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Abstract

Purpose

Accurate segmentation of lung nodules is crucial in the development of imaging biomarkers

for predicting malignancy of the nodules. Manual segmentation is time consuming and

affected by inter-observer variability. We evaluated the robustness and accuracy of a publi-

cally available semiautomatic segmentation algorithm that is implemented in the 3D Slicer

Chest Imaging Platform (CIP) and compared it with the performance of manual

segmentation.

Methods

CT images of 354 manually segmented nodules were downloaded from the LIDC database.

Four radiologists performed the manual segmentation and assessed various nodule charac-

teristics. The semiautomatic CIP segmentation was initialized using the centroid of the man-

ual segmentations, thereby generating four contours for each nodule. The robustness of

both segmentation methods was assessed using the region of uncertainty (δ) and Dice simi-

larity index (DSI). The robustness of the segmentation methods was compared using the

Wilcoxon-signed rank test (pWilcoxon<0.05). The Dice similarity index (DSIAgree) between the

manual and CIP segmentations was computed to estimate the accuracy of the semiauto-

matic contours.

Results

The median computational time of the CIP segmentation was 10 s. The median CIP and

manually segmented volumes were 477 ml and 309 ml, respectively. CIP segmentations

were significantly more robust than manual segmentations (median δCIP = 14ml, median

dsiCIP = 99% vs. median δmanual = 222ml, median dsimanual = 82%) with pWilcoxon~10−16. The

agreement between CIP and manual segmentations had a median DSIAgree of 60%. While
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13% (47/354) of the nodules did not require any manual adjustment, minor to substantial

manual adjustments were needed for 87% (305/354) of the nodules. CIP segmentations

were observed to perform poorly (median DSIAgree�50%) for non-/sub-solid nodules with

subtle appearances and poorly defined boundaries.

Conclusion

Semi-automatic CIP segmentation can potentially reduce the physician workload for 13% of

nodules owing to its computational efficiency and superior stability compared to manual seg-

mentation. Although manual adjustment is needed for many cases, CIP segmentation pro-

vides a preliminary contour for physicians as a starting point.

Introduction

Quantitative imaging has become an important area of research for the development of non-

invasive imaging biomarkers for numerous applications, such as the prediction of clinical out-

comes, and assessment of treatment response and gene expression [1, 2]. In particular, quanti-

tative imaging has the potential to have an immense impact on lung cancer patients. Lung

cancer is a leading cause of cancer-related death among men and women, affecting over 1.8

million patients worldwide [3]. At the time of diagnosis, the majority of patients are in

advanced stages of disease, resulting in poor prognoses with a 5-year overall survival rate

of< 20% [4]. However, patients who are treated for early stage disease have a substantially

greater overall survival rate of> 50% [4]. Therefore, identification of patients with early stage

disease is crucial for improving prognosis of lung cancer patients [5].

Computed tomography (CT) is routinely used to diagnose and monitor disease progression

in lung cancer patients, where early stage disease is often manifested as pulmonary nodules [6,

7]. One of the challenges of identifying patients with early stage lung cancer is that these pul-

monary nodules may also be an indicator of other benign conditions, such as inflammation

and/or infection, rather than malignancy [8]. Studies have hypothesized that malignant nod-

ules possess distinctive CT imaging features from benign nodules, such as greater lesion vol-

ume, longer diameter and faster growth rate [9–14]. Classifiers that are built using imaging

features have shown promise in assisting physicians to effectively identify different nodule

types [15–20]. The development and accuracy of these classifiers relies on accurate delineation

of the region of interest that conforms only to the nodule boundaries. Quantitative imaging

features are then extracted and evaluated from this region of interest to generate the classifier.

Therefore, inaccurate segmentation of tumors can lead to the development of inaccurate classi-

fiers or biomarkers. Manual segmentation by experienced radiologists is commonly used for

defining the nodule volume (or region of interest) using a slice-by-slice approach. However,

manual segmentation is not only labor intensive, but is also impacted by inter- and intra-

observer variability [21–24]. A number of automatic and semiautomatic segmentation meth-

ods have been proposed, ranging from simple approaches, such as thresholding [25] and

region growing [26], to more complex methods based on the probability map of nodule tex-

tures and convexity [17, 27, 28]. Despite having great potential to reduce human errors and

expedite the nodule contouring workflow, these methods are currently not publically accessi-

ble, which limits their widespread use in clinical and biomedical research.

