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Abstract

The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to
cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this
theory is one of the most popular explanations for the cause of aging, several experimental rodent models of
antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have
been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are
both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and
aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this
article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and
dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal
muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk
of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve
mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as
the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
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Introduction
Denham Harman first proposed the free radical theory
of aging in 1956, suggesting that free radical-induced ac-
cumulation of damage to cellular macromolecules is a
primary driving force of aging and a major determinant of
lifespan [1]. This theory, however, is a highly simplified
view of the role of reactive oxygen species (ROS) in the
biology of aging. There are a number of sources of intra-
cellular ROS in mammals, including NADPH oxidases
(NOX), mitochondria, xanthine oxidase, monoamine oxi-
dase, and nitric oxide synthase. The term ROS itself,
encompasses numerous species that range from highly re-
active (OH.) to longer-lived and membrane permeant
(H2O2). Under normal conditions, ROS are maintained at
the physiological levels by several endogenous antioxidant
systems, including superoxide dismutatase (SOD), cata-
lase, glutathione peroxidases, and glutathione reductase
(GR). Other antioxidant systems involving thiol-disulphide
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oxidoreductase systems include the cytosolic proteins
thioredoxin (TRX) and glutaredoxin (GRX). These anti-
oxidant systems are complex, located in different cellular
compartments and are often redundant or complementary
in various conditions. Physiological levels of ROS interact
with redox state and play a role in mediating cell signaling,
while pathological levels of ROS can result in oxidative
damage to cellular components and activate several cell
death pathways (Figure 1). The close interrelationship of
redox balance to oxidative stress has in recent years be-
come a more prominent aspect of the free radical theory
of aging and has been the subject of several reviews [2-4].
Based on the free radical theory of aging, several scien-

tists have attempted to increase lifespan by genetic ma-
nipulation of antioxidant system components, however,
the results have generally been conflicting. In Caenor-
habditis elegans, single or double SOD mutants have a
normal lifespan, while mitochondrial SOD2 mutants
(single or double with cytoplasmic SOD1) increased life-
span [5]. In Drosophila melanogaster early results were
confounded by uncontrolled genetic background effects.
Later analyses suggested that over-expression of catalase,
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Figure 1 Illustration of the continuum of oxidative stress in health and pathology. The redox stress pathway emphasizes the signaling role
of oxidative stress and focuses on reversible regulation and depends on the interaction between cellular components and the redox environment of the
cell. In contrast, prolonged or high oxidative stress leads to structural changes in proteins, lipids, and DNA that are generally more irreversible. These
represent two points along the continuum of how oxidative stress may contribute to aging phenotypes. Modified from Marcinek and Siegel [120].
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SOD1, or SOD2 using the genes’ native promoters does
not increase life span [6,7], but that when tissue-specific
or conditional transgenic overexpression systems were
used, elevated SOD2 did result in substantial life span
increases [8]. It has also been suggested that the largest
lifespan extensions were seen in backgrounds with
shorter lifespan or under redox stress [3]. In transgenic
mice, the overexpression of endogenous antioxidants, in-
cluding CuZnSOD (SOD1, cytoplasmic), MnSOD (SOD2,
mitochondrial), catalase, or combination of CuZnSOD/
catalase and CuZnSOD/MnSOD failed to extend mouse
lifespan [9-11]. While SOD1 knockout mice exhibit 30%
shorter lifespan, the fact that their major cause of death
is hepatocellular carcinoma and the absence of lifespan re-
duction in SOD1 heterozygous mice suggest the shorten
lifespan in SOD1 knockout may not be due to accelerated
aging. While complete deletion of SOD2 cause neonatal
death, SOD2 heterozygous mice and SOD3 both shown
normal lifespan. However, it is notable that in many dis-
ease models or when under environmental stress, the
same transgenic overexpression mice may be healthier
than their wild-type counterparts, and the converse for
antioxidant under-expressing mice (reviewed by [12]).
Several clinical trials using antioxidant supplementa-

tion in various study populations have been performed
during the last three decades and the results are often
equivocal or conflicting. Meta-analyses of large numbers
of individual reports are often required to reach conclu-
sions, however these too vary. A large scale analysis of
68 randomized trials including 232,606 participants from
general population or patients with heterogeneous dis-
eases have reported no effect of antioxidant supplements
on overall mortality, or even a significant increase in
mortality in subjects receiving beta carotene, vitamin A,
and vitamin E [13]. A recent widely cited meta-analysis
including 50 randomized controlled trials with 294,478
participants showed no evidence to support the use of
vitamin and antioxidant supplements for prevention of
cardiovascular diseases [14]. In contrast, a recent meta-
analysis of seven studies on the risk of Alzheimer’s dis-
ease showed that dietary intakes of vitamin E, vitamin C,
and beta carotene can lower the risk of AD [15]. In spite
of extensive study it remains clear that there is no con-
sensus and/or those effects are disease-dependent.

Review
Mitochondrial free radical theory of aging
The lack of anti-aging effect with antioxidant supple-
ments led Harman to modify his original theory to spe-
cify mitochondria as both the primary sources of ROS
and the primary targets of ROS damage [16]. One of the
features of the mitochondrial free radical theory is the
central role that mitochondria play in generation of ROS
from the electron transport chain, production of en-
ergy (ATP), and the numerous potential feedback loops
in regulation of mitochondrial and cellular function,
in which redox state and ROS might create ‘vicious
cycles’ (Figure 2). These include mutations or deletions



Figure 2 Interdependences of mtROS, nicotinamide nucleotides, and SIRT3: ROS-Induced ROS Signaling. Modified from Dai et al. [93].
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in mtDNA, which can result in damaged proteins, includ-
ing important components of the electron transport chain
that are encoded by mtDNA, as well as balances in
mitochondrial redox state, including glutathione (GSH/
GSSG) and nicotinamide dinucleotides. Even these are
intertwined, as NADPH is used by glutathione reductase
to regenerate glutathione (GSH) from oxidized glutathione
(GSSG) (Figure 2). NADPH is also in equilibrium with
NADH within mitochondrial through the activity of nico-
tinamide nucleotide transferase (NNT, also called mito-
chondrial NAD(P) transhydrogenase). The redox balance
of NAD/NADH is the key regulator of the sirtuin histone
deacetylases, including mitochondrial SIRT3. The latter
has been shown to play a key role in the acetylation state
of cyclophilin D, which in turn plays an important role in
control of the mitochondrial permeability transition pore
(mPTP) and apoptosis (Figure 2).
The revised mitochondrial free radical theory suggests

that failures of antioxidants to extend murine lifespan or
failure of antioxidant supplements in clinical trials might
be explained by poor distribution of antioxidants to
mitochondria, and proposes that antioxidants targeted to
mitochondria might be beneficial for lifespan extension.
Several lines of evidence have supported the mitochon-
drial theory of aging. One of the most direct experimental
evidence for the role of mitochondrial ROS in longevity
was shown in mice overexpressing catalase targeted to
mitochondria (mCAT), which resulted in a significant me-
dian and maximal lifespan extension in two independent
lines of C57Bl6 mice [17]. Interestingly, similar overex-
pression of catalase targeted to peroxisome (pCAT), its
normal location within the cell, or nuclear localization
(nCAT) had modest and non-significant effects on murine
lifespan. This indicates that mitochondrial localization of
the catalase is key to lifespan extension in this model [17].
Consistently, mitochondria-targeted antioxidant SkQ1 has
been shown to prolong the lifespan of inbred male mice in
specific pathogen free (SPF) condition and outbred mice
and dwarf hamster in conventional or outdoor cages [18].
Additional evidence for the involvement of mitochon-

