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ABSTRACT

ToppCluster is a web server application that lever-
ages a powerful enrichment analysis and underlying
data environment for comparative analyses of
multiple gene lists. It generates heatmaps or con-
nectivity networks that reveal functional features
shared or specific to multiple gene lists.
ToppCluster uses hypergeometric tests to obtain
list-specific feature enrichment P-values for cur-
rently 17 categories of annotations of human-
ortholog genes, and provides user-selectable
cutoffs and multiple testing correction methods to
control false discovery. Each nameable gene list
represents a column input to a resulting matrix
whose rows are overrepresented features, and indi-
vidual cells per-list P-values and corresponding
genes per feature. ToppCluster provides users
with choices of tabular outputs, hierarchical cluster-
ing and heatmap generation, or the ability to inter-
actively select features from the functional
enrichment matrix to be transformed into XGMML
or GEXF network format documents for use in
Cytoscape or Gephi applications, respectively.
Here, as example, we demonstrate the ability of
ToppCluster to enable identification of list-specific
phenotypic and regulatory element features (both
cis-elements and 3'UTR microRNA binding sites)
among tissue-specific gene lists. ToppCluster’s
functionalities enable the identification of
specialized biological functions and regulatory
networks and systems biology-based dissection of
biological states. ToppCluster can be accessed
freely at http://toppcluster.cchmc.org.

INTRODUCTION

One of the primary issues in analyzing large-scale biologic-
al data, like gene expression data, is the interpretation
vis-a-vis the functional implications of the identified
gene clusters. The availability of diverse functional anno-
tations and molecular features associated with individual
genes and shared across different gene groups often aids in
the identification of critical biological properties
associated with a biological state, process or response
and can provide useful biological insight. Typical annota-
tions include the Gene Ontology, biochemical pathways,
protein—protein interactions, protein domain information
and, in some cases, gene-disease associations. A wide
variety of tools exist for overrepresentation analysis of
functional annotations in single gene lists such as
DAVID (1), FatiGO (2), g:Profiler (3) etc. A detailed
review of the numerous functional analysis tools and the
methods used is available in ref. 4, and recently in ref. 5.
Recent approaches to such analyses, especially those that
involve microarray-based gene expression data, employ
the gene-set enrichment methods. Since the introduction
of Gene Set Enrichment Analysis (6), such techniques
have been highly successful in functional feature dissection
of individual gene lists, for example in a gene expression
data set among variably or similarly regulated gene lists.
However, as we gain in our ability to detect complex
correlated biological phenomena against the backdrop of
ever-increasing knowledge of molecular and biological
entities and properties, a critical goal must be that we
also enhance our ability to identify components, activities
and interactions responsible for systems functions and
regulatory mechanisms such as has been pioneered in ap-
plications such as WGCNA (7) and ARACNE (8).
Similarly, effective and efficient visualizations of data
against current knowledge are critical to catalyze new
hypotheses.
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Here, we present an intuitive and efficient tool to
analyze and visualize shared and specific features
associated with any number of gene sets. We provide a
workflow and tool suite that enables the co-analysis of
the multiple gene lists in such a way as to preserve the
relationships between gene lists and to provide secondarily
analyzable data documents and visualizations capable of
representing clusters of gene functions and features that
are specific or shared among the multiple gene lists. For
example, a multiple gene-list analysis approach could
allow for the comparison of functional overrepre-
sentations that differ as a function of time in time-series
gene expression experiments, or in gene lists that reflect
the relative differentiation of various tissue types or cell
types. Currently, there are no existing tools that possess
the capability to investigate multiple gene lists together
and provide a functional modular map that includes a
rich set of annotations. Progress in this area is shown in
recent tools such as High-Throughput GoMiner (9) and
GOEAST (10); however, these tools currently enable only
Gene Ontology-based set enrichments and would be in-
sensitive to regulatory mechanisms, protein—protein inter-
actions, phenotypes, diseases, small molecule and other
types of relationships that could enable useful inference.
PageMan (11) is an innovative application that allows
analysis of multiple microarray expression profile
clusters at a time, with an intuitive heatmap visualization
based on set enrichments to organism-specific
user-generated ontology mapping files.