Alternatively, 3D Slicer is an open-source software platform for biomedical research [29]

that supports versatile visualization and provides advanced analysis tools, such as image
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segmentation and registration. An algorithm implemented in 3D Slicer, known as GrowCut,

can delineate large lung tumor volumes more robustly than manual segmentation [30], and

reliably extract imaging features for the development of imaging biomarkers [31]. However,

segmentation of pulmonary nodules presents a unique challenge since the nodules are often

smaller and in close proximity with surrounding tissues. Therefore, additional pruning steps

are required in the nodule segmentation process to remove pleural and/or vessel attachments

[32, 33]. To address these challenges with nodule segmentation, a level set-based algorithm has

been implemented within the Chest Imaging Platform (CIP) in 3D Slicer [33, 34]. This algo-

rithm is based on a front propagation approach from a “seed point” placed within the nodule.

The propagation of the front (or segmentation) is constrained to prevent leakage into the chest

wall, airway walls or regions with appearance of tubular or vessel-like structures.

This study investigated the ability of CIP segmentation to assist physicians with nodule seg-

mentation. In particular, we evaluated the robustness of the CIP segmentation algorithm in

delineating lung nodules and compared its performance with the manual segmentations. The

accuracy of the CIP segmentation algorithm and nodule characteristics that could affect the

segmentation quality was also investigated.

Materials and methods

Patient dataset: Since a publicly available dataset was used in this study, approval by an institu-

tional review board was not needed. A publicly available thoracic CT dataset, known as the

Lung Image Database Consortium (LIDC), was downloaded from The Cancer Imaging

Archive (TCIA: https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI/) [23]. The

LIDC dataset consisted of 1007 patients with low dose helical thoracic CT images containing

annotated lung nodules that were acquired from seven academic institutions with slice thick-

nesses ranging from 1 mm to 5 mm. In the LIDC dataset, each nodule had 1 to 4 manual seg-

mentations that were performed on a slice-by-slice basis by experienced thoracic radiologists.

The LIDC radiologists assigned scores (ranging from 1 to 5) to each nodule for nine categories

that described the nodule characteristics, including its subtlety, internal structure, roundness,

margin sharpness, lobulation, spiculation, texture, and likelihood of being malignant. Table 1

contains an annotation of the scoring system. Images were excluded from the current study if

they were not segmented by 4 or more radiologists (n = 596), nodule numbers were mislabeled

(n = 60) or had imaging artifacts (n = 77, Fig A in S1 File). The imaging artifacts were due to

Table 1. Annotation of nodule characteristic scoring.

1 2 3 4 5 6

Nodule Characteristics

Subtlety Extremely Subtle Moderately Subtle Fairly Subtle Moderately

Obvious

Obvious N/A

Internal Structure Soft Tissue (default) Fluid Fat Air N/A N/A

Calcification Popcorn Laminated Solid Non-Central Central Absent

Sphericity (Roundness) Linear Ovoid Round

Margin Poorly Sharp N/A

Lobulation None Marked N/A

Spiculation None Marked N/A

Texture Non-Solid/Ground Glass Opacity Part Solid/Mixed Solid N/A

Malignancy Highly unlikely Moderately unlikely Indeterminate Moderately suspicious Highly suspicious N/A

The intermediate values for Roundness, Margin, Lobulation, Spiculation, and Texture are allowed to use by the radiologists. N/A = not applicable.

https://doi.org/10.1371/journal.pone.0178944.t001
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corruption in the original LIDC DICOM files. As a result, images from 274 patients with 354

nodules (1–4 nodules/patient) were used to analyze the robustness and accuracy of 3D Slicer

CIP-segmentation.

Nodule segmentation algorithm in 3D Slicer: The CIP in 3D Slicer 4.5 [29] employs semiau-

tomatic nodule segmentation algorithm based on the open-source a Lesion Sizing Toolkit-

based [33]. A seed point is placed within the nodule region to initialize the segmentation. In

this current study, the seed point was chosen as the centroid of each manual contour. As there

were four radiologist-defined nodule contours, four CIP-segmentations were generated auto-

matically for each nodule. To speed up the computation time, the CIP segmentation algorithm

also automatically cropped the CT images around the seed points with a radius of 30 mm. If an

image consisted of multiple nodules, then an automatically cropped region was created around

the seed point for each nodule.

Within each cropped region, the nodule segmentation was based on a level set formulation

(Sethian 1999) to propagate a front according to a Geodesic Active Contour functional [35].