drial ROS in aging comes from observations of mice
with a targeted mutation of the p66Shc gene. These mice
display reduced ROS generation and increased resistance
to ROS-mediated apoptosis and thereby have a pro-
longed lifespan [19]. Further studies have shown that
P66Shc is a mitochondrial redox enzyme located in the
mitochondrial intermembrane space, which produces
H2O2 from electron leakage during oxidative phosphoryl-
ation [20]. Phosphorylated p66Shc was later shown to accu-
mulate within mitochondria to activate mitochondrial
Ca2+ response, and subsequently induce apoptosis [21].
Further evidence supporting the role of mitochondria in
aging was demonstrated using mice with homozygous mu-
tation in exonuclease domain of the mitochondrial poly-
merase gamma (PolgaD257A/D257A , abbreviated Polgm/m).
These mice were susceptible to accumulation of
mtDNA point mutations and deletions with age [22,23].
They have shortened lifespan (maximal lifespan ap-
proximately 15 months) and display many phenotypes
of ‘accelerated aging’, including kyphosis, graying and
loss of hair, anemia, osteoporosis, sarcopenia (loss of
muscle mass), and presbycusis (age-related hearing loss)
[22]. Interestingly, the ‘premature’ aging-like phenotype
in these mice showed good correlation with the accu-
mulation of mtDNA deletions but not with the burden
of mtDNA point mutations [24]. Moreover, the accumula-
tion of mtDNA damage has been shown to increase
apoptosis [23] and age-dependent cardiomyopathy and
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oxidative damage in the Polgm/m mouse heart was atten-
uated by mCAT [25].
In spite of these ‘attractive’ aspects of the mitochondrial

free radical theory of aging, there remain many unsolved
questions. Damage to mitochondrial DNA has been
shown to increase with age, even more so than nuclear
DNA [26]; however, it is necessary to distinguish point
mutations from deletions; for example, it has been argued
that the former do not [27] whereas the latter do correlate
with lifespan of mice [24] This may be related to the
fact that mitochondria have multiple copies of DNA,
providing protection from heteroplasmic mutations.
Recent improvements in DNA sequencing methods
have also revealed the surprising result that age-related
increases in mtDNA point mutations in human brains
are primarily DNA transitions, whereas oxidative dam-
age is expected to produce an excess of G ➔ T transver-
sions [28]. Deletions, however, appear to accumulate
and expand in the population of mtDNA during aging
and some pathologies and it appears likely that mito-
chondrial respiratory failure only occurs with high loads
of mtDNA deletion, such as has been observed in
muscle fibers, intestinal crypts, and substantia nigra
neurons (see review [29]). Finally, there is an increasing
awareness that low levels of mitochondrial ROS may be
‘hormetic’ by inducing endogenous antioxidant defenses
to prevent oxidative stress induced in pathological
states and that mitochondrial ROS may be an important
mediator of cell signaling (see section below).
The mitochondrial free radical theory has led to a

focus on development and refinement of drugs to specific-
ally target ROS specifically in the mitochondria of cells.
The most common approach is based on delivery of
known redox agents to the mitochondrial matrix by con-
jugation to delocalized cations (such as the triphenyl-
phosphonium ion (TPP+)), including MitoQ and SkQ1
[30,31]. The Szeto-Schiller (SS) peptides represent a dif-
ferent chemical approach to reduce mitochondrial ROS.
These aromatic-cationic tetrapeptides are targeted to
cardiolipin on the inner mitochondrial membrane, and
they have been shown to modulate electron flux in the
electron transport chain and increases ATP produc-
tion, while reducing electron leak and inhibiting exces-
sive ROS production [32]. These mitochondria-targeted
antioxidants are discussed in greater detail later (see section
Mitochondrial protective strategies as potential therapeutics
for aging-related diseases).

Mitochondrial signaling and the theory of mitohormesis
Apart from generating detrimental oxidative damage,
ROS have numerous crucial biological roles in signaling
and stress response (reviewed in [33-35]). Emerging
evidence suggests that oxidative stress might promote
longevity and metabolic health through the concept of
mitochondrial hormesis (mitohormesis). The mitohorm-
esis theory hypothesizes that low levels of oxidative stress
induced by either caloric restriction, exercise [36], or other
stimuli may trigger adaptive responses that improve over-
all stress resistance, probably through increased endogen-
ous antioxidant defense, which may eventually reduce
chronic oxidative damage [37] and subsequently achieve
lifespan extension. This concept is supported by a study in
C. elegans demonstrating that inhibition of respiration in-
creases mitochondrial ROS production and significantly
increases lifespan via mitochondrial ROS mediated activa-
tion of HIF-1 [38]. Low dose of oxidative stress induced
by dietary restriction, especially glucose restriction, has
been shown to preferentially induce mitochondrial metab-
olism and extend lifespan in various model organisms, in-
cluding Drosophila melanogaster [39] and Caenorabditis
elegans [40]. For instance, glucose restriction in C. elegans
extends lifespan by inducing mitochondrial respiration
and increasing oxidative stress, and this AMPK-dependent
lifespan extension is abolished by pre-treatment of antioxi-
dant N-acetyl cysteine, suggesting that oxidative stress is
required for lifespan extension of dietary restriction [40].
Although the evidence of hormesis in lifespan regulation
in mammalian models is still lacking, considerations
should be taken when developing antioxidant therapy.
The theory of mitohormesis could have important

translational implications as an ideal antioxidant therapy
might be one that prevents oxidative damage induced
under pathological conditions without interfering with
ROS needed for hormesis and cellular signaling. We
speculate that the targeted expression of catalase in mito-
chondria (mCAT) might be such an example, as there are
beneficial effects of mCAT in aging and several disease
models with negligible adverse effects (Table 1). Key to
this may be that the Km of the catalytic activity of catalase
is >10 mM, so that this enzyme is less likely to be effective
at the lower intracellular H2O2 concentrations that may
be involved in signaling or hormesis [41,42].

Mitochondrial oxidative stress in healthspan
Cardiac aging
Increasing evidence suggests that abnormal mitochondrial
ROS (mtROS) production and detoxification contributes
to mitochondrial dysfunction and cardiomyopathy in
old age (reviewed in [35,70,71]). An age-dependent re-
duction in cardiac mitochondrial oxidative phosphoryl-
ation function is related to the decline in mitochondrial
state 3 respiration (maximal stimulated respiration) due
to diminished activity of electron transport complexes I
and IV (both have subunits encoded by mtDNA), while
complexes II, III, and V are relatively unaffected (see
review [72]). Impaired electron transport chain function
is directly related to elevated electron leakage and gen-
eration of mtROS. Since the heart has a high metabolic



Table 1 Mitochondrial targeted genetic and pharmacological manipulations on aging and healthspan

Animal models Description Aging phenotypes Healthspan phenotypes

Genotypes mCAT Overexpression of catalase targeted to
mitochondria

18% extension of lifespan [17]. Attenuated
cardiac aging [43], aging-related sarcopenia [17],
presbyacusis [44], and cancer incidence [45].

Protect against cardiac hypertophy and heart failure [46]

Reduce Aβ toxicity and oxidative injury, and extends the
lifespan of Aβ PP overexpressing mice [47]

Protective against mitochondrial ROS production and
subsequent dopaminergic neuron degeneration in
MPTP-induced Parkinson’s disease model [48]

Attenuate lipid-induced insulin resistance in skeletal
muscle [49]

Polgm/m Homozygous mutation of mitochondrial
polymerase gamma D257A

‘Accelerated aging’: sarcopenia, graying and
alopecia, kyphosis, presbyacusis, anemia [22,23],
age-dependent cardiomyopathy [25]

Aggravate heart failure in response to Angiotensin II [46]

p66shc Targeted mutation of the p66Shc gene Extension of lifespan. Reduction of ROS and
apoptosis [19]

Attenuate Angiotensin II induced LV hypertrophy and
cardiomyocytes apoptosis; reduce oxidative damage in
cardiac progenitor cells, cardiomyocytes and endothelial
cells in diabetes [19,21,50,51]

SIRT3-/- SIRT3-deficient mice Accelerated cardiac aging, age-dependent
increase in mitochondrial swelling due to
increased mPTP opening [52]

Early-age onset of hypertrophy associated with fibrosis

Abolish CR effect in reduction of oxidative
damage, protection of cochlear neurons and
prevention of presbycusis [53]

Increased mortality after transverse aortic constriction [52]

Pharmacological
treatments

SS-31 Mitochondrial protective tetrapeptide Reverse age-related muscle weakness and
muscle energy deficits [54]

Attenuation of Angiotensin II induced cardiac hypertrophy
and Gαq overexpression induced heart failure [55]

Ameliorate cardiac dysfunction after tranverse aortic
constriction [56]

