to the template
(PDB ID: 4NZJ) and has an RMSD of 2.86 Å to the
experimental structure, the wild-type disulfide bond is
not identified as the S–S distance is 4.0 Å (Fig. 7d) and
so the variant is not considered as introducing a
damaging change into the structure.

Missense3D web server

We have made our in-house pipeline for the
structural analysis of missense variants, Missense3D,
freely available to the scientific community as a web-
server at http://www.sbg.bio.ic.ac.uk/~missense3d.
There are two possible inputs:
Input A (position on protein sequence): the user

provides the UniProt ID of the query protein, amino acid
position on the protein sequence, wild-type residue and
substitution and specifies the PDB coordinates file and
chain identifier in the coordinates file (3D coordinates
files cannot be uploaded in this Input). Missense 3D
automatically generates the UniProt to PDB residue
mapping;
Input B (position on 3D structure): the user needs to

upload a 3D coordinate file, either by specifying a PDB
code or by providing their own coordinate set. Next, the
user specifies the amino acid position on the 3D
structure (there is a warning reminding that the residue
position on the PDB coordinates file may not necessar-
ily correspond to the residue position on the amino acid
sequence), wild-type residue and substitution and chain
identifiers in the 3D coordinates file. Linking protein
sequence and 3D coordinates is a reoccurring problem
and, as Missense3D will accept predicted models from
any server, we cannot guarantee a correctmapping of a
residue with a sequence-based numbering onto the
coordinates.
A link to our Phyre2 [56] model prediction server is

also provided to aid users not familiar with generating
homology modeling. The output from Missense3D is a
report of the changes in structural features introducedby
the amino acid substitution that are predicted to be
structurally damaging. The 3D coordinate file giving the
conformation of the modeled mutant structure is also
provided. The result is typically returned in about 3 min.
Many protein structure prediction servers, including
Phyre2 [56], predict the global conformation of the
protein and are not designed to model the structural
consequences of a particular missense variant. Thus,
Missense3D has a valuable role in augmenting the
information provided by many protein structure predic-
tion servers.
Discussion

Bhattacharya et al. [30] studied 374 missense
variants in 334 PDB structures. They found that

http://www.sbg.bio.ic.ac.uk/~missense3d
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44.5% of the disease-associated substitutions and
3.4% of the neutral substitutions affected protein
stability. Our analysis identified structural alerts in
40.1% of disease-associated substitutions, and our
FPR was 11.5%. Thus, our TPR is very close to that of
Bhattacharya et al., and the FPRs are in broad
agreement. In contrast, SAAPdap [36] modeled the
structural effects of missense variants and identified
63.2% disease-associated and 30.0% neutral mis-
sense variants asaffecting protein stability. These rates
are higher than ours and that of Bhattacharya et al.,
particularly with regard to overpredicting that neutral
substitutions are structurally damaging. However,
different data sets have been used in these three
studiesand this hinders direct comparisons. In addition,
in SAAPdap, the structural alerts by themselves are
not used as the final predictor. Al-Numair and Martin
[36] used a random forest to combine the structural
features with a consideration of sequence conser-
vation and reported a cross-validated prediction
accuracy (number of correct predictions of both
neutral and disease/total number of variants) of
84.6% on their data set, outperforming SIFT and
PolyPhen-2, which gave accuracies of 69.0% and
78.5%. Unfortunately, because SAAPdap does not
allow uploading 3D coordinates files and does not
allow performing a batch analysis, we could not use
it to compare our results. The SDM2 server, which
allows uploading 3D coordinates files, does not
return a detailed structural analysis, such as the one
performed in this study, thus again preventing
comparison with our results.
The challenges in robust evaluation of the accuracies

of algorithms to predict the phenotypic effect of variants
have been highlighted [23,57]. Some proteins, often
those that are essential, have many missense variants
that are disease-associated, other proteins are found to
have many missense variants that do not markedly
alter the phenotype, and others have a similar number
of disease-associated and neutral variants. Reported
predictive accuracies, such as the TPR and FPR, are
thus greatly affected by the data set of proteins used in
the study, and caution must be used in comparing
accuracy measures from different groups. The values
reported in this study should therefore beconsideredas
approximate guidelines.
At present, our pipeline, Missense3D, available as