The contour propagation is governed by a smoothing term that minimizes the curvature of the

contour and an “attachment” term that pulls the front towards the features of interest. This

second term employs a speed map, F, to guide the segmentation results according to the

desired characteristics of nodules. The speed map is obtained as a sigmoid transformed min

pooling of four different feature maps that are designed to slow down the evolution in 1) the

chest wall region, 2) vascular structures, 3) the interface between the nodule and the lung

parenchyma, and 4) areas whose density is not compatible with nodular structures. The chest

wall feature map was obtained according to a threshold-based approach followed by morpho-

logical operations similar to the ones employed in standard lung segmentation approaches

[36]. Vessel-like structures were penalized based on the Sato vesselness filter [37]. The interface

map between the nodule and the lung parenchyma is defined according to a canny edge detec-

tor. Finally, the non-nodular regions were excluded based on a sigmoid function with parame-

ters, alpha = 100 and beta = -200 and -500 for solid and non-solid nodules respectively. One or

more seed points within the nodule initialize the segmentation.

Robustness of the segmentation methods: The region of uncertainty (δ) and dice similarity

index (DSI), were used to assess the robustness of the manual and CIP segmentations. The

region of uncertainty was defined as the negation of the intersect regions of all the segmenta-

tions (Fig 1). In particular, the region of uncertainty (δ) was defined as follow:

dmethod ¼ ðV
I
method [ VII

method [ VIII
method [ VIV

methodÞ � ðV
I
method \ VII

method \ VIII
method \ VIV

methodÞ ð1Þ

Where method could either be manual or CIP segmentation. For manual segmentation, the

superscript indicates the nodule volume delineated by the four different radiologists, whereas

for CIP segmentation, it indicates the segmentations initialized by the centroid computed

from the four radiologist-defined volumes. δ equaled to zero indicated that the segmentation

method was perfectly robust across the four segmentations. The stability of the segmentation

method decreases with increasing in the δmethod (Fig 2).

The DSI for segmentation stability was defined as follow:

dsimethod ¼
1

6

P
i6¼j

nðVi
method

T
Vj

methodÞ

nðVi
methodÞþnðVj

methodÞ

2

� 100% ð2Þ

Where method could either be manual or CIP segmentation. n(V) indicates the number of

voxel in volume V. i and j ranged from 1 to 4 indicating nodule volumes segmented by radiolo-

gist i and j, or initialized by the centroid computed from radiologist i and j, for manual and

CIP segmentations, respectively. There were four contours for each segmentation method and,
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thus, six possible combinations of i and j. The stability of the segmentation method increases

with increasing dsimethod, where dsimethod = 100% indicates a perfectly robust method.

The robustness of the CIP segmentation method (δCIP or dsiCIP) was compared with the

manual segmentation method (δmanual or dsimanual) using the Wilcoxon signed-rank test,

Fig 1. Comparison of manual (left) and CIP-based (right) segmentation. Yellow shaded region indicated

the disagreement (or region of uncertainty) between contours performed by four radiologists (bottom left) or

different CIP-based seed locations (bottom right). In this example, the region of uncertainty for manual

segmentation was 3222 ml while the region was only 46 ml for the CIP-based segmentation. dsiCIP was�

100%, while dsimanual was 88%.

https://doi.org/10.1371/journal.pone.0178944.g001

Fig 2. Robustness (or stability) of the manual and CIP-based segmentation. The robustness of the

manual and CIP-based segmentation assessed with the region of uncertainty (δ) and Dice similarity index

(dsi).

https://doi.org/10.1371/journal.pone.0178944.g002
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where pWilcoxon < 0.05 indicated statistical significance. Moreover, the average nodule volume

segmented by the manual and CIP contouring methods were also compared and tested for sig-

nificant differences. The average nodule volume was defined as Vmethod ¼
1

4

P4

i¼1
Vi

method; where

i indicates radiologist i. Since the ground truth of the nodule segmentation is unknown, the

average nodule volume (Vmanual ) computed from the manual contours was used to estimate the

true nodule volume. Unless otherwise specified, Vmanual is referred to as nodule volume.

Accuracy of the CIP segmentation method: The accuracy of CIP segmentations was evalu-

ated to ensure that non-nodular tissues were excluded and the entire nodule volume was con-

toured. Even if the CIP segmentation was perfectly robust, it may include nearby non-nodule

tissues or fail to capture the entire nodule region. For example, despite being almost perfectly

robust, nodules contoured by the CIP segmentation method were observed to include substan-

tial normal lung regions as shown in Figs 3B and 4A. The agreement between the manual and

CIP segmentations was used to estimate how well the nodule volume could be delineated by

the CIP segmentation. DSIAgree was used to assess for the segmentation agreement and was

defined as follow:

DSIAgree ¼
1

4

P4

i¼1

nðVi
CIP

T
VjÞ

nðVi
CIPÞþnðVjÞ

2

� 100% ð3Þ

Where Vi
CIP is the CIP segmentation nodule volume initialized by the centroid of nodule vol-

ume segmented by radiologist i. Vj could either be the intersection (j = 1) or the union (j = 1)

of the radiologist defined segmentations.