Improve systolic function ischemic HF model [57,58]

Attenuate cardiac I/R injury [59,60]

Protect against renal I/R injury [61]

Prevent high fat diet induced insulin resistance in skeletal
muscle [62]

Attenuation of diabetic retinopathy [63]

Protective against ALS in SOD1 mutant mice [64] and
Parkinson’s diseases in MPTP model [65]

MitoQ Ubiquinone (antioxidant) conjugated
with TPP+

Reduction of blood pressure and cardiac hypertrophy in
spontaneous hypertensive rats [66]

SkQ Plastoquinone conjugated with TPP+ Prolonged lifespan. Attenuation of age-related
decline in immunity. Protective against baldness
and lordokyphosis in aged mice [18,67]

Attenuate heart arrhythmia, I/R injury, myocardial infarction,
and kidney ischemia [68]

Delayed tumor development in p53-deficient mice [30]

Protect against cataract and retinopathy in OXYS rats [69]

D
aiet

al.Longevity
&
H
ealthspan

2014,3:6
Page

5
of

22
http://w

w
w
.longevityandhealthspan.com

/content/3/1/6



Dai et al. Longevity & Healthspan 2014, 3:6 Page 6 of 22
http://www.longevityandhealthspan.com/content/3/1/6
demand and is rich in mitochondria, it produces ROS
within mitochondria as a byproduct of oxidative phos-
phorylation and is, therefore, especially susceptible to
oxidative damage. It has been shown that mitochondrial
production of ROS significantly increases in the heart
with advanced age [73].
The Framingham Heart Study and the Baltimore Lon-

gitudinal Study on Aging (BLSA) demonstrate that aging
is associated with increased prevalence of left ventricular
hypertrophy and decline in diastolic function (measured
by the ratio of early to late ventricular filling (E/A) by
Doppler echocardiography) in otherwise healthy individ-
uals. Left ventricular (LV) wall thickness increases and
maximal exercise capacity decreases with age in both
sexes, indicative of LV hypertrophy, while systolic func-
tion is relatively preserved at rest (reviewed in [74,75]).
Cardiac aging in murine models closely recapitulates
those seen in humans [76], including cardiac hyper-
trophy (Figure 3A), a modest decline in systolic function
(%FS, Figure 3B), a significant decline in diastolic func-
tion measured by Ea/Aa (Figure 3C), and worsening of
the myocardial performance index (that is, an increased
fraction of systole was spent during ineffective isovolu-
mic contraction and relaxation, Figure 3D) [43]. The
proportion of mice with diastolic dysfunction and left
atrial dilatation also significantly increased with age [43].
Data from our laboratory demonstrated that mCAT

greatly attenuated many of these cardiac aging pheno-
types (Figure 3A-D). The preserved cardiac aging pheno-
types in mCAT mice were accompanied by reductions of
age-dependent increases in mitochondrial protein car-
bonyls (Figure 4A) and mtDNA deletions (Figure 4B),
suggesting prevention of mitochondrial oxidative dam-
age as a mechanism of the cardiac aging protection. The
success of mCAT protection in cardiac aging and the in-
ability to confer similar protection by overexpression of
peroxisomal catalase or the non-targeted antioxidant
N-Acetyl Cysteine [55] underscores the importance of
mitochondrial specificity in antioxidant intervention.
Given the complexity of the systems involved, it is likely
that mitochondrial dysfunction and aberrant ROS pro-
duction may contribute to aging through both direct
damage to cellular macromolecules and interference
with normal signaling and energetics. There is an age-
dependent increase in electron leakage and superoxide
production. This makes a positive feedback between
complex I inhibition and mitochondrial ROS production,
as well as the more classical vicious cycle of mitochon-
drial DNA mutation and protein damage amplifying
ROS (Figure 2). The effect of mitochondrial ROS in sig-
naling and energetics may be a critical factor in cardiac
(and other organ system) aging.
As discussed above, mice with homozygous mutation

of mitochondrial polymerase gamma (Polgm/m) have
substantial increases in mtDNA mutations and dele-
tions with age [22,23], shortened lifespan and exhibit
several progeroid phenotypes, and developed cardiomy-
opathy in middle age (13 to 14 months) [22,25]. Middle
age Polgm/m mice display cardiac hypertrophy (Figure 3E)
and impaired systolic and diastolic function (Figure 3F-G)
to an extent that is more severe than wild-type (WT) mice
aged 24 to 30 months. Interestingly, mCAT partially res-
cues the mitochondrial damage and cardiomyopathy in
Polgm/m mice (Figure 3E-H), supporting the role of mito-
chondrial ROS and mtDNA damage as part of a vicious
cycle of ROS-induced ROS release (Figure 2) [25]. An in-
teresting study shows that endurance exercise can prevent
both skeletal muscle and cardiac progeroid phenotypes
in Polgm/m mice [77]. The beneficial effect of exercise is
thought to be mediated by the augmented level of mito-
chondrial biogenesis seen with exercise in these mice,
which contributes to the preserved mitochondrial and,
subsequently, organ function. Exercise induces ROS,
and ROS stimulates upregulation of PGC1α [78], which is
the master regulatory molecule in mitochondrial biogen-
esis and is known to improve endogenous antioxidant sys-
tems. The beneficial effect of exercise in this scenario is
indeed a good example of mitochondrial hormesis men-
tioned above.

Cardiovascular diseases
Separate from the intrinsic decline in cardiac function
during healthy aging mentioned above, old age is associ-
ated with an exponential increase in the prevalence of
hypertension, stroke, coronary heart disease, and heart
failure, especially in people aged over 65 years. Increased
oxidative stress has been implicated in the pathogenesis
of cardiovascular diseases, including hypertension, ath-
erosclerosis, cardiac hypertrophy due to cardiac aging or
pressure overload, cardiac ischemia-reperfusion injury,
as well as cardiac failure. As in cardiac aging, a defi-
ciency of mitochondrial energetics has been documented
in human and experimental animals with heart failure
[79]. Mechanisms may include mitochondrial biogenesis
that does not keep up with the increasing demand (see
review [80]), mitochondrial uncoupling and decreased
substrate availability [81], and increased mitochondrial
DNA deletions [46]. Mutations of genes encoding mito-
chondrial enzymes have been shown to be associated
with various forms of idiopathic hypertrophic and di-
lated cardiomyopathies [82]. Mitochondrial DNA dele-
tions have been found in experimental models of heart
failure [83]. Studies on human hearts using 31P NMR
spectroscopy indicated that the ATP content of failing
hearts is generally 20% to 30% lower than that of normal
hearts [84]. Furthermore, phosphocreatine, an important
short-term reserve energy source that maintains a high
phosphorylation potential to cope with acute increases
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in energy demand (for example, exercise), significantly
declined by up to 60% in elderly heart failure patients
[85]. The magnitude of this reduction is related to the
severity of heart failure [86] and is shown to predict
mortality in patients with dilated cardiomyopathy [87].
Hypertension is the most common cause of cardiac

hypertrophy, which predisposes to chamber dilatation,
heart failure, and sudden cardiac death [88]. Angiotensin
II, a key molecule in the Renin-Angiotensin System
which regulates hypertension, is well known to cause left
ventricular hypertrophy and fibrosis [89]. At the molecular
level, Angiotensin II binds to ATR1, a Gαq coupled-
receptor, then activates NADPH oxidase through a PKC-
dependent manner to produce ROS [90]. ROS from
NADPH oxidase, particularly the NOX4 isoform, might in-
crease mitochondrial ROS production, as previously shown
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in endothelial and vascular smooth muscle cells [91,92].
Mechanisms of ROS amplification in mitochondria might
include ROS induced ROS release as well as a ROS-
mtDNA damage vicious cycle (Figure 2) (see review [93]).
A study from our laboratory showed that Angiotensin