a website, should be used to provide a qualitative
description of potential structurally damaging mis-
sense variants in both experimental and homology-
predicted structures. Further work could use a cross-
validated machine learning approach to extend
these structural alerts to yield a quantitative predic-
tor. In this version of Missense3D, we do not take
into account disruption of protein–protein, protein–
DNA and protein–small ligand interactions, which
could greatly enhance the accuracy of Missense3D.
For this reason, MCC may not be the best metric to
assess the value of Missense3D.
One limitation of our work is that we did not compare
the results obtained fromPhyre2modelswith those that
could be obtained by using other modeling servers,
such as I-Tasser [58] or Rosetta [59]. We acknowledge
that a model generated by different servers could yield
slightly different results. It is possible that using a
predictor, such as I-Tasser, which consistently per-
formed exceptionally well at CASP [60], could provide
marginally better results. However, the conclusion of
the paper is that the Missense3D is robust when
applied tomodels. Another limitationof our study is that,
ideally, wewould havewished to compare the results of
Missense3D to similar existing algorithms. However,
technical reasons, such as the lack of batch facilities or
ability to upload your own structures, prevented such
an analysis.
In conclusion, overall, in terms of the TPR/FPR

ratio, the structural analysis of missense variants is
nearly as good in predicted structures, even those
with low-sequence identity to the template, as can
be obtained analyzing experimental structures.
Since jointly experimental structures and predicted
homology models cover over 50% of residues in the
human proteome [12], the effect of many human
missense variants can be interpreted from a
structural perspective. Our novel method Mis-
sense3D is a useful tool for assessing whether a
missense variant is likely to have a damaging effect
on the stability of the folded protein, and it is
applicable to both experimentally determined struc-
tures and homology-predicted models.
Methods

Data set of high-quality experimental structures

Human high-quality x-ray structures (resolution
b2.0 Å) were obtained from the representative
MolProbity's Top8000 database [37]. Nine hundred
ninety-nine structures were obtained, which could be
mapped unambiguously to a UniProt ID [40].
The structural analysis was repeated on a second

independent data set of 855 structures with lower
resolution (b2.5 Å, extracted from PDB) and corre-
sponding to 565 human proteins. These proteins
were being used for our subsequent analysis on
quaternary structures (not reported) and were not
identified until all features and the method of analysis
were established on the MolProbity and the Phyre2-
predicted structures.

Data set of missense variants

Missense variants were curated from Humsavar
(from UniProt [61] release 4 Feb 2015), ClinVar [39]
(release 7 Jan 2015) and ExAC [40] (version 0.3,
release 13 Jan 2015) (see Ref. [62]).
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Variants were classified as disease associated if
reported as pathogenic in ClinVar or disease causing in
UniProt. Variants were classified as neutral if they were
reported as “benign” in ClinVar or “polymorphisms” in
UniProt (and no association with disease was present
in ClinVar). Variants reported in the ExAC database
were included in the neutral set if no association with
disease was reported in ClinVar or UniProt.
The initial data consist of 26,884 disease-associated

and 563,099 neutral variants. Of these, 1965 disease-
associated and 2134 neutral variants could be mapped
onto606of the999PDBstructures.Theneutral variants
were also divided according to their MAF into 1550 rare
variants (MAF b 0.01), 273 common variants
(MAF ≥ 0.01) and 311 variants of unknown frequency
(no MAF reported). A second set of neutral (2518) and
disease-causing (3718) variants from Humsavar was
mapped onto the lower-resolution data set of 855 PDB
structures. Sequence to structure mapping was per-
formed by aligning UniProt amino acid sequence to
PDB amino acid sequence using ClustalW [63].

Data set of predicted structures

Phyre2 [56] in normal mode was used to predict
the structures of the 606 proteins from their
sequences. The resultant models were filtered to
obtain models that meet the following criteria: (i)
sequence identity N30% but ≤95% (the upper bound
was set to avoid the bias of the same or a very similar
PDB as in Top8000 being used as the template for
homology modeling); (ii) the PDB code of the
template was different from that of the corresponding
experimental structure; and (iii) confidence that the
template is correct is ≥90%. This score ranges from
0 to 100 and represents the probability that the
match between the query sequence and the
template is a true homology. A Phyre2 [56] confi-
dence N90% suggests that the core of the protein is
modeled at high accuracy (2–4 Å RMSD from the
native, true structure]; (iv) the residues in the model
covered ≥80% of the corresponding experimental
structure; and (v) the model length was N50
residues. Models for 471 of these 606 proteins
were obtained. Phyre2 can generate up to 20 models
using different templates and at different sequence
identities. One thousand fifty-two Phyre2 models for
the 471 proteins were generated and then separated
into seven bins according to their sequence identity
to the template (30%–39%, … 80%–89% and 90%–
95%). If there were several models in a bin, we
selected one representative taking first the highest-
resolution template, then an NMR template and
finally a template with unspecified resolution.