Fig 3. Bland-Altman plots. Bland-Altman plots highlights the differences between VCIP and Vmanual for all

nodules. The 95% interval of the differences are depicted by the blue dotted lines. Solid red line is the average

difference between VCIP and Vmanual (= 318ml).

https://doi.org/10.1371/journal.pone.0178944.g003
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To avoid confusion, lower case dsi was used to indicate the robustness of the segmentation

method while upper case DSI was used to indicate the accuracy of the CIP-based segmentation

in this paper.

Moreover, all the CIP-segmentations were visually inspected by an experienced radiologist

(J.K.) and researcher (S.Y.). They then classified the nodule segmentations into four categories:

1) substantial, 2) moderate, 3) minor, and 4) no manual adjustment required.

Relationship between nodule characteristics and CIP segmentation accuracy: To identify

nodule characteristics that may affect the accuracy of the CIP segmentation, the Spearman’s

correlation coefficient was computed between the radiologists scored nodule characteristics

and DSIAgree. For nodule characteristics that had a continuous scoring scale (e.g. margin

ranges from 1 to 5, where 1 indicates a poorly defined margin and 5 indicates a sharp margin)

(Table 1), a t-test was used to assess if the correlation coefficient was significantly different

from 0 (pt-test<0.05). For characteristic categories where the scoring scale was categorical

(ordinal) rather than continuous (i.e. nodule calcification where each score indicates a differ-

ent appearance) (Table 1), the Kruskal-Wallis test (pKruskal-Wallis<0.05) was used.

The correlations between Vmanual , DSIAgree and all nodule characteristics were also calcu-

lated. Four radiologists scored each category, and thus, there was some variability in the

Fig 4. Examples of nodules that were segmented by radiologists manually and CIP segmentations. a)

The robustness of the CIP segmentation was excellent, while substantial interobserver variability was

observed in manual segmentation. CIP segmentation was also in excellent agreement with manual contours.

However, CIP segmentation was observed to include part of the chest wall (indicated by an arrow) b) Despite

being perfectly robust CIP segmentation, it included the region of the normal lung in proximity of the small

nodule. c) Cavitation in the center of the nodule. Poor CIP segmentation performance was found. d) Non-solid

(ground glass opacity) nodule with poorly defined boundary and subtle appearance is indicated by the red

arrow. Poor CIP segmentation performance was found.

https://doi.org/10.1371/journal.pone.0178944.g004
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characteristic scoring. When there was a heterogeneous rating, the score that was assigned by

the majority of radiologists was chosen for the analysis. In the case of a tie rating, the score that

were most frequently assigned to the patient population was chosen. The distributions of the

scores for each nodule characteristic are shown in Fig B in S1 File.

Furthermore, Spearman’s correlation coefficient was employed between image voxel thick-

ness and DSIAgree to investigate if the voxel thickness affected the segmentation quality. The

significance of the relationship was assessed by a t-test (pt-test<0.05).

Results

In this study, a semiautomatic segmentation method implemented in the CIP of 3D Slicer was

used to contour 354 nodules. The computation time of the CIP segmentations was 5–79 s

(median: 10s) on a personal computer with 16GB RAM and 3.40GHz Core i7-4770 CPU.

Robustness of the segmentation methods: For the CIP segmentation method, the median

dsiCIP was 99% (Interquartile (IQR) range: 97–100%) and the median δCIP was 14 ml (IQR

range: 7–37 ml), while for the manual segmentation method, dsimanual was 82% (IQR range:

77–85%) and the median δmanual was 222 ml (IQR range: 124–461 ml) (Fig 2). Although both

segmentation methods were generally robust (median dsi>80%), CIP segmentations were sig-

nificantly more stable than the manual segmentations with pWilcoxon~10−16 for both robustness

measures. Fig 4A shows a visual example of a patient with more stable nodule contours by the

CIP segmentation method than by the manual segmentation method.

Accuracy of the CIP segmentation: The Bland-Altman plot in Fig 3 highlights the differences

between Vmanual and VCIP for all nodules. The median value of Vmanual was 309ml (IQR range:

162–796ml) and VCIP was 477ml (IQR range: 153–1290ml). Nodules segmented by the CIP

method were significantly greater in volume than those by manual method (pWilcoxon~10−12).