II delivered for 4 weeks by an osmotic minipump in-
duced increased blood pressure, cardiac hypertrophy,
cardiac fibrosis, and diastolic dysfunction [55]. This ex-
perimental model of cardiac hypertrophy is associated
with increased cardiac mitochondrial protein carbonyl
content and the frequency of mitochondrial DNA dele-
tions, indicating oxidative damage to mitochondria [46].
The accumulation of mitochondrial oxidative damage
activated mitophagy, which in turn increased signaling for
mitochondrial biogenesis through activation of peroxi-
some proliferator-activated receptor gamma coactivator-1
alpha (PGC-1α) and its target genes. Our observation is
consistent with the report that PGC-1α is transcriptionally
upregulated by ROS [78]. mCAT, but not pCAT, were re-
sistant to cardiac hypertrophy, fibrosis, and diastolic dys-
function induced by Angiotensin II [46]. This strongly
supports a central role of mitochondrial ROS in Angioten-
sin II-induced cardiomyopathy [46]. Additional evidence
from other laboratories show that disruption of p66Shc

prevents Angiotensin II-induced LV hypertrophy and
cardiomyocyte apoptosis as well as reducing oxidative
damage in cardiac progenitor cells, cardiomyocytes, and
endothelial cells in a diabetic mouse model [50,51,94].
Moreover, mice deficient in mitochondrial deacetylase
SIRT3 displayed early age onset of hypertrophy associated
with fibrosis, age-dependent increase in mitochondrial
swelling due to increased mPTP opening, increased mor-
tality after transverse aortic constriction [52].
As noted above, Polgm/m mice have increased mito-

chondrial DNA mutations and develop heart failure at
middle age or at young age when challenged with
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Angiotensin II, both of which are attenuated by mCAT
[43,46]. This suggests that primary damage to mitochon-
drial DNA contributes directly to the phenotype of systolic
heart failure, through increased mt ROS. Therefore, the
protective effects of mCAT expression in Ang-induced
cardiac hypertrophy and Gαq-induced heart failure pro-
vide direct evidence that amplification of ROS within
mitochondria is a key mediator in these disease models
[46]. Using the transverse-aortic constriction (TAC)
mouse model, we further show that TAC-induced heart
failure is associated with remodeling of the mitochondrial
proteome, including decreased abundance of proteins in-
volved in fatty acid metabolism and increased abundance
of proteins in glycolysis, apoptosis, mitochondrial un-
folded protein response, and proteolysis. Overexpression
of mCAT mitigates the phenotype of heart failure, better
preserves proteins involved in fatty acid metabolism, and
attenuates the increases in apoptotic and proteolytic en-
zymes [95]. Thus, breaking the ROS vicious cycle within
mitochondria by mCAT is effective in attenuating
both cardiac hypertrophy and failure (Figure 2). In a
highly parallel manner we also demonstrated that the
mitochondrial protective peptide SS31 attenuates car-
diac hypertrophy and diastolic dysfunction induced by
chronic Angiotensin II, and the heart failure pheno-
types induced by overexpression of Gαq or transverse
aortic constriction (See section Mitochondrial protective
strategies as potential therapeutics for aging-related
diseases). Furthermore, SS-31 has also been shown to
prevent hypoxia-reoxygenation induced apoptosis in
renal tubular epithelial cell by downregulation of p66Shc

[96].
Ischemic-reperfusion (I/R) injury often occurs during

acute myocardial infarction, either due to spontaneous
recanalization of the occluded artery or as a result of a
reperfusion therapy. ROS are well known to be primary
mediators in IR injury. ROS begin to accumulate during
ischemia [97], causing mitochondrial respiratory complex
dysfunction, which leads to a burst of ROS after reperfu-
sion. Furthermore, post-ischemic reperfusion is associated
with ROS accumulation, acidic pH, and a rise in [Ca2þi ],
conditions which have been shown to open the mPTP,
which in turn triggers more mitochondrial ROS gener-
ation. This is one of the mechanism involved in mitochon-
drial ROS-induced ROS release [98] (Figure 2).
The aged myocardium has less tolerance to ischemia

and hemodynamic stress than the young myocardium
[99]. Aged cardiomyocytes have a lower threshold for
ROS induced ROS release and increased susceptibility to
mPTP opening [100]. Ischemic preconditioning is also
impaired in the aged myocardium (reviewed by [100]).
This loss of endogenous protective mechanisms of ische-
mic preconditioning in the aged heart might be due to a
decrease in mitochondrial heat shock protein-70 [101],
reduced nitric oxide bioavailability [102], damaged mito-
chondria that are vulnerable to stress, and diminished
PKC translocation into mitochondria, all of which are
required for the protective effect of ischemic precondi-
tioning [103,104]. Cardiac aging and various models of
cardiomyopathy in the context of mitochondrial ROS
are summarized in Table 1.

Skeletal muscle aging
Sarcopenia is the loss of skeletal muscle mass and func-
tion with age. Sarcopenia is an important public health
concern due to its role in exercise intolerance, increased
morbidity, and loss of independence in the elderly
[105-108]. This loss of independence is due to an inabil-
ity to perform activities of daily living that require sus-
tained muscle power, such as walking, dressing, and
showering as well as an increased risk of falling [109].
The resulting increased rates of nursing home place-
ment and hospitalization make the loss of skeletal
muscle function with age a growing public health crisis
in terms of both quality of life and economic costs to
society. Janssen et al. [110] estimated these costs at $18
billion dollars in 2001 and predicted that a 10% reduc-
tion in sarcopenia prevalence would lead to a savings
of $1.4 billion in healthcare costs (adjusted to 2010
dollars) [110].
Skeletal muscle, like heart, relies on mitochondria to

meet the majority of the ATP demands for sustained
muscle contraction. Mitochondrial function in skeletal
muscle is very dynamic where the metabolic rate can
vary by at least an order of magnitude during rest to
work transitions, as well as varying with nutritional state.
One consequence of this variation in mitochondrial
function is that periods of increased mitochondrial ROS
production are a normal part of the physiology of
skeletal muscle [62,111]. Skeletal muscles also produce
significant ROS from non-mitochondrial sources, pri-
marily sarcolemmal NAD(P)H oxidases [112], that can
also contribute to increased cellular and mitochondrial
oxidative stress. These transient increases in oxidative
stress modify muscle function and may play an important
role in the beneficial adaptations to exercise training
[36,113]. However, mitochondria in aged skeletal muscle
have an increased capacity to produce H2O2 when mea-
sured under ex vivo conditions [54]. This increased
mitochondrial oxidative stress can control mitochon-
drial function both in vivo [114,115] and ex vivo
[116,117]. Inducing a mild oxidative stress in adult mice
for 24 h using low doses of paraquat recapitulates
the reduced mitochondrial coupling (P/O) and depres-
sion of skeletal muscle metabolism [114,115] observed
in vivo in aged skeletal muscle in both mice [118] and
humans [119]. This same paraquat treatment in old
mice led to decreases in maximal mitochondrial ATP
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production (ATPmax), in addition to further decreases
in P/O and resting metabolism [115]. This increased
sensitivity is consistent with a decline in the ability of
the aged skeletal muscle to buffer transient increases in
oxidative stress.
Further support for a contribution of mitochondrial

oxidative stress in age-related skeletal muscle dysfunc-
tion comes from experiments using the mitochondrial
targeted peptide SS-31. SS-31 accumulates in the mito-
chondria by associating with the inner mitochondrial
membrane [61] and reduces mitochondrial H2O2 pro-
duction [54,62]. One hour after treatment with SS-31
age-related declines in mitochondrial P/O, ATPmax, and
skeletal muscle metabolism were reversed (Figure 5) [54]
and the skeletal muscle glutathione redox state was
more reduced [120]. These metabolic changes were asso-
ciated with improved fatigue resistance of the tibialis an-
terior muscle in situ and increased endurance capacity
in the aged mice.
Genetic manipulation of mitochondrial antioxidants