Most gene-set enrichment tools use the hypergeometric
distribution as the statistical model to obtain the probabil-
ity of a functional term occurring multiple times in a gene
list just by chance. Here, ToppCluster makes use of the
same method by means of the gene set enrichment func-
tionality established in ToppGene (12) to assess significant
feature enrichments in multiple input gene lists. Next, we
utilize heatmaps or networks, both well-established visu-
alization tools in genomics, to generate functional maps of
the gene clusters. Heatmaps are highly suitable to display
large data sets by means of color intensity values (13). By
representing the significance of functional terms as the
intensity of colors on the heatmap, we illustrate an ex-
tremely simple, yet effective way to visualize the biological
functional theme of several gene sets at once.
Additionally, we provide the feature of exporting the
results for further analysis in various formats, including
TreeView cluster trees (13,14), Cytoscape (15) and Gephi
(16) compatible networks. ToppCluster is available as an
open and freely accessible web application server at
http://toppcluster.cchmc.org/. To demonstrate its useful-
ness, we used gene lists from the Tissue-specific Gene
Expression and Regulation (TiGER) database (17) as
inputs to ToppCluster to generate functional maps of
features that are tissue-specific or shared between tissues.
We show that ToppCluster allows for the identification of
organ-specific  phenotype  associations,  biological
processes and genes whose mRNAs are targets of
microRNAs (miRs) as well as genes whose promoters
contain cis-elements for known transcription factors.
Our goal is to provide a basis for researchers to
assemble diverse knowledge and feature property
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connections across large data sets in such a way as to
gain a deeper ability to model pathways and mechanisms
responsible for systems function and to illuminate the
functional relevance of their data in relation to
high-dimensional human gene-associated knowledge.

METHODS
System workflow

The primary object of ToppCluster is the identification of
biological themes in data sets involving numerous gene
sets. A typical example is a time-series microarray experi-
ment. The principal strength of ToppCluster lies in the
ability to co-analyze multiple gene lists and to depict the
results in a form that facilitates comparative and contrast-
ive analysis.

Figure 1 shows a schematic representation of the
ToppCluster pipeline. The input consists of multiple
gene lists from various experiments involving, for
example, different tissues, time-points, cell-types,
microRNA targets etc. P-value cutoff and the correction
method chosen [Bonferroni, false discovery rate (FDR) or
None] are used as filters. The user can select one or more
annotation types to be included in the output. The enrich-
ment functionality of the ToppGene suite (12) is used by
ToppCluster to derive over-represented annotations.
ToppGene contains 17 human gene-based annotation
types, including Gene Ontology-Biological Process,
Molecular Function, Cellular Component, Mouse
Phenotype, Human Phenotype, Pathways, Transcription
Factor Binding Sites, predicted MicroRNA targets,
PubMed co-citations, Protein domains, Protein—Protein
Interactions, Cytoband, Gene Coexpression, Expression
Correlation  (‘Computational’), Drug/Chemical and
Disease. Links to data sources for these annotations in
ToppGene can be found in the ‘Links’ section of the
ToppCluster website. Additional details about the types
and numbers of annotations can be found in the
‘Database Info’ section on the ToppCluster homepage
under the ‘ToppGene’ header. After finalizing the input
parameters, gene-associated feature enrichments are
computed in ToppGene (12) based on the hypergeometric
distribution test. The initial output is a result matrix that
has columns that relate to each input gene list, and rows
that represent the overrepresented features of any of the
gene lists. One column for each named gene list is a sig-
nificance value equal to the negative log of the P-value,
and the other column for each gene list is a
comma-delimited list of genes that have that feature (see
below). If a given feature has a significant association for
multiple gene list inputs, it is possible that there is an
identical significance score, but completely different lists
of genes that relate to that feature. The resulting function-
al enrichment matrix can be hierarchically clustered for
visualization and analysis as a heatmap or transformed
into a Cytoscape-compatible XGMML network format
or a Gephi compatible GEXF network format. If the
heatmap generation option is chosen, the functional en-
richment matrix is subjected to two-dimensional hierarch-
ical clustering (see below), where first the rows and then
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Figure 1. Schematic representation of the ToppCluster pipeline.
Multiple genelists are named by the user and submitted through the
ToppCluster interface. 17 different categories of annotations are avail-
able as of April 2010. The user can choose the categories to be
included, the P-value cutoff, a method of correction for false discovery
and the type of output. Functional enrichment analysis is done on each
gene list and the results are collated into a single matrix. Significance
P-values are log transformed (—logl0) into scores and the genes per list
that intersect each enriched feature are placed into a separate column.
The results are delivered in the chosen output format.