Fig 4B shows an example where CIP segmentation overestimated the nodule region, including

parts of the normal lung.

The agreement between CIP and manual segmentations that was assessed by the median

DSI was 60% (IQR range: 46–71%). The relationship between various nodules characteristics

and the accuracy of the CIP segmentation (i.e. DSIAgree) is shown in Fig 5. Nodule subtlety,

margin, texture, lobulation, malignancy, and nodule volume (Vmanual ) were positively and sig-

nificantly correlated to the DSIAgree (pt-test range: 1.5x10-9 - 6x10-3) (Fig 5). As the nodule vol-

ume increased from 162ml to 796ml, the median DSIAgree increased from 55% to 78%. The

median agreement between CIP and manual segmentations increased from 56% to 70% as the

likelihood of the nodule malignancy increased.

An example of a non-solid subtle nodule with poorly defined boundaries is shown in Fig

4D. The accuracy of the CIP segmentation was poor for non-solid or semi-solid nodules, or

nodules with poorly defined boundaries and subtle appearances with a median DSIAgree rang-

ing from 15%–41% (Table 2). The performance of CIP segmentations for solid nodules with

sharp margins and obvious appearances increased to 61% (Table 2). Nodules that were not

marked to be lobulated or spiculated by the radiologists had a median DSIAgree of 59%. Sub-

stantial agreement (median DSIAgree > 65%) between CIP and manual segmentations were

found in nodules with marked lobulation and spiculation (Table 2). Nodule sphericity (pt-test =

0.94) and calcification (pKruskal-Wallis = 0.49) were not significantly correlated with Vmanual .

Median DSIAgree was ~60% for all nodules regardless of the nodule sphercitiy and calcification

conditions (Fig 5, Table 2).

While the interior structure of all the other 343 nodules was scored as soft tissue, one nodule

was rated to be air (Fig 4C). For this nodule, the CIP segmentation failed to identify the bound-

ary of the nodule resulting in a DSIAgree. of 1% and was unstable (dsiCIP = 42%) (Fig 4C). Nodule

Robust lung nodule segmentation
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malignancy, subtlety, calcification, lobulation, and spiculation were positively and significantly

correlated to Vmanual (pt-test range = 6.87x10-27–1.12x10-4).

As image voxel thickness increased from 1 mm to 5 mm, the median DSIAgree increased

from 62% to 79%. However, of the 354 CT images, only two images had a thickness of 5 mm.

After excluding these two images from the analysis, the influence of image thickness on the

Fig 5. The relationships between nodule characteristics, nodule volume, and DSIAgree. This figure

highlights the relationships between nodule characteristics, nodule volume, and DSIAgree. Calcification:

Solid = solid calcification, Central = central calcification, None = no calcification. Lobulation: None = not

lobulated. Spiculated: None = not spiculated. Texture: Mixed = Semi-solid nodules. Malignancy:

Unlikely = unlikely for cancer, Suspicious = suspicious for cancer. Nodule Volume: Q1 = 162ml, Q1–

Q3 = 162ml to 796ml, and Q3 = 796ml; Q = quantile.

https://doi.org/10.1371/journal.pone.0178944.g005
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Table 2. Distribution of nodule characteristics. Median Vmanual , median DSIAgree and their corresponding interquartile ranges (IQR) for each nodule

characteristic.

Nodule characteristics Scoring Total (n = 354 nodules)

Number (%)

Median DSIAgree (IQR) Median Vmanual (IQR)

Subtlety 1 = Extremely subtle 5 (1.0%) 19% (5–24%) 207ml (109–380ml)

2 = Moderately subtle 7 (2.0%) 61% (49–62%) 108ml (97–130ml)

3 = Fairly subtle 69 (20%) 56% (34–62%) 172ml (106–273ml)

4 = Moderately subtle 87 (25%) 52% (42–67%) 209ml (148–414ml)

5 = Obvious 186 (53%) 64% (53–79%) 602ml (289–1415ml)

Calcification 1 = Popcorn 0 (0%) N/A N/A

2 = Laminated 0 (0%) N/A N/A

3 = Solid 57 (16%) 56% (47–62%) 220ml (124–374ml)

4 = Non-central 0 (%) N/A N/A

5 = Central 1 (0%) 59% (59–59%) 146ml (146–146ml)

6 = Absence 296 (84%) 61% (45–74%) 370ml (172–884ml)