also supports a role for mitochondrial oxidative stress in
controlling skeletal muscle function and metabolism.
Deficiency of MnSOD (mitochondrial specific isoform of
superoxide dismutase) in type IIB muscle fibers leads to
an increase in mitochondrial oxidative stress and dys-
function in fast-twitch mouse muscles. Mitochondria
from fast-twitch muscles in these mice had significantly
P/O
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reduced aconitase and succinate dehydrogenase (com-
plex II of the electron transport chain) activities and in-
creased capacity for superoxide production resulting in
elevated F2-isoprostanes [121]. Both fatigue resistance in
isolated muscles and whole body endurance perform-
ance were also decreased in the MnSOD deficient mice.
Interestingly, MnSOD deficiency did not lead to an in-
crease in muscle atrophy or change in maximal force
production in aged mice. Conversely, mCAT preserved
mitochondrial function and insulin sensitivity in skeletal
muscle of aged mice [49], while vector delivery of mCAT
into embryos led to an increase in exercise performance
in 3-month-old mice [122]. However, the ectopic expres-
sion of mCAT had no effect on the contractility and fa-
tigue resistance in isolated extensor digitorum longus
muscle. The lack of effect in the isolated muscle may
indicate that the increased exercise tolerance in this
study was due to improved cardiac function as described
above. Alternatively, the mosaic expression of mCAT in
the skeletal muscles may have limited its effect on
ex vivo skeletal muscle performance.
The current evidence strongly supports an important

role of mitochondrial oxidative stress in the decline in
skeletal muscle function with age, while its role in skel-
etal muscle atrophy with age is still controversial. The
strongest evidence in support of a role for oxidative
stress in age-related muscle atrophy comes from mice
ATPmax
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lacking CuZnSOD (SOD1). CuZnSOD is found in both
the cytosol and the inner membrane space of the mito-
chondria. The absence of CuZnSOD leads to an accu-
mulation of peroxinitrite and oxidative damage [123],
increased mitochondrial ROS production, increased sen-
sitivity to apoptotic loss of myonuclei, and mitochondrial
dysfunction associated with a premature loss of skeletal
muscle mass in aging mice [12]. Muscle fibers from
CuZnSOD-/- knockout mice accumulated mitochondria
around the neuromuscular junction, showed a loss of
motor units and disruption of neuromuscular junctions.
However, muscle specific knockout of CuZnSOD did
not result in muscle atrophy, increased oxidative stress,
nor mitochondrial dysfunction [124], but did have a loss
of specific force throughout life. The lack of atrophy in
the skeletal muscle specific deficiencies in CuZnSOD
and MnSOD knockouts led these authors to suggest that
increased oxidative stress in the myofibers are not pri-
mary cause of muscle atrophy with age. Instead they
suggest that increased oxidative stress in the motorneur-
ons leading to denervation may be the primary driving
force behind loss of muscle mass. This conclusion is
supported by the observation that direct stimulation of
skeletal muscles in the CuZnSOD-/- mice leads to signifi-
cant increases in force production over that achieved by
nerve stimulation [124]. This result suggests that force is
limited not by the muscle itself, but by the ability of the
motorneuron to maximally stimulate the available myofi-
bers. Thus, the data from the CuZnSOD-/- mice suggest an
important role of increased oxidative stress in age-related
muscle atrophy, although it remains unclear whether oxi-
dative stress originating in the myofibers or the motorneur-
ons are the primary drivers of this process. This conclusion
is supported by recent work demonstrating that treatment
with SS-31 during hind limb unloading ameliorated muscle
atrophy and mitochondrial dysfunction [125].
There are multiple ways in which an increase in oxida-

tive stress can affect skeletal mitochondrial and contractile
function. Work to date has primarily focused on the accu-
mulation of oxidative damage to proteins, lipids, and DNA.
Most studies find a clear accumulation of oxidatively dam-
aged macromolecules with age in skeletal muscle and most
other tissues. However, oxidation of the mitochondrial and
cellular redox environment can also exert control over
cellular function through post-translational modifica-
tion of proteins (Figure 1). Glutathionylation is a key
redox dependent post-translational modification in the
mitochondria. Increased oxidative stress has been found
to lead to increased glutathionylation and inhibition of
activity of electron transport chain proteins, F1F0 ATPase
[126] and complex I [127], and of TCA cycle proteins,
succinyl-CoA-transferase [126] and α-ketoglutarate de-
hydrogenase [128]. In addition recent evidence indicates
that glutathionylation of UCP3 regulates proton leak
under conditions of acute oxidative stress in skeletal
muscle [129] resulting in increased proton leak and
reduced P/O.
Redox modification of proteins can also affect con-

tractile function. The skeletal muscle ryanodine receptor
1 (RyR1) in aged rats is oxidized by cysteine nitrosylation
[130]. This leads to a loss of RyR1-calstabin1 interaction,
destabilization of the channel and increased calcium leak
from the SR, which causes a loss of specific force and
reduced exercise tolerance with age. Stabilizing the
channel and preventing calcium leak rescued force pro-
duction and exercise tolerance. As pointed out by the
authors, leaky RyR would lead to elevated cytosolic cal-
cium and increased calcium loading by the mitochon-
dria, and an elevation of mitochondrial ROS production.
This could then lead to a feed-forward mechanism fur-
ther exacerbating skeletal muscle dysfunction. Thus,
oxidation of the cellular redox status in aged muscle
[131] can contribute to energetic and contractile deficits
through both reversible and post-translational modifica-
tion of proteins.

Neurodegenerative disease
Old age is associated with progressive decline in the
functional performance of the nervous system. This in-
trinsic nervous system aging includes slowed reaction
times, degeneration of sensory and motor function, and a
decline in cognitive performance. In addition to intrinsic
nervous system aging, several neurodegenerative diseases
demonstrate strong age-related onset including the highly
prevalent Alzheimer’s disease (AD) and Parkinson’s dis-
ease (PD), among others.

Age-related sensorineural hearing loss
Age-related sensorineural hearing loss or presbycusis is
gradual loss of hearing with aging. The prevalence in the
elderly is estimated to be 30% to 35% of people aged 65
to 75 years and 40% to 50% of people aged older than
75 years [132]. The sensorineural hearing loss is usually
more severe for high pitched sound, which eventually
leads to difficulty in understanding speech. The path-
ology is characterized by age-dependent loss of sensory
hair cells, spiral ganglion neurons, and stria vascularis
cells in the inner ear cochlea. Someya et al. [44] reported
that mice with the deletion of the mitochondrial pro-
apoptotic gene Bak attenuated age-related apoptotic cell
deaths and hence prevented presbycusis. While oxidative
stress induced Bak expression in primary cochlear cells,
mCAT suppressed Bak expression, reduced cell death
and subsequently prevented presbycusis. These findings
suggest a central role of mitochondrial ROS induced
apoptotic pathway in presbycusis [44]. They further
demonstrate that caloric restriction prevents presbycu-
sis via reduction of oxidative damage by mitochondrial
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deacetylase SIRT3. In response to CR, SIRT3 directly
deacetylates and activates mitochondrial isocitrate de-
hydrogenase 2, leading to increased NADPH levels and
an increased ratio of reduced-to-oxidized glutathione in
mitochondria and thereby enhancing the mitochondrial
glutathione antioxidant defense system [53].

Alzheimer’s disease
AD is the most prevalent neurodegenerative disease,
affecting approximately 5 million Americans. The clin-
ical presentation of AD is primarily memory impairment
and dementia. The early memory deficit in AD is often
described as ‘recent memory impairment’ (for example,
inability to recall a couple of words after a few minutes
of distraction) [133]. Deficits in other cognitive functions
may appear later after the development of memory
impairment.
There are two principle pathologic lesions in AD: neuro-

fibrillary tangle (NFT) and the amyloid plaque [134]. The
NFTs consist of abnormal accumulations of abnormally
phosphorylated tau within the cytoplasm of certain neu-
rons. The amyloid plaques contain β-amyloid peptide
(Aβ), which arises through proteolytic processing of
amyloid precursor protein (APP) by β-secretase and
γ-secretase (presenilin1/2). Each of these lesions has a
characteristic distribution. The hierarchical pattern of
NFTs among brain regions is so consistent that a sta-
ging scheme based on the topography of these lesions
has been widely used [135]. The majority of AD cases
are sporadic and occur very late in life, however, less
than 1% of AD is familial AD cases, which have an early
onset and are inherited in an autosomal dominant
manner. Genes implicated in the early onset AD include
β-amyloid precursor protein (APP), presenilin 1, and
presenilin 2 [136]. Mutation of the APP gene affects the
cleavage of APP by β-secretase or γ-secretase to gener-
ate various forms of Aβ. The Aβ peptides have a ten-
dency to form oligomer aggregates and become toxic,
especially the long form, Aβ1-42. Presenilins are integral
membrane proteins that function as the proteolytic
components of γ-secretase. Mutations of presenilins re-
sult in increased production of Aβ1-42.
Several lines of evidence have shown the central roles