Calculation of damaging structural features

We used widely accepted distance cut offs for
disulfide bonds [64], hydrogen bonds [65] and salt
bridges [66] to which we added 1 Å to allow for errors
in the modeling of the mutant by SCWRL4 [41] and in
the prediction of the coordinates of the model. A
residue is identified as buried if its relative solvent
accessibility [48] was less than 9%. Hydrophobic
residues are as follows: A, C, F, I, L, M, V and W;
hydrophilic residues are as follows: D, E, H, K, N, Q
and R, with the others being neutral (G, P, S, T and
Y). D and E are treated as negatively charged and H,
K and R as positively charged. We note that there
are several variations to these definitions of residue
properties.
For the three structural features calculated using

a distance (disulfide bonds, hydrogen bonds and
salt bridges), a control was introduced. A structure
(WT-CONTROL) was generated using SCWRL4
allowing every side chain (including the wild-type
residue at the variant position) that was adjusted in
MUTANT to be repacked. WT and WT-CONTROL
were compared for hydrogen bonds, salt bridges
and disulfide bonds. If any of these were different
between WT and WT-CONTROL, then that feature
was excluded from the comparison of WT and
MUTANT.
In order to validate our results, we also used FoldX

[18] to generate the mutant structures.
Disulfide bond breakage: A substitution was

considered damaging when the wild type had a
disulfide bond, which is disrupted in the mutant
structure. A disulfide bond is defined as a bond
between two sulfur atoms of Cys residues that are
b3.3 Å apart.
Buried Pro introduced: Substitutions in the core of

a protein tend to be particularly damaging. The
introduction of a proline with its restricted backbone
conformation is potentially deleterious to maintaining
the wild-type protein structure.
Clash: We used “clashlistcluster” from MolProbity

[37]. In MolProbity, a clash score of over 30 indicates
a poor structure. Since we are focusing on the effect
of a variant rather than the entire structure, the clash
score is measured locally considering only atoms
within 20 Å from the Cα of the variant residue. Here a
substitution is regarded as damaging if the local
MolProbity clash score is over 30 and the increase in
local clash when compared to the local clash score
of the wild-type structure is ≥18.
Buried hydrophilic introduced: A substitution is

considered damaging when the wild-type residue is
buried and hydrophobic and the substitution is a
hydrophilic residue.
Buried charge introduced: A substitution is

regarded as damaging when the wild-type residue
is buried and is not a charged residue and the
substitution is a charged residue.
Buried charge switch: A substitution is considered

damaging if the wild-type residue is buried and
charged and the substitution introduces a residue
with an opposite charge.
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Secondary structure altered: Secondary structure
is defined as one of eight classes by DSSP [67]: H, α-
helix; B, β-bridge; E, strand; G, helix-3; I, helix-5; T,
turn; and S, bend (sharp turn); and C, coil. A
substitution is considered damaging if it results in a
change in the DSSP secondary structure assignment.
Buried charge replaced: A substitution is con-

sidered damaging if the original residue is buried
and charged and the substitution introduces an
uncharged residue. Buried charged residues typ-
ically form electrostatic interaction with a nearby
residue of opposite charge. Substituting a charged
residue with an uncharged one can affect protein
stability.
Disallowed phi/psi: A substitution is considered

damaging if the variant in the MUTANT structure is
predicted to be outside the allowed phi/psi regions,
whereas the wild-type residue is identified as in a
favored or allowed region. Torsion angles were
calculated using ‘Ramachandran’ fromMolProbity [37].
Buried Gly replaced: Buried glycines are normally

highly conserved. A substitution that replaces a
buried glycine with any other residue is therefore
considered damaging.
Buried H-bond breakage: A substitution is consid-

ered damaging if it disrupts all side-chain hydrogen
bonds (both side-chain to main-chain and side-chain
to side-chain) that were formed by the wild-type
residue. Missense3D considers separately the effect
on main-chain/main-chain hydrogen bonding via
alteration in the assigned secondary structure. H-
bonds are defined by a N–O distance of b3.9 Å.
Buried salt bridge breakage: A substitution is