the columns are reordered according to similar scores. In
the tabular format, the genes from the particular gene list
contributing to the significance score are provided in an
adjoining table. Third-party software can be used to
import and visualize the heatmaps or networks. The
networks can also be obtained as static images.

Data input and interface

ToppCluster accepts input in one of two ways: (i) as
separate lists of genes which can be successively added
and named, or (ii), using the ‘alternative entry’ method,
as a two-column list with genes in the first column and the
name of the gene list in the second column. Accepted input
is limited to human genes at present. One or any of the 17
annotation sources can be used for feature enrichment
analyses. Each feature analysis can be adjusted based on
the P-value cutoff, the multiple testing correction method
or the minimum and maximum number of genes present
for each annotation type. For example, limiting

enrichments to ontologies that have fewer associated
genes can allow for a greater focus on specific classes of
gene feature or function. Multiple choices are available for
the formatting and delivery of results. The user can opt for
results to be obtained in tabular format as comma-
separated values, tab-separated values or HTML table
format. It is also possible to obtain the results in various
visualization formats—a standard heatmap in a PDF file
generated using R (18) (http://www.R-project.org),
TreeView (13,14) clustered data tree (CDT) heatmap
files, GenePattern (19) GCT format, Cytoscape (15)
XGMML importable network formats, Gephi (16) im-
portable GEXF network formats or as pre-laid out
network images using the PNG option.

Generation of enrichment data map

Each labeled gene list is fed to the ToppGene (12) web
service. The functional enrichment results for each gene
list for the selected categories are then compiled and
concatenated into a tabular format. Here, we have used
a new approach to represent the significance of the func-
tional term in a gene list. We take the negative logarithm
(—logl0) of the P-value corresponding to the term, thus
obtaining ‘significance scores’ above zero. We round off
any values over 10 to 10. Hence, the functional terms cor-
responding to a gene list have significance scores falling
between 0 and 10. If the heatmap option is chosen, the
matrix is subjected to two-dimensional hierarchical clus-
tering using the Euclidean distance measure with average
linkage via R (18).

Visualization

ToppCluster results can be viewed graphically as
heatmaps or networks. The ToppCluster heatmap-based
output can be obtained in two ways: as a heatmap image
in a PDF format file, or as a set of files compatible with
the TreeView (13,14) software. TreeView (13,14) can be
used to open the clustered data files to generate an inter-
active heatmap view. Heatmap images can subsequently
be saved from TreeView (13,14).

ToppCluster results can also be exported as Cytoscape
(15) supported network file types [XGMML; choose
‘Import’, “Network (multiple file types)”.], Gephi sup-
ported network files (GEXF) or as static images (PNG).
An interactive HTML output format lets the user select
features of interest from the results to be included in the
network. Following this, the user is allowed to select the
type, layout and file-format for the network. The network
can be displayed in two very different ways: a ‘Gene Level’
option generates the entire network including the genes,
while an ‘Abstracted’ option excludes the genes from the
network, retaining only the enriched terms as nodes that
are related to the input gene lists via edge relationships
that subsume the list of specific genes. In this option, the
network shows the input gene lists connected to the
enriched terms by weighted edges; the edge-weight is set
to the significance score of the enriched term, and the list
of genes are available as an annotation field from
Cytoscape’s data panel window in the Edge Attribute
Browser.



Implementation

ToppCluster is a distributed system implemented in
Java that runs across a cluster of Linux servers utilizing
the Sun Glassfish Enterprise Server environment.
ToppCluster passes data to ToppGene via Java
Messaging Services (JMS). JMS automatically distributes
all gene-list enrichment jobs to available ToppGene en-
richment analysis nodes. The TreeView clustered data
files and the PDF heatmap are generated using
embedded R (18) scripts that run as scheduled jobs on
the CCHMC Computational Cluster (http://bmi.cchmc
.org/resources/clusters). Network images are generated
using the JAVA JUNG (20) libraries for analysis and visu-
alization of network data. ToppCluster uses the jQuery
AJAX Library for dynamic HTML-based user interfaces.