of mitochondria in AD (see reviews [137]). Both APP
and presenilin have been isolated in mitochondrial fraction
[138,139]. Moreover, Aβ is imported into the mitochon-
drial cristae through translocase of outer mitochondrial
membrane complex (TOMM) [140]. Increased mito-
chondrial oxidative stress and damage to mitochondrial
structural components and enzyme complexes are well
documented in early AD [141-144]. One of the mecha-
nisms involves Aβ, which inhibits mitochondrial func-
tion by inhibition of electron transport chain activity,
especially complex III and IV, that further leads to
increased ROS production, decreased ATP production,
and facilitation of cytochrome c release [143,145,146].
Additional insults to mitochondria include altered Ca2+

homeostasis [147], increased mitochondrial DNA muta-
tions, and deletions [141]. Furthermore, alterations of
mitochondrial dynamics have been implicated in AD
[148-150]. It has been shown that S-nitrosylation of Drp1
(a mitochondrial fission protein) mediates β-Amyloid-
related mitochondrial fission and neuronal injury [148].
Increased production of Aβ interacts with Drp1, which is
a critical factor in mitochondrial fragmentation, abnormal
mitochondrial dynamics, and synaptic damage [150].
More direct evidence of the role of mitochondrial oxida-

tive stress in AD is demonstrated by studies using mCAT
mice or mitochondrial targeted antioxidants. Mao et al.
[47] showed that mCAT decreases amyloid-beta (Aβ)
toxicity and oxidative injury, and extends the lifespan of
Aβ precursor protein (PP) overexpressing mice. This data
provides direct evidence that mitochondrial oxidative
stress plays a primary role in AD pathology, and supports
the possibility that mitochondria-targeted antioxidants
might be an effective therapeutic approach to treat pa-
tients with AD.
AD is associated with neuronal cell death, loss of synap-

ses, as well as mitochondrial abnormalities. Incubation of
N2a cells with Aβ led to reduced neurite outgrowth, lower
cell viability, mitochondrial dysfunction, and fragmenta-
tion and loss of ATP, all of which were partially protected
by simultaneous incubation with either SS-31 or MitoQ
[125]. Primary neurons from the AβPP mouse model
showed increased H2O2 production, reduced cytochrome
oxidase activity, and decreased ATP levels [151]. There
was also decreased anterograde mitochondrial movement,
increased mitochondrial fission, and decreased fusion.
Treatment with SS-31 restored mitochondrial transport
and synaptic viability, and decreased the percentage of de-
fective mitochondria [152].

Parkinson’s disease
PD, the second most common neurodegenerative dis-
order, is characterized by defects in motor functions,
manifested as resting tremor, bradykinesia, rigidity, and
postural instability. The hallmark pathology of PD is a
gradual loss of pigmented dopaminergic neurons in the
substantia nigra pars compacta, and accumulation of
Lewy bodies in catecholaminergic neurons of the brain-
stem in the substantia nigra and locus ceruleus. Lewy
bodies are abnormal aggregates of proteins composed
predominantly of α-synuclein and ubiquitin.
There is substantial support for the central role of

mitochondria in the pathogenesis of PD. A few genetic
loci have been mapped in rare familial PD cases, and are
sequentially named PARK1 to PARK11 (review in [153]).
Several genes associated with familial PD have been
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identified in these loci, and the majority of them are
related to mitochondria. PARK1 gene encodes α-
synuclein, which has been implicated in the mainten-
ance of mitochondrial membranes [154]. Increased
amount of α-synuclein binding to mitochondria inhibits
mitochondrial fusion and thereby triggers PD path-
ology, which can be rescued by PINK1, Parkin, and DJ-1
[154]. PARK8 encodes the leucine-rich repeat kinase 2
(LRRK2) and its mutations have been associated with
mitochondrial oxidative phosphorylation dysfunction
[155]. LRRK2 regulates mitochondrial dynamics by a
direct interaction with DLP1, a mitochondrial fission
protein [156]. PARK7 encodes DJ-1, the mutation of
which is associated with complex I defects, increased
mitochondrial ROS, reduced mitochondrial membrane
potential, altered mitochondrial morphology, and dy-
namics [157-159]. PARK2 and PARK6 encode parkin
and PTEN-induced kinase 1 (PINK1), which is involved
in mitochondrial dynamics (fusion/fission) and turnover
by mitophagy [160-162].
Several rodent models have been used to recapitulate

pathology and pathophysiology of PD, including mice
with genetic manipulation of many of the genes men-
tioned above and rodents treated with environmental
toxins (see review [163]). Of note, the majority of the
environmental toxins that recapitulate PD are mitochon-
drial complex I inhibitors, such as 1-methyl-4-phenyl-
1,2,5,6-tetrahydropyridine (MPTP), paraquat, or rote-
none. Inhibition of complex I is associated with impaired
mitochondrial respiration and leads to increased mito-
chondrial ROS production, increased oxidative damage
to proteins, lipids, and DNA, which may further activate
mitochondrial-dependent apoptotic pathways and cause
dopaminergic neuronal cell death.
Direct evidence of the role of mitochondrial ROS in

PD was shown by the protective effect of mCAT mouse
brains against MPTP induced mitochondrial ROS pro-
duction and subsequent dopaminergic neuron dege-
neration in substantia nigra pars compacta [48]. In
contrast, harlequin mice with partial deficiency of apop-
tosis inducing factor, which is required for maintenance
of complex I oxidative phosphorylation activity, are
more susceptible to MPTP-induced dopaminergic neur-
onal cell death. The increased sensitivity of harlequin
mice to MPTP is reversed by the antioxidant tempol
(superoxide dismutase-mimetic) [48]. SS-31 was also
shown to dose-dependently protect dopaminergic neu-
rons and preserve striatal dopamine levels in mice
treated with MPTP, with complete protection observed
at 5 mg/kg [65]. Furthermore, SS-31 prevented MPP+--
induced inhibition of oxygen consumption, ATP produc-
tion, and mitochondrial swelling in isolated mitochondria.
MitoQ was also reported to be protective against MPTP
toxicity [164].
Insulin resistance, diabetes, and its complication
Growing evidence has implicated the involvement of
oxidative stress in insulin resistance and the patho-
genesis of diabetes. Hyperglycemia is associated with
increased ROS production from glucose autoxidation,
advanced glycosylation end-products (AGEs) formation,
polyol pathway, and ROS-producing enzymes including
NADPH oxidase [165]. Nishikawa et al. showed that,
under hyperglycemia, increased glycolysis generates ex-
cess pyruvate, which overloads the mitochondria and
leads to superoxide generation from the electron trans-
port chain [166]. This mitochondrial superoxide produc-
tion triggers the feed-forward cycle of mitochondrial
ROS production in diabetes.
The involvement of mitochondrial oxidative stress in

muscle insulin resistance has been demonstrated by the
protection of mCAT mice in age-related reductions in
mitochondrial function and lipid-induced insulin resist-
ance in skeletal muscle [49]. This protection is associ-
ated with reduced mitochondrial oxidative damage and
preserved mitochondrial respiration in muscle of old
mCAT mice. In another study, Anderson and colleagues
showed both mCAT mice and WT mice treated with
SS-31 have reduced high-fat diet-induced mitochondrial
H2O2 emission and showed preserved insulin sensitivity
in skeletal muscle, further support of the mitochondrial
ROS in muscle insulin resistance [62]. Thus mitochon-
drial oxidative stress plays an important role in the initi-
ation of insulin resistance.
Diabetes is linked with multiple cardiovascular compli-