Sphercitiy (Roundness) 1 = Linear 0 (0%) N/A N/A

2 3 (1.0%) 63% (61–66%) 497ml (403–516ml)

3 = Ovoid 90 (25%) 60% (48–69%) 290ml (148–529ml)

4 156 (44%) 60% (44–72%) 301ml (162–805ml)

5 = Round 105 (30%) 58% (43–76%) 363ml (188–1001ml)

Margin 1 = Poorly 3 (1.0%) 6% (5–13%) 803ml (456–908ml)

2 17 (5.0%) 50% (12–61%) 436ml (212–810ml)

3 22 (6.0%) 51% (25–70%) 311ml (153–780ml)

4 81 (23%) 59% (45–70%) 375ml (153–807ml)

5 = Sharp 231 (65%) 61% (50–74%) 291ml (164–749ml)

Lobulation 1 = None 290 (82%) 59% (45–69%) 275ml (150–617ml)

2 38 (11%) 62% (51–72%) 660ml (318–1930ml)

3 15 (4.0%) 70% (57–83%) 809ml (609–2986ml)

4 7 (2.0%) 80% (65–82%) 1357ml (815–1980ml)

5 = Marked 4 (1.0%) 66% (39–84%) 1492ml (283–2801ml)

Spiculation 1 = None 312 (88%) 59% (45–70%) 291ml (154–693ml)

2 28 (8.0%) 61% (54–72%) 483ml (207–785ml)

3 7 (2.0%) 75% (70–81%) 1542ml (1285–4174ml)

4 2 (1.0%) 83% (79–86%) 3064ml (2351–3777ml)

5 = Marked 5 (1.0%) 81% (66–83%) 3036ml (984–7489ml)

Texture 1 = Non-Solid/GGO 13 (4.0%) 8% (3–21%) 380ml (212–810ml)

2 2 (1.0%) 48% (46–49%) 200ml (149–251ml)

3 = Part Solid/Mixed 7 (2.0%) 32% (17–58%) 711ml (315–815ml)

4 4 (1.0%) 59% (53–65%) 357ml (264–440ml)

5 = Solid 328 (93%) 61% (48–73%) 298ml (162–784ml)

Malignancy 1 = Highly unlikely 69 (20%) 56% (47–63%) 219ml (122–421ml)

2 = Moderately unlikely 27 (8%) 56% (42–67%) 159ml (119–335ml)

3 = Indeterminate 176 (50%) 58% (43–70%) 265ml (153–504ml)

4 = Moderately suspicious 49 (14%) 67% (54–80%) 803ml (507–1073ml)

5 = Highly suspicious 33 (9%) 73% (61–85%) 2573ml (1180–4489ml)

The intermediate values for Roundness, Margin, Lobulation, Spiculation, and Texture are allowed to use by the radiologists. N/A = not applicable.

GGO = Ground Glass Opacity

https://doi.org/10.1371/journal.pone.0178944.t002
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accuracy of CIP segmentation was insignificant and was nearly negligible (Spearman’s correla-

tion coefficient of 0.01 and pt-test of 0.82).

According to visual inspection, 13% (47/354) of the nodules did not require any manual

adjustment. Minor to moderate manual adjustments were needed for 37% (129/354) of nod-

ules that included non-nodular tissues (e.g. pleura). Substantial manual adjustment were

required for 50% (176/354) of the nodules.

Discussion

Pulmonary nodules can indicate early stage lung cancer or a number of benign conditions.

CT-based imaging features have been used to generate imaging biomarkers that predict the

malignancy of lung nodules and have demonstrated promising results [19, 20]. Careful delin-

eation of the lung nodule volumes is required for accurate feature extraction to build these

imaging biomarkers [15–18]. Most commonly, manual segmentation is the method of choice;

however, manual segmentation is not only time consuming, but is also affected by inter-

observer variability [21, 22, 24]. Although many automatic and semi-automatic segmentation

algorithms for nodule segmentation have been proposed, the widespread use of these algo-

rithms, in the scientific and clinical communities, is hampered by their limited accessibility. In

this study, we compared the robustness of manual segmentation and a publically accessible

nodule segmentation algorithm, known as CIP segmentation.