considered damaging when the wild-type residue is
buried, and it forms a salt bridge with another residue
and the substitution no longer forms a salt bridge.
Salt bridges between oppositely charge side chains
are identified by an N–O distance of b5 Å.
Cavity altered: Changes in cavity volume can

affect the protein stability. Cavity volumes on both
the wild-type (WT) and mutant (MUTANT) structures
are measured using KVFinder [68]. The sizes of the
probes were set to their default values: 1.4 Å for
probe in and 4.0 Å for probe out. We consider a
substitution as damaging if it results in increase or
decrease of a cavity volume of at least 70 Å3. This is
consistent with an upper limit of most observed
cavities in proteins [69].
Buried/exposed switch: A substitution is consid-

ered damaging if it results in a switch between the
buried and exposed states of the wild-type and
mutant residues.
Cis Pro replaced: A substitution from proline which

originally was in a cis-conformation is considered as
damaging. Although the omega angle is theoretically
close to 0°, this value may vary, particularly in
predicted models. Thus, we allow a −45° to 45°
range for the omega angle to be considered in the cis
conformation.
Gly in a bend: Glycine, with only hydrogen as its
side chain, can adopt a far larger region in the phi/psi
backbonedihedral angle space thanother side chains.
Glycine is found in loops and regions where a
polypeptide chain makes a sharp turn. Accordingly,
glycine is often conserved. We consider a substitution
to any amino acid as damaging if the wild-type residue
is glycine and its DSSP-assigned secondary structure
is “S” for bend or sharp turn.
Exposed hydrophobic introduced (evaluated but

not used in the final pipeline): A substitution is
considered damaging when the wild-type residue is
exposed and hydrophilic and the substitution is
hydrophobic.
The following features were considered to be

solely dependent on the wild-type structure:
Disulfide bond breakage, Buried Pro introduced,

Buried hydrophilic introduced, Buried charge intro-
duced, Buried charge switch, Disallowed phi/psi,
Buried charge replaced, Buried Gly replaced, Cis Pro
replaced and Gly in a bend. The remaining features
were considered dependent on the model quality.

Statistical evaluation of performance

A disease-associated substitution that is identified
as having at least one structurally damaging feature
is regarded as a TP. A neutral substitution reported
to have at least one structural problem is regarded
as a FP. We denote the total numbers of positives
(i.e., disease-associated variants) and negatives
(i.e., neutral variants) as NP and NN, respectively.
Performance was evaluated using TPR, FPR and
their ratio: TPR = TP/ NP, FPR = FP/ NN and
Ratio = TPR/FPR. Sensitivity and specificity are
related to TPR and FPR: sensitivity = TPR, speci-
ficity = (1-FPR).
A one-tailed test of the difference of two unpaired

proportions [70] was used to assess whether the TPR
for a particular structural alerts in all disease-associated
variants (NP = 1965) was significantly greater than the
FPR in all neutral variants (NN = 2134). These
significance values were correct using Benjamini–
Hochberg for multiple testing [42].
95% confidence intervals (CI) were assigned to

values for TPR and FPR:

TPR � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPRÞð1−TPRÞ

NP

q
a n d FPR� 1:96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFPRÞð1−FPRÞ
NN:

q

TheMCCwas used to account for imbalance in the
numbers of disease-associated and neutral variants.

MCC ¼ ðTP�TNÞ−ðFP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP�FPÞ

p �ðTP�FNÞ�ðTN�FPÞ�ðTN�FNÞ

Accession numbers

UniProt ID:Q9H2X3,UniProt ID:P02749,UniProt ID:
P00918, UniProt ID: P06280, UniProt ID: P16581.

uniprotkb:Q9H2X3
uniprotkb:P02749
uniprotkb:P00918
uniprotkb:P06280
uniprotkb:P16581
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PDB ID:1XPH, PDB ID:3OP8, PDB ID:1G1T, PDB
ID: 2FOS, PDB ID: 1JD0, PBD ID: 3HG3, PDB ID:
1KTB, PDB ID: 4NZJ.

Data availability

The data that support the findings of this study and
the data generated in this study are available from
the data set page of our Missense3D website at
http://www.sbg.bio.ic.ac.uk/~missense3d/.
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