cations including accelerated atherosclerosis, augmented
ischemic injury post-myocardial infarction, diabetic ret-
inopathy, and nephropathy. In a mouse model of dia-
betes induced by streptozotocin injection, retina of
diabetic mice had two-fold increase in superoxide levels,
40% reduction in GSH levels and 20% reduction in com-
plex III activity, and increased mitochondrial membrane
permeability. All these changes were attenuated in mice
overexpressing MnSOD, which also experience reduced
vascular histopathology, indicating the role of mito-
chondrial oxidative stress in retinopathy [167]. Cardiac
mitochondria in diabetic mice also displayed increased
mitochondrial membrane permeability, which has been
shown to contribute to the increased propensity for I/R
injury in diabetic hearts. Daily intraperitoneal injection
of MTP-131 (analogous to SS-31) for 4 days partially
reversed increased mPTP opening in diabetic heart mito-
chondrial. In the same study, Sloan et al. showed that the
administration of MTP-131 peptide during reperfusion
reduced I/R injury in diabetic hearts, supporting the role
of mitochondrial ROS and mPTP opening in I/R injury in
diabetic cardiomyopathy [168].
Despite the evidence supporting the role of mitochon-

drial oxidative stress in experimental models of diabetes,
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there are mixed results on the protective role of antioxi-
dant treatments in diabetes or its complications from
clinical trials [165]. For instance, the HOPE trial showed
vitamin E treatment for 4.5 years fails to confer benefit in
cardiovascular outcomes and nephropathy [169]. Results
of SECURE trial and PPP trial also failed to demonstrate
any protective effects with vitamin E treatment [165]. On
the other hand, clinical trials on α-lipoic acid have shown
more promising results than vitamin E trials. Multiple
studies with α-lipoic acid, including ALADIN study,
DEKAN study, and SYDNEY trial, have demonstrated its
protective effect on diabetic neuropathy [165,170-174].
It is possible that increased mitochondrial ROS may

play a larger role in the development of insulin resist-
ance before the onset of chronic hyperglycemia. A recent
study using the streptozotocin-induced mouse model of
type 1 diabetes actually found reduced mitochondrial
function and superoxide production in diabetic kidneys
and suggested that this may be due to reduced mito-
chondrial biogenesis caused by lower PGC1α expression
[175]. The investigators postulated that reduced mito-
chondrial biogenesis led to reduction in activity of
AMPK, the master energy sensor. Activation of AMPK
restored mitochondrial function and superoxide produc-
tion, and this was associated with a beneficial reduction
in renal pathology. Thus chronic mitochondrial oxidative
stress may actually result in reduced mitochondrial func-
tion in the later stages of diabetes, and that restoration
of mitochondrial structure and function may be neces-
sary to prevent the decline in organ function.
It was recently reported that SS-31 significantly reduced

diabetic retinopathy [63]. Daily treatment with SS-31 over
4 months in the rat streptozotocin model significantly pre-
vented the loss of mitochondrial cristae and mitochondrial
swelling in retinal epithelial cells. SS-31 also protected the
inner blood-retinal barrier, and this was due to preserva-
tion of tight junctions in the retinal blood vessels, suggest-
ing adequate ATP production is required to maintain the
cytoskeleton of the endothelial cells. Oxidative markers
such as 8-OHdG and nitrotyrosine were significantly
reduced in the SS-31-treated diabetic animals. The upreg-
ulation of VEGFR2 was also significantly attenuated, and
this suggests that SS-31 can reduce neovascularization.
Interestingly, SS-31 had no effect on blood glucose, but
clearly prevented the effects of hyperglycemia on retinal
structure and function.

Age-related cancer
Mitochondrial ROS leads to oxidative damage in nucleic
acids and proteins and has been implicated in carcino-
genesis. A recent study demonstrates that loss of mito-
chondrial cytochrome oxidase is associated with the
development of colonic dysplasia (precancerous state) in
patients with ulcerative colitis [176]. Direct evidence for
the role of mitochondrial ROS in age-related cancer is
shown by the effect of mCAT to reduce the non-
hematopoietic tumor burden in a mouse end-of-life path-
ology study [45]. The mCAT expression has also been
shown to be protective in an experimental model of meta-
static breast cancer (PyMT mice). The mCAT mice dis-
played reduced invasive grade of primary breast tumor
and have 30% less pulmonary metastasis incidence. Both
tumor cells and lung fibroblasts in mCAT expressing
PyMT mice have reduced intracellular ROS and increased
resistance to H2O2-induced cell death, which may confer
the protective effects in mCAT mice [177].
Ataxia telangiectasia mutated (ATM) kinase plays a

central role in the DNA-damage response and redox
sensing by the phosphorylation of many key proteins
that initiate activation of the DNA damage checkpoint,
leading to cell cycle arrest, DNA repair, or apoptosis. In
addition to severe ataxia due to cerebellar degeneration,
ataxia telangiectasia patients also have increased risk of
lymphomas and leukemias, as well as immune defect
[178]. ATM null mice (ATM-/-) develop thymic lymph-
omas, despite very mild neurodegenerative phenotypes.
Reducing mitochondrial ROS by mCAT in ATM-/- mice
reduced propensity to develop thymic lymphoma, im-
proved bone marrow hematopoiesis, and macrophage
differentiation in vitro, and partially rescued memory
T-cell development [178].

Mitochondrial protective strategies as potential
therapeutics for aging-related diseases
Meta-analyses of several clinical trials using antioxidant
supplement have shown largely disappointing results
[13]. With strong evidence of the central role of mito-
chondrial oxidative stress and damage in several age-
related diseases as revealed by the mCAT model, there
have been several attempts to develop mitochondria-
targeted antioxidants. The most common approach used
for delivering compounds into mitochondria have relied
on the conjugation of known redox agents to triphenyl-
phosphonium ion (TPP+) to take advantage of the poten-
tial gradient across the inner mitochondrial membrane.
The second major category is aromatic-cationic tetrapep-
tides that selectively target the inner mitochondrial mem-
brane without relying on mitochondrial potential.

TPP+ conjugated antioxidants
The mitochondrial inner membrane has a negative po-
tential gradient (-150-180 mV) that is generated as a re-
sult of the release of protons from the mitochondrial
matrix to the intermembrane space. The negative poten-
tial serves as a basis for the use of lipophilic cations to
deliver redox agents into the mitochondrial matrix. This
method can potentially result in 100- to 1,000-fold ac-
cumulation of drugs within the mitochondrial matrix
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[179]. TPP+ has been conjugated to coenzyme Q (MitoQ)
and plastoquinone (SkQ1) [30,31]. By preferentially accu-
mulating in the mitochondrial matrix, these TPP+-conju-
gated antioxidants are more potent than their lipophilic
counterparts in reducing intracellular ROS, preserving re-
duced thiols, and reducing oxidative cell death [180,181],
This lipophilic cation approach has also been used to
generate other mitochondrial-targeted antioxidants to
decrease superoxide (MitoSOD), hydrogen peroxide (Mito-
Peroxidase), ferrous iron (MitoTEMPO), and lipid peroxi-
dation (MitoE2) (see review [182]).
MitoQ had been shown to improve pathology associ-

ated with antioxidant deficiency and prolong lifespan of
SOD-deficient flies, however, it failed to show lifespan
extension in normal WT flies [183]. Indeed, there was a
dose-dependent increase in toxicity of MitoQ in flies
[183]. MitoQ and SkQ1 have been shown to be effective
in reducing ischemia-reperfusion injury [68,184,185].
Dikalova et al. reported that MitoQ treatment for
8 weeks reduced systolic blood pressure and cardiac
hypertrophy in spontaneous hypertensive rats [66,186].
The plausible mechanism of blood pressure lowering ef-
fect is the improved bioavailability of endothelial nitric
oxide. There is evidence that MitoQ can protect against
endotoxin-induced cardiac dysfunction [187]. As men-
tioned earlier, MitoQ was also found to be protective in
animal models of neurodegenerative diseases such as
AD and PD [164,188]. A series of papers reported that
SkQ1 prolonged lifespan, reduced ischemia-reperfusion
injury, inhibited tumor development, and returned vi-
sion to blind animals [30,67-69].
However, recent reports suggest that MitoQ can actually

increase superoxide production at Complex I [189,190]
and both MitoQ and SkQ were reported to inhibit
mitochondrial bioenergetics [191,192]. Thus while these
TPP+-conjugated antioxidants can reduce mitochondrial
ROS, they may also reduce oxidative phosphorylation and
ATP production.
MitoQ has been evaluated in two clinical trials. A

small trial of MitoQ in 30 patients with hepatitis C
revealed a significant reduction in alanine aminotrans-
ferase after 28 days of treatment [193]. However, a
double-blind, placebo-controlled trial in patients with
PD showed that MitoQ treatment over 12 months did
not slow the progression of PD [194]. It is unclear
whether clinical development of MitoQ is being contin-
ued at this time. On the other hand, SkQ1 eye drops ap-
pear to have been approved for dry eye and are available
in Russia.