UTILITY OF TOPPCLUSTER

We demonstrate the efficacy of ToppCluster using a
simple example—a set of tissue specific gene lists.
Tissue-specific gene lists from the TiGER (17) database
were selected for genes most highly expressed in heart,
muscle, liver, kidney and pancreas. From these, we
sought to identify and partition out the tissue-specific
gene lists based on their shared and specific disease pheno-
types and potential regulatory mechanism relationships.
The formatted and labeled lists were then submitted to
ToppCluster with a P-value cutoff of 0.05 and FDR cor-
rection method. The features selected were Mouse
Phenotype, microRNA and Transcription Factor
Binding Sites. Importantly, no false discovery correction
method was applied to microRNAs as the hypothesis for
its role is not based on a genome-wide relative enrichment,
but rather a Boolean true—false question as to whether the
miRNA is expressed and what genes it might target. First,
the ‘Abstracted’ network option was used to generate a
Cytoscape-compatible network file containing all enriched
term relationships. Figure 2A shows the network exported
as an image from Cytoscape after using the Spring
Embedded Layout function and the significance-based
edge weights. Some of the shared and specific phenotypes,
microRNAs,and over-represented transcription factors
are labeled in the figure.

From the Abstracted network view, there are distinct
functional separations. Notably, the liver gene list shows
highly significant enrichments for sets of genes that confer
specific phenotypes such as abnormal liver/biliary morph-
ology, decreased circulating cholesterol and abnormal
blood coagulation. The heart and skeletal muscle lists
share general cardiac muscle contractility and morphology
phenotypes, but differ with respect to phenotypes that
include abnormal impulse conducting system, irregular
heartbeat and dilated atria for the heart, and decreased
muscle mass, abnormal muscle development and muscle
weakness for skeletal muscle. Also shared among the two
are the heart- and muscle-expressed transcription factors
myocyte enhancer factor-2 (MEF-2) (21) and serum
response factor (22), but miR-29a,b,c and miR-100 —
targeted genes are significantly enriched. Consistent with
this, miR-29 has been shown to be a critical suppressor of
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cardiac fibrosis (23). The kidney genes show extensive re-
lationship enrichments to abnormalities of kidney struc-
ture and function, as well as transporter-associated
specific functions such as excretion and ion transport.
The transcription factor Pou3f3, the absence of which
causes multiple kidney phenotypes, binds to OCT class
transcription  factor  binding  sites, which are
over-represented in the kidney genes. The kidney gene
list is also enriched for promoter transcription factor
binding sites for PBXI, which also regulates
nephrogenesis and uretric branching (24). Consistent
with existing knowledge, hepatocyte nuclear factors
HNF1 and HNF4 are shared between the liver and
kidney genes (25,26). The liver-specific genes are
enriched for the Chicken Ovalbumin Upstream
Promoter-Transcription Factor (COUP-TF). This tran-
scription factor, although usually expressed ubiquitously
especially during development, is found to be highly
similar in its binding site to the liver-expressed
Hepatocyte Nuclear Factor-4 (HNF-4). The expression
of COUP-TF in almost all tissues and the fact that that
it acts as a repressor for the liver-specific gene Orinthine
Transcarbamylase (OTC) led to the theory that it may act
as a repressor of liver specific genes in other tissues (27).
The pancreatic genes show phenotypes such as
disorganized pancreatic islets, abnormal pancreas devel-
opment and abnormal insulin secretion. The kidney
genes share circulating amino acid, cholesterol, lipid and
mineral level phenotypes with the liver genes. The
pancreas-specific genes show enrichment for the transcrip-
tion factor GATAI, which is known to be involved
in cell-specific regulation of genes in multiple endocrine
organs including the pancreas (28). Also of interest
is the microRNA miR-190, which is specific to the pan-
creas genes. miR-190 has been found to be significantly
upregulated in pancreatic cancer tissues and cell lines (29).