CIP segmentation may potentially provide a reliable way to assist physicians in the nodule

delineation process by reducing inter-observer variability and the physician workload. The

CIP segmentations computed from different seed points from the four radiologists were in

excellent agreement, indicating that the CIP method is robust and stable to different segmenta-

tion seed points. In comparison, manual segmentation was significantly less stable than CIP

segmentation. Comparatively, Velazquez et al (2013) assessed the robustness of manual delin-

eations and a 3D Slicer semi-automatic algorithm, known as GrowCut, in defining the volume

of twenty non-small cell lung (NSCLC) tumors [30]. They found that the GrowCut algorithm

resulted in significantly smaller regions of uncertainty than manual delineations and con-

cluded that it could be used as a starting point for tumor target delineation in radiotherapy

and high-throughput data mining research when manual delineations are not available. The

results of our study are consistent with their findings that semiautomatic algorithms (in our

case, CIP segmentations) are more stable than manual segmentations in defining lung nodule

volumes. Furthermore, CIP segmentation is efficient with a median computation time of only

10s on a personal computer. We anticipate that the computational time of the CIP segmenta-

tion algorithm would be significantly reduce on a more powerful computer.

Despite the potential applications of the CIP segmentation algorithm, manual adjustment

of the segmentations may be needed, especially for small nodules and nodules with poorly

defined boundaries, subtle appearance, and non-solid or part-solid textures. Nodule calcifica-

tion and sphericity have no impact on the performance of CIP segmentations. The accuracy of

CIP segmentations tended to be better when the nodule was solid, more obvious, and with a

sharp boundary. Non- and part-solid nodules with a hazy appearance failed to completely

obscure parenchymal structures, and have been therefore difficult detect and segment by

many segmentation algorithms [27, 28, 38, 39]. Similarly, CIP segmentations also suffer from

this limitation, where nodules with subtle appearances may have similar image density as its

background that makes the full extent of nodules difficult to define. Therefore, in these cases,

the knowledge of experienced radiologists is needed to estimate the extent (or boundary) of

the nodules and manually edited the CIP segmentation. The robustness of the CIP segmenta-

tion was nearly perfect and significantly better than the manual segmentations (Fig 2). Hence,
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the robustness of manual adjustment based on the CIP segmentation is anticipated to be supe-

rior to manual segmentation, but not as robust as CIP segmentation alone.

Several segmentation algorithms have been proposed to improve the contours of structures

with hazy appearances, such as non- and part-solid nodules, such as the Markov random field

theory-based algorithm [40, 41], neural network [42], and a hybrid algorithm that combines

threshold-based region growing, connected component analyses and convex hull calculations

[28, 39, 43]. Brief descriptions of five example algorithms that have good performance in seg-

menting GGO and partly solid nodules are shown in Table 3. However, these more sophisti-

cated algorithms are not easily accessible and have not been implemented into open source

platforms for widespread use. Incorporating algorithms for defining non- and sub-solid nod-

ules into the 3D Slicer CIP can further improve the performance of the CIP segmentations.

Furthermore, although juxtapleural nodules and nodules with vessel attachment are more

challenging to segment than the isolated nodules [44, 45], these nodules characteristics were

not evaluated and scored by the LIDC radiologists. In the future, it would be interesting to

compare the performance of the CIP segmentation in delineating juxtapleural, vessel-attached,

and isolated nodules.

CIP segmentations may overestimate nodule region of interest for small nodules. A previ-

ous study used eighteen nodules of different sizes, shapes and densities that were embedded

into various locations of an anthropomorphic thorax phantom to validate the CIP segmenta-

tion algorithm [33]. On average, CIP segmentation overestimated the phantom nodule volume

by 35%. In our study, CIP segmentation performed best for large nodules with a difference

Table 3. Brief descriptions of five algorithms for ground glass opacity (GGO) or partly solid nodule

segmentation.

Authors Description Number of manually segmented

nodules for validation

Lassen et al

(2015) [28]

Regions of nodules and parenchyma were initially

segmented based on the threshold-based region

growing algorithm, followed by chest wall removal

using the connected component analysis and convex

hull calculation. Attached vessels are removed by

morphological operations.

59 LIDC lung nodules

Tan et al

(2012) [41]

Marker-controlled watershed were geometric active

contours with Markov random field for segmenting

nodules

23 LIDC lung and 22 phantom

nodules

Zhu et al

(2011) [40]

Image intensity distributions of the lung nodules were

modeled using simple and adaptive data. Gibbs

sampler was used to solve the maximum a posteriori

probability estimator to identify the best nodule

segmentation.

41 lung nodules acquired at the

Huadong Hospital, Shanghai,

China

Kubota et al

(2010) [38]

Lung parenchyma and nodule-like structures

(foreground) were separated using couple

competition and diffusion processes. The Euclidean

distance transformation was then performed to

identify the core of a nodule. Attached structures

were removed by a region growing algorithm on the

Euclidean distance map. Finally, the segmentation

was defined by the overlap region of the nodule’s

convex hull and the foreground.