SS peptides
The Szeto-Schiller (SS) compounds are tetrapeptides with
an alternating aromatic-cationic amino acids motif, which
was serendipitously found to preferentially concentrate in
the inner mitochondrial membrane greater than 1,000-fold
compared with the cytosolic concentration [68,190,195].
Although these peptides carry 3+ net charges, the mito-
chondrial uptake of these SS peptides is not dependent on
mitochondrial potential, as they are also concentrated even
in the depolarized mitochondria [190,195]. SS-31 (H-D-
Arg-Dmt-Lys-Phe-NH2) was originally thought to exert its
beneficial effect solely by the free radical scavenging activity
of dimethyl tyrosine [66]. SS-31 is able to scavenge H2O2

hydroxyl radical and peroxynitrite in vitro in a dose-
dependent manner [195,196].
A recent study revealed that in addition to this ROS

scavenging capacity, SS-31 selectively binds to cardioli-
pin on the inner mitochondrial membrane via both elec-
trostatic and hydrophobic interactions [61]. Cardiolipin
is a phospholipid that is uniquely expressed on the inner
mitochondrial membrane and plays an important role in
the maintenance of cristae structure and formation of
super complexes to facilitate electron transfer in the
electron transport chain [197-199]. Cardiolipin also plays
a role in anchoring cytochrome c to the inner mitochon-
drial membrane and facilitates electron transfer from
complex III to complex IV [200,201]. Although electro-
static interaction with cardiolipin is important for cyto-
chrome c to function as an electron carrier, hydrophobic
interaction with cardiolipin tends to cause cytochrome c
to unfold and dramatically enhances its peroxidase activ-
ity causing cardiolipin peroxidation [202-204]. The oxi-
dation of cardiolipin disturbs cardiolipin microdomains
on the inner mitochondrial membrane and causes the
loss of cristae curvature and super complex formation.
Disruption of super complex formation not only reduces
oxidative phosphorylation but also increases ROS forma-
tion by complex I [205].
We recently showed that the binding of SS-31 to car-

diolipin alters the interaction of cardiolipin with cyto-
chrome c, and favors its electron carrier function while
inhibiting peroxidase activity by protecting the Met80-
heme ligand [32,206]. By promoting cytochrome c re-
duction, SS-31 increases electron flux in mitochondria
and accelerates ATP production [206]. At the same time,
SS-31 inhibits ROS generation and inhibits cytochrome
c peroxidase activity, thereby preventing cardiolipin per-
oxidation and loss of cristae membranes [206]. Thus,
SS-31 is a multifunctional mitoprotective compound
that acts by promoting bioenergetics, reducing ROS pro-
duction, scavenging excess ROS, inhibiting cardiolipin
peroxidation, and preserving mitochondrial structure.
These unique properties of SS-31 are particularly ef-

fective in minimizing ischemia-reperfusion injury. After
prolonged ischemia, the hydrophobic interaction be-
tween cardiolipin and cytochrome c is enhanced by low
ATP concentration [207,208] and this would inhibit
mitochondrial respiration at a time when ATP synthesis
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is necessary for survival. SS-31 is able to increase oxygen
consumption and ATP synthesis under these conditions,
thus accelerating ATP production upon return of blood
flow to minimize cell death and promote organ recovery.
By inhibiting cardiolipin peroxidation during reperfu-
sion, SS-31 also preserves mitochondrial cristae and
maintains ATP synthesis after ischemia. Numerous pre-
clinical studies support these claims. Studies in models
of renal ischemia reperfusion have demonstrated that
SS-31 protects mitochondrial cristae architecture and
prevents swelling during ischemia and reperfusion
[61,209]. This results in more rapid ATP production
upon reperfusion and preservation of the cytoskeletal in-
tegrity of the epithelial cells, and amelioration of acute
kidney injury [61,209].
SS-31 has also been shown to reduce cardiac ischemia

reperfusion injury and reperfusion arrhythmia and better
preserve myocardial function in various infarct models
[59,60,64,196]. SS-31 reduced infarct size in rabbits and
sheep after coronary artery ligation, attenuated the ex-
tent of no-reflow in rabbits, and reduced infarct size in
isolated perfused guinea pig hearts. SS-31 also reduced
infarct size in a mouse model of cerebral ischemia and
attenuated glutathione depletion when administered at
the onset of reperfusion [210].
In addition to ischemia-reperfusion injury, SS-31 has

shown impressive effects in preclinical models of heart
failure. SS-31 ameliorated Angiotensin-II induced car-
diac hypertrophy and diastolic dysfunction, as well as
Gαq overexpression-induced heart failure, despite the
absence of a blood pressure lowering effect [55]. SS-31
also reduced systolic heart failure in a pressure-overload
model of transverse aortic constriction (TAC). Ultra-
structural studies confirmed that SS-31 protected car-
diac mitochondria in the TAC model and proteomic
analyses showed that SS-31 attenuated the majority of
the changes in mitochondrial and non-mitochondrial
proteins [56]. By protecting mitochondrial function and
bioenergetics in the heart, SS-31 prevented myocardial
remodeling and fibrosis. The efficacy of SS-31 in com-
bating heart failure has been confirmed in a post-
myocardial infarction canine heart failure model, Sabbah
et al. demonstrates that short-term administration of
Bendavia for 2 h significantly increased ejection fraction,
stroke volume, cardiac output, and LV contractility index
(dP/dt) [57]. These findings suggest that the improve-
ment of LV function is likely the result of improved car-
diac energetics. Long-term administration for 3 months
significantly improved ejection fraction and reduced LV
end-diastolic pressure [58].
SS-31 has also been shown to be beneficial in many

other models of age-associated diseases, including PD
[65], AD [152], skeletal muscle aging, disuse skeletal
muscle atrophy [210], [54] insulin resistance [62],
and diabetic complications. Some of these studies
were mentioned in the previous sections (see section
Mitochondrial oxidative stress in healthspan above),
and an extensive review of these studies was pub-
lished recently [32].
Given the very promising preclinical efficacy data, SS-

31 entered into clinical trials using a clinical formulation
named Bendavia [32]. Several Phase I studies have
assessed the safety, tolerability and pharmacokinetics of
Bendavia in healthy male and female human subjects
with intravenous and oral dosing. The highly predictable
pharmacokinetics and safety profile of Bendavia have
led to Phase II trials in patients. The first multina-
tional phase II study is focused on cardiac ischemia-
reperfusion injury for patients experiencing ST-elevation
myocardial infarction [211]. A second ongoing phase II
trial is for treatment of acute kidney injury in hyperten-
sion. A third phase II trial is planned for the treatment
of congestive heart failure.
These clinical studies are generally designed to address

the efficacy of SS-31 in the treatment of age-associated
cardiorenal diseases. It will eventually be important to
also establish whether these mitochondria-targeted anti-
oxidants can delay aging and other age-related degenera-
tive diseases.

Conclusion
Substantial evidence supports the central role of mito-
chondrial oxidative stress in aging and healthspan.
Despite the disappointing outcomes of non-targeted an-
tioxidants in clinical trials, there is growing evidence for
the beneficial effects of mitochondrial-targeted antioxi-
dants in aging and age-related diseases. Genetic and
pharmacological approaches reducing mitochondrial oxi-
dative stress (either by direct antioxidant or indirectly
through preservation of mitochondrial structure and
function) attenuate the phenotypes of cardiac aging, age-
related cardiovascular diseases, skeletal muscle aging,
neurodegenerative diseases, diabetes, and cancer various
animal models (summarized in Table 1). Moreover,
based on promising preliminary results in small and
large mammals, mitochondrial-targeted antioxidants
have moved into clinical trials. Further studies are neces-
sary to investigate many of the remaining questions in
this field, while examining the potential application of
mitochondrial targeted therapeutics in the treatment or
prevention of specific diseases as well as improved
healthspan in general.
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