To provide a dissected gene-level view of some of these
terms, we chose the phenotypes and transcription factors
shared between the liver and kidney genes. Using the
‘Gene Level’ network option, we generated a Cytoscape
compatible network showing only the genes, phenotypes
and transcription factors shared between the two sets, as
shown in Figure 2B. ToppCluster allows the user to select
terms of interest to be included in the network. This would
be especially useful when an investigator wants to further
explore only some of the enriched terms in the output.
This feature was used to generate Figure 3, where terms
enriched in multiple categories were selected and the gene
level network was generated.

The above use case, although recapitulating existing
knowledge, demonstrates the ability of ToppCluster to
tease out the shared and specific functions and regulatory
elements among multiple gene clusters.

An Excel file containing the input gene lists,
the Cytoscape network session (CYS) file and the
network data text file are available in the
‘Supplementary’ section of the ToppCluster homepage.
Also available is a heatmap view corresponding to
Figure 2A generated using TreeView and the TreeView
format clustered data files.
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Figure 2. (A) An ‘Abstracted’ Network showing enriched Mouse Phenotype terms, microRNAs and transcription factors associated with five
tissue-specific gene clusters—heart, kidney, liver, muscle and pancreas. (B) Dissected gene-level view of enriched Mouse Phenotype terms,
microRNAs and Transcription Factors shared between the kidney and liver specific gene lists. MP, Mouse Phenotype; TFBS, transcription factor

binding site; miRNA, microRNA.

LIMITATIONS

As mentioned in the review (5), one of the problems
with cross-comparing enrichment analyses from multiple
gene lists is that the sizes of the gene lists affect the
FDR-corrected enrichment P-values. This can make it
somewhat difficult to compare the P-values across
gene lists when their sizes are considerably different.
An algorithm to offset these differences that makes these
comparisons more accurately may be called for. In
addition, the specific hypotheses and relationship assump-
tions that underlie the use of false discovery P-value cor-
rection in the significance testing of some categorical
feature enrichments in a given gene list is a complex
subject. Some circumstances may warrant a consideration
of analysis results obtained without the use of false dis-
covery P-value correction. This is certainly the case for
considering the potential involvement of miRs in

regulatory networks, where the primary consideration
may be factoring of knowledge of whether any of the
miRs that could target critical genes are actually ex-
pressed. A key consideration beyond the scope of this
manuscript is therefore what are the causal or relationship
models that are being sought out, and when is it appro-
priate to provide sensitivity versus specificity with respect
to the detection of relevant relationships among a set of
genes that determine function in a complex system? These
considerations may considerably affect the optimal choice
of false discovery method and appropriate statistical
cutoff. In addition, lists formed from biased gene
analysis methods are not corrected in ToppGene because
our reference sets are not correctable at this time (4).
However, differential significance results between lists
should be relatively resistant to this effect for lists that
contain similar numbers of genes.
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CONCLUSION

Existing gene set enrichment analysis tools cover a wide
range of annotations and aid in the analysis of gene lists of
interest identified from large-scale experiments (30).
However, the novel concept presented in this paper and
achieved by the ToppCluster web server is that to tease
out highly significant relationships among a set of
co-acting or cooperating genes in one context, it can be
extremely valuable to compare these with those of genes
from other biological states. ToppCluster does this by
comparative co-analysis of multiple gene sets. In this pres-
entation, we have demonstrated the utility and potential
for discovery offered by ToppCluster to identify biological
processes and putative regulatory mechanisms associated
with human tissue-specific gene expression gene sets that
exhibit rich disease and phenotypes impacts. We envision
ToppCluster-enabled workflows of analysis, prediction
and discovery as providing a valuable tool for researchers
seeking to dissect complex biological processes to hone in
on specific genes, pathways and regulatory mechanisms
for prediction and further experimentation of systems
function, dysfunction and therapeutic agent effects. The
ability to visualize functional relationships across
multiple gene lists provides, in our opinion, novel
opportunities to form new hypotheses about the roles
and interactions of underlying biological mechanisms re-
sponsible for the determination of biological states
including development, homeostasis and disease
pathology.
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