105 LIDC nodules

Zhou et al

(2006) [39]

GGO nodules were first detected using the boosted

k-nearest neighbor. The nodules were then

segmented based on the nonparametric density

estimation of a 3D texture probability map.

Eigenvalues analysis of Hessian matrix was used to

remove tube like vessel structures.

10 clinical nodules

https://doi.org/10.1371/journal.pone.0178944.t003
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between segmented and phantom nodule volumes <15%. In patients, larger differences were

found between the CIP and manually segmented nodule volumes (VCIP = 477ml vs Vmanual =

309ml). This may due to the fact that patient nodules (e.g. vessel-attached and juxtapleural

nodules) were more variable than those embedded in the phantom. CIP segmentations per-

formed better for nodules with larger volumes (Vmanual ) and a higher likelihood of being malig-

nant. Nodules that are larger in size (e.g. >4mm nodule diameter in the National Lung

Screening Trail in the United Stated [5] are generally considered to be more likely to be malig-

nant. Moreover, the appearance of a large nodule is less subtle and more obvious. As expected,

in our study, nodule malignancy and subtlety were positively correlated with nodule volumes.

According to the LIDC publications and documentations, it is unclear whether all segmenta-

tions were performed by the same or different radiologists [23, 42, 46]. However, we found

that the nodule volumes segmented by different LIDC radiologists were consistent and in

excellent agreement (Fig 1). Thus, our comparison between CIP- and manual segmentations

would be mildly influenced by the inter-radiologist variability even if the nodules were not

defined by the same radiologist. Substantial agreement between CIP and manual segmenta-

tions were found for nodule volumes >796ml. Moreover, larger nodule volumes may be more

likely to be lobulated and spiculated due to the significant correlation between these character-

istics and the nodule volume. This may explain why the CIP segmentation method performed

better for nodules with marked lobulation and spiculation. We observed that nodule volumes

computed from CIP segmentations were significantly greater than those computed from man-

ual segmentation. For nodules with smaller size, CIP segmentations often include adjacent tis-

sues, such as normal lung and blood vessels. Furthermore, small nodules were not only more

likely to have subtle appearances and thus, were difficult to detect, but could also be easily

overestimated by CIP segmentations. Therefore, manual adjustments may be needed to cor-

rect for the overestimation of the small nodules in the CIP segmentations.

An emerging field that converts medical images into high dimensional mineable data is

called radiomics [47]. In addition to differentiating between benign and malignant nodules,

radiomic features of lung lesions could also be used to predict clinical outcomes and treatment

response [1, 2, 48]. Several lung screening trials using CT images have been launched in Asia

[49–51], Europe [52–54], and the United States [5, 55, 56] to identify patients with early lung

cancer. Due to the easy accessibility of the CIP segmentation algorithm, this method may be

useful for nodule delineation in these lung trial datasets that consist of a large number of

patients. This could subsequently expedite the high-throughput extraction of imaging features

for radiomic analysis for nodule classification and patient outcomes for precision medicine,

especially for patients with large nodules. Future studies will need to investigate how inaccu-

rate CIP segmented nodule volumes influence the predictive power of radiomic features.

The CIP segmentation algorithm relies on several parameters for the generation of the fea-

ture maps that were experimentally set up to default values. Further improvements in the seg-

mentation result may be expected by a careful selection of those parameters. Our experience

was that the default parameters provided in CIP work well on average but specific nodule char-

acteristics would benefit for tailored parameters selection.

Conclusion

A semi-automatic segmentation algorithm implemented under the 3D Slicer Chest Imaging

Platform (CIP) may be useful for assisting physicians in nodule volume delineation. CIP seg-

mentations can potentially reduce the physician workload in 13% of the nodules and inter-

observer variability due to its computational efficiency and superior stability compared to

manual segmentation. Due to the public accessibility of the CIP segmentation algorithm, it can
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be employed to initiate nodule segmentation for large datasets, such as lung screening trials,

thereby facilitating efficient nodule classification and high-throughput data mining research.

However, CIP segmentations should be used with care and manual adjustment of the segmen-

tations may be needed for the majority (87%) of the nodules, including small nodules, and

nodules with subtle appearances, poorly defined boundaries and non- and part-solid texture.

Although manual adjustment is needed for many cases, CIP segmentation provides a prelimi-

nary contour for physicians as a starting